Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Control of immune cell function by the unfolded protein response

Abstract

Initiating and maintaining optimal immune responses requires high levels of protein synthesis, folding, modification and trafficking in leukocytes, which are processes orchestrated by the endoplasmic reticulum. Importantly, diverse extracellular and intracellular conditions can compromise the protein-handling capacity of this organelle, inducing a state of ‘endoplasmic reticulum stress’ that activates the unfolded protein response (UPR). Emerging evidence shows that physiological or pathological activation of the UPR can have effects on immune cell survival, metabolism, function and fate. In this Review, we discuss the canonical role of the adaptive UPR in immune cells and how dysregulation of this pathway in leukocytes contributes to diverse pathologies such as cancer, autoimmunity and metabolic disorders. Furthermore, we provide an overview as to how pharmacological approaches that modulate the UPR could be harnessed to control or activate immune cell function in disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of unfolded protein response signalling pathways.
Fig. 2: Intrinsic activation of unfolded protein response sensors during physiological immune responses.
Fig. 3: Pathological unfolded protein response signalling in immune cells in cancer.
Fig. 4: Pathological unfolded protein response signalling in immune cells in metabolic disease.
Fig. 5: Pathological and protective unfolded protein response signalling in immune cells in autoimmune disease and ageing.

Similar content being viewed by others

References

  1. Xu, C. & Ng, D. T. Glycosylation-directed quality control of protein folding. Nat. Rev. Mol. Cell Biol. 16, 742–752 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Shiu, R. P., Pouyssegur, J. & Pastan, I. Glucose depletion accounts for the induction of two transformation-sensitive membrane proteins in Rous sarcoma virus-transformed chick embryo fibroblasts. Proc. Natl Acad. Sci. USA 74, 3840–3844 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kozutsumi, Y., Segal, M., Normington, K., Gething, M. J. & Sambrook, J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332, 462–464 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Mori, K. The unfolded protein response: the dawn of a new field. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 91, 469–480 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Hetz, C., Zhang, K. & Kaufman, R. J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 21, 421–438 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Celli, J. & Tsolis, R. M. Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes? Nat. Rev. Microbiol. 13, 71–82 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Tavernier, S. J., Lambrecht, B. N. & Janssens, S. The unfolded protein response in the immune cell development: putting the caretaker in the driving seat. Curr. Top. Microbiol. Immunol. 414, 45–721 (2018).

    CAS  PubMed  Google Scholar 

  9. Bettigole, S. E. & Glimcher, L. H. Endoplasmic reticulum stress in immunity. Annu. Rev. Immunol. 33, 107–138 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Martinon, F., Chen, X., Lee, A. H. & Glimcher, L. H. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat. Immunol. 11, 411–418 (2010). This study highlights the importance of XBP1s-mediated transcriptional regulation for optimizing macrophage polarization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qiu, Q. et al. Toll-like receptor-mediated IRE1alpha activation as a therapeutic target for inflammatory arthritis. EMBO J. 32, 2477–2490 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Keestra-Gounder, A. M. et al. NOD1 and NOD2 signalling links ER stress with inflammation. Nature 532, 394–397 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sweet, L. A., Kuss-Duerkop, S. K. & Keestra-Gounder, A. M. IRE1alpha-driven inflammation promotes clearance of citrobacter rodentium infection. Infect. Immun. 90, e0048121 (2022).

    Article  PubMed  Google Scholar 

  14. Iwasaki, Y. et al. Activating transcription factor 4 links metabolic stress to interleukin-6 expression in macrophages. Diabetes 63, 152–161 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Hu, F. et al. ER stress and its regulator X-box-binding protein-1 enhance polyIC-induced innate immune response in dendritic cells. Eur. J. Immunol. 41, 1086–1097 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moretti, J. et al. STING senses microbial viability to orchestrate stress-mediated autophagy of the endoplasmic reticulum. Cell 171, 809–823 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barber, G. N. STING: infection, inflammation and cancer. Nat. Rev. Immunol. 15, 760–770 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, D. et al. A non-canonical cGAS–STING–PERK pathway facilitates the translational program critical for senescence and organ fibrosis. Nat. Cell Biol. 24, 766–782 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Chaudhary, V. et al. Chronic activation of pDCs in autoimmunity is linked to dysregulated ER stress and metabolic responses. J. Exp. Med. 219, e20221085 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Goodall, J. C. et al. Endoplasmic reticulum stress-induced transcription factor, CHOP, is crucial for dendritic cell IL-23 expression. Proc. Natl Acad. Sci. USA 107, 17698–17703 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marquez, S. et al. Endoplasmic reticulum stress sensor IRE1alpha enhances IL-23 expression by human dendritic cells. Front. Immunol. 8, 639 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mogilenko, D. A. et al. Metabolic and innate immune cues merge into a specific inflammatory response via the UPR. Cell 178, 263 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Rosen, D. A. et al. Modulation of the sigma-1 receptor-IRE1 pathway is beneficial in preclinical models of inflammation and sepsis. Sci. Transl. Med. 11, eaau5266 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Govindarajan, S. et al. Stabilization of cytokine mRNAs in iNKT cells requires the serine–threonine kinase IRE1alpha. Nat. Commun. 9, 5340 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chopra, S. et al. IRE1alpha-XBP1 signaling in leukocytes controls prostaglandin biosynthesis and pain. Science 365, eaau6499 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Park, J. Y., Pillinger, M. H. & Abramson, S. B. Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Clin. Immunol. 119, 229–240 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Yan, D., Wang, H. W., Bowman, R. L. & Joyce, J. A. STAT3 and STAT6 signaling pathways synergize to promote cathepsin secretion from macrophages via IRE1alpha activation. Cell Rep. 16, 2914–2927 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dong, H. et al. The IRE1 endoplasmic reticulum stress sensor activates natural killer cell immunity in part by regulating c-Myc. Nat. Immunol. 20, 865–878 (2019). This study shows how UPR signalling regulates cMYC-mediated transcriptional and metabolic reprogramming of NK cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Medel, B. et al. IRE1alpha activation in bone marrow-derived dendritic cells modulates innate recognition of melanoma cells and favors CD8(+) T cell priming. Front. Immunol. 9, 3050 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Guttman, O. et al. Antigen-derived peptides engage the ER stress sensor IRE1alpha to curb dendritic cell cross-presentation. J. Cell Biol. 221, e202111068 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brunsing, R. et al. B- and T-cell development both involve activity of the unfolded protein response pathway. J. Biol. Chem. 283, 17954–17961 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Pino, S. C. et al. Protein kinase C signaling during T cell activation induces the endoplasmic reticulum stress response. Cell Stress Chaperones 13, 421–434 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Berry, C. T. et al. BCR-induced Ca(2+) signals dynamically tune survival, metabolic reprogramming, and proliferation of naive B cells. Cell Rep. 31, 107474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Michalak, M., Robert Parker, J. M. & Opas, M. Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 32, 269–278 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Shaffer, A. L. et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21, 81–93 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, Z. V. et al. Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway. Cell 156, 1179–1192 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Song, M. et al. IRE1alpha-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature 562, 423–428 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cao, Y. et al. ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nat. Commun. 10, 1280 (2019). This study shows that a tumour-derived factor alters the protein-folding machinery in T cells, which in turn leads to T cell dysfunction.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kamimura, D. & Bevan, M. J. Endoplasmic reticulum stress regulator XBP-1 contributes to effector CD8+T cell differentiation during acute infection. J. Immunol. 181, 5433–5441 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Pramanik, J. et al. Genome-wide analyses reveal the IRE1a–XBP1 pathway promotes T helper cell differentiation by resolving secretory stress and accelerating proliferation. Genome Med. 10, 76 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bettigole, S. E. et al. The transcription factor XBP1 is selectively required for eosinophil differentiation. Nat. Immunol. 16, 829–837 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brucklacher-Waldert, V. et al. Cellular stress in the context of an inflammatory environment supports TGF-beta-independent T helper-17 differentiation. Cell Rep. 19, 2357–2370 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Denzel, M. S. & Antebi, A. Hexosamine pathway and (ER) protein quality control. Curr. Opin. Cell Biol. 33, 14–18 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Yang, X. et al. ATF4 regulates CD4(+) T cell immune responses through metabolic reprogramming. Cell Rep. 23, 1754–1766 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Franco, A., Almanza, G., Burns, J. C., Wheeler, M. & Zanetti, M. Endoplasmic reticulum stress drives a regulatory phenotype in human T-cell clones. Cell Immunol. 266, 1–6 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. van Anken, E., Bakunts, A., Hu, C. A., Janssens, S. & Sitia, R. Molecular evaluation of endoplasmic reticulum homeostasis meets humoral immunity. Trends Cell Biol. 31, 529–541 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Todd, D. J. et al. XBP1 governs late events in plasma cell differentiation and is not required for antigen-specific memory B cell development. J. Exp. Med. 206, 2151–2159 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Iwakoshi, N. N. et al. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat. Immunol. 4, 321–329 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Reimold, A. M. et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature 412, 300–307 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Aragon, I. V., Barrington, R. A., Jackowski, S., Mori, K. & Brewer, J. W. The specialized unfolded protein response of B lymphocytes: ATF6alpha-independent development of antibody-secreting B cells. Mol. Immunol. 51, 347–355 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gass, J. N., Jiang, H. Y., Wek, R. C. & Brewer, J. W. The unfolded protein response of B-lymphocytes: PERK-independent development of antibody-secreting cells. Mol. Immunol. 45, 1035–1043 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. McGehee, A. M. et al. XBP-1-deficient plasmablasts show normal protein folding but altered glycosylation and lipid synthesis. J. Immunol. 183, 3690–3699 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Hu, C. C., Dougan, S. K., McGehee, A. M., Love, J. C. & Ploegh, H. L. XBP-1 regulates signal transduction, transcription factors and bone marrow colonization in B cells. EMBO J. 28, 1624–1636 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Benhamron, S. et al. Regulated IRE1-dependent decay participates in curtailing immunoglobulin secretion from plasma cells. Eur. J. Immunol. 44, 867–876 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Riera-Domingo, C. et al. Immunity, hypoxia, and metabolism — the menage a trois of cancer: implications for immunotherapy. Physiol. Rev. 100, 1–102 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Boedtkjer, E. & Pedersen, S. F. The acidic tumor microenvironment as a driver of cancer. Annu. Rev. Physiol. 82, 103–126 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Cubillos-Ruiz, J. R. et al. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 161, 1527–1538 (2015). This study provides a mechanistic understanding of how XBP1s signalling is engaged in tumour-infiltrating dendritic cells, which impairs their antigen presentation and maturation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lu, Y. et al. Reactivation of dysfunctional dendritic cells by a stress-relieving nanosystem resets anti-tumor immune landscape. Nano Today 43, 101416 (2022).

    Article  CAS  Google Scholar 

  59. Zhu, C. et al. Tim-3 adaptor protein Bat3 is a molecular checkpoint of T cell terminal differentiation and exhaustion. Sci. Adv. 7, eabd2710 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tian, S., Liu, Z., Donahue, C., Falo, L. D. Jr & You, Z. Genetic targeting of the active transcription factor XBP1s to dendritic cells potentiates vaccine-induced prophylactic and therapeutic antitumor immunity. Mol. Ther. 20, 432–442 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Thommen, D. S. & Schumacher, T. N. T cell dysfunction in cancer. Cancer Cell 33, 547–562 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ma, X. et al. Cholesterol induces CD8(+) T cell exhaustion in the tumor microenvironment. Cell Metab. 30, 143–156 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hurst, K. E. et al. Endoplasmic reticulum stress contributes to mitochondrial exhaustion of CD8(+) T cells. Cancer Immunol. Res. 7, 476–486 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Feng, Z.-Z. et al. ER stress and its PERK branch enhance TCR-induced activation in regulatory T cells. Biochem. Biophys. Res. Commun. 563, 8–14 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Xian, S. et al. The unfolded protein response links tumor aneuploidy to local immune dysregulation. EMBO Rep. 22, e52509 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhao, Y. et al. XBP1 regulates the protumoral function of tumor-associated macrophages in human colorectal cancer. Signal. Transduct. Target. Ther. 6, 357 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Di Conza, G. et al. Tumor-induced reshuffling of lipid composition on the endoplasmic reticulum membrane sustains macrophage survival and pro-tumorigenic activity. Nat. Immunol. 22, 1403–1415 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Raines, L. N. et al. PERK is a critical metabolic hub for immunosuppressive function in macrophages. Nat. Immunol. 23, 431–445 (2022). Di Conza et al. and Raines et al. show how UPR signalling pathways instruct functional and metabolic repogramming of tumour-associated macrophages to support a pro-tumorigenic phenotype.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Batista, A. et al. IRE1alpha regulates macrophage polarization, PD-L1 expression, and tumor survival. PLoS Biol. 18, e3000687 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gilardini Montani, M. S. et al. KSHV infection skews macrophage polarisation towards M2-like/TAM and activates Ire1 alpha-XBP1 axis up-regulating pro-tumorigenic cytokine release and PD-L1 expression. Br. J. Cancer 123, 298–306 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu, P. S. et al. Alpha-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol. 18, 985–994 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Mandula, J. K. & Rodriguez, P. C. Tumor-related stress regulates functional plasticity of MDSCs. Cell Immunol. 363, 104312 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mohamed, E. et al. The unfolded protein response mediator PERK governs myeloid cell-driven immunosuppression in tumors through inhibition of STING signaling. Immunity 52, 668–682 (2020). This study shows that tumour-infiltrating MDSCs upregulate PERK to sustain their metabolic fitness and immunosuppressive activities.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Condamine, T. et al. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci. Immunol. 1, eaaf8943 (2016).

    Article  Google Scholar 

  76. Tcyganov, E. N. et al. Distinct mechanisms govern populations of myeloid-derived suppressor cells in chronic viral infection and cancer. J. Clin. Invest. 131, e145971 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McAlpine, C. S. & Werstuck, G. H. The development and progression of atherosclerosis: evidence supporting a role for endoplasmic reticulum (ER) stress signaling. Cardiovasc. Hematol. Disord. Drug Targets 13, 158–164 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Tabas, I. The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circ. Res. 107, 839–850 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vega, H., Agellon, L. B. & Michalak, M. The rise of proteostasis promoters. IUBMB Life 68, 943–954 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Erbay, E. et al. Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis. Nat. Med. 15, 1383–1391 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tufanli, O. et al. Targeting IRE1 with small molecules counteracts progression of atherosclerosis. Proc. Natl Acad. Sci. USA 114, E1395–E1404 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shan, B. et al. The metabolic ER stress sensor IRE1alpha suppresses alternative activation of macrophages and impairs energy expenditure in obesity. Nat. Immunol. 18, 519–529 (2017). This study shows the pathological role of IRE1a activation in obesity, by skewing adipose tissue macrophages towards a pro-inflammatory phenotype that worsens disease progression.

    Article  CAS  PubMed  Google Scholar 

  83. Nakagawa, H. et al. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell 26, 331–343 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Petkevicius, K. et al. Accelerated phosphatidylcholine turnover in macrophages promotes adipose tissue inflammation in obesity. eLife 8, e47990 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Van Campenhout, S. et al. Myeloid-specific IRE1alpha deletion reduces tumour development in a diabetic, non-alcoholic steatohepatitis-induced hepatocellular carcinoma mouse model. Metabolism 107, 154220 (2020).

    Article  PubMed  Google Scholar 

  86. LaMarche, N. M. et al. Distinct iNKT cell populations use IFNgamma or ER stress-induced IL-10 to control adipose tissue homeostasis. Cell Metab. 32, 243–258 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gonnella, R. et al. IRE1 alpha/XBP1 axis sustains primary effusion lymphoma cell survival by promoting cytokine release and STAT3 activation. Biomedicines 9, 118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen, C. & Zhang, X. IRE1alpha-XBP1 pathway promotes melanoma progression by regulating IL-6/STAT3 signaling. J. Transl. Med. 15, 42 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hedrich, C. M. et al. Stat3 promotes IL-10 expression in lupus T cells through trans-activation and chromatin remodeling. Proc. Natl Acad. Sci. USA 111, 13457–13462 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hutchins, A. P., Diez, D. & Miranda-Saavedra, D. The IL-10/STAT3-mediated anti-inflammatory response: recent developments and future challenges. Brief. Funct. Genomics 12, 489–498 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu, Y. et al. Role for the endoplasmic reticulum stress sensor IRE1alpha in liver regenerative responses. J. Hepatol. 62, 590–598 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Chadwick, S. R. & Lajoie, P. Endoplasmic reticulum stress coping mechanisms and lifespan regulation in health and diseases. Front. Cell Dev. Biol. 7, 84 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Taylor, R. C. & Dillin, A. XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 153, 1435–1447 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Denzel, M. S. et al. Hexosamine pathway metabolites enhance protein quality control and prolong life. Cell 156, 1167–1178 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Singh, J. & Aballay, A. Endoplasmic reticulum stress caused by lipoprotein accumulation suppresses immunity against bacterial pathogens and contributes to immunosenescence. mBio 8, e00778–17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Martinez, G., Duran-Aniotz, C., Cabral-Miranda, F., Vivar, J. P. & Hetz, C. Endoplasmic reticulum proteostasis impairment in aging. Aging Cell 16, 615–623 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fernandez, D., Geisse, A., Bernales, J. I., Lira, A. & Osorio, F. The unfolded protein response in immune cells as an emerging regulator of neuroinflammation. Front. Aging Neurosci. 13, 682633 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ulland, T. K. et al. TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell 170, 649–663 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ulland, T. K. & Colonna, M. TREM2 — a key player in microglial biology and Alzheimer disease. Nat. Rev. Neurol. 14, 667–675 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Nugent, A. A. et al. TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challenge. Neuron 105, 837–854.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Wang, Y. W. et al. Mild endoplasmic reticulum stress ameliorates lipopolysaccharide-induced neuroinflammation and cognitive impairment via regulation of microglial polarization. J. Neuroinflammation 14, 233 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Xu, Y. et al. The E3 ligase Hrd1 stabilizes Tregs by antagonizing inflammatory cytokine-induced ER stress response. JCI Insight 4, e121887 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Todd, D. J., Lee, A. H. & Glimcher, L. H. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat. Rev. Immunol. 8, 663–674 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Wu, B. et al. Mitochondrial aspartate regulates TNF biogenesis and autoimmune tissue inflammation. Nat. Immunol. 22, 1551–1562 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jadeja, S. D., Vaishnav, J., Bharti, A. H. & Begum, R. Elevated X-box binding protein1 splicing and interleukin-17A expression are associated with active generalized vitiligo in Gujarat population. Front. Immunol. 12, 801724 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Rees, W. D. et al. Enteroids derived from inflammatory bowel disease patients display dysregulated endoplasmic reticulum stress pathways, leading to differential inflammatory responses and dendritic cell maturation. J. Crohns Colitis 14, 948–961 (2020).

    Article  PubMed  Google Scholar 

  107. Coleman, O. I. & Haller, D. ER stress and the UPR in shaping intestinal tissue homeostasis and immunity. Front. Immunol. 10, 2825 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Huang, C., Hedl, M., Ranjan, K. & Abraham, C. LACC1 required for NOD2-induced, ER stress-mediated innate immune outcomes in human macrophages and lacc1 risk variants modulate these outcomes. Cell Rep. 29, 4525–4539 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mhaille, A. N. et al. Increased expression of endoplasmic reticulum stress-related signaling pathway molecules in multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 67, 200–211 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Hetz, C., Chevet, E. & Harding, H. P. Targeting the unfolded protein response in disease. Nat. Rev. Drug Discov. 12, 703–719 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Hetz, C., Axten, J. M. & Patterson, J. B. Pharmacological targeting of the unfolded protein response for disease intervention. Nat. Chem. Biol. 15, 764–775 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Chen, D. et al. IRE1alpha inhibition decreased TXNIP/NLRP3 inflammasome activation through miR-17-5p after neonatal hypoxic–ischemic brain injury in rats. J. Neuroinflammation 15, 32 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Volkmann, K. et al. Potent and selective inhibitors of the inositol-requiring enzyme 1 endoribonuclease. J. Biol. Chem. 286, 12743–12755 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mimura, N. et al. Blockade of XBP1 splicing by inhibition of IRE1alpha is a promising therapeutic option in multiple myeloma. Blood 119, 5772–5781 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tang, C. H. et al. Inhibition of ER stress-associated IRE-1/XBP-1 pathway reduces leukemic cell survival. J. Clin. Invest. 124, 2585–2598 (2014). This study shows that genetic and pharmacological inhibition of XBP1 decreases the survival of B cell lymphoma cells, by impairing BCR signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sheng, X. et al. IRE1alpha-XBP1s pathway promotes prostate cancer by activating c-MYC signaling. Nat. Commun. 10, 323 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ali, M. M. et al. Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response. EMBO J. 30, 894–905 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tang, X., Teder, T., Samuelsson, B. & Haeggstrom, J. Z. The IRE1alpha inhibitor KIRA6 blocks leukotriene biosynthesis in human phagocytes. Front. Pharmacol. 13, 806240 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rufo, N. et al. Stress-induced inflammation evoked by immunogenic cell death is blunted by the IRE1alpha kinase inhibitor KIRA6 through HSP60 targeting. Cell Death Differ. 29, 230–245 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Morita, S. et al. Targeting ABL-IRE1alpha signaling spares ER-stressed pancreatic beta cells to reverse autoimmune diabetes. Cell Metab. 25, 883–897 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Harnoss, J. M. et al. Disruption of IRE1alpha through its kinase domain attenuates multiple myeloma. Proc. Natl Acad. Sci. USA 116, 16420–16429 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Madhavan, A. et al. Pharmacologic IRE1/XBP1s activation promotes systemic adaptive remodeling in obesity. Nat. Commun. 13, 608 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Grandjean, J. M. D. et al. Pharmacologic IRE1/XBP1s activation confers targeted ER proteostasis reprogramming. Nat. Chem. Biol. 16, 1052–1061 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Axten, J. M. et al.Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J. Med. Chem. 55, 7193–7207 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Shi, Z. et al. Activation of the PERK–ATF4 pathway promotes chemo-resistance in colon cancer cells. Sci. Rep. 9, 3210 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Moreno, J. A. et al. Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci. Transl. Med. 5, 206ra138 (2013).

    Article  PubMed  Google Scholar 

  127. Radford, H., Moreno, J. A., Verity, N., Halliday, M. & Mallucci, G. R. PERK inhibition prevents tau-mediated neurodegeneration in a mouse model of frontotemporal dementia. Acta Neuropathol. 130, 633–642 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sen, T., Gupta, R., Kaiser, H. & Sen, N. Activation of PERK elicits memory impairment through inactivation of CREB and downregulation of PSD95 after traumatic brain injury. J. Neurosci. 37, 5900–5911 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Grande, V. et al. PERK inhibition delays neurodegeneration and improves motor function in a mouse model of Marinesco–Sjogren syndrome. Hum. Mol. Genet. 27, 2477–2489 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Rojas-Rivera, D. et al. When PERK inhibitors turn out to be new potent RIPK1 inhibitors: critical issues on the specificity and use of GSK2606414 and GSK2656157. Cell Death Differ. 24, 1100–1110 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yu, Q. et al. Type I interferons mediate pancreatic toxicities of PERK inhibition. Proc. Natl Acad. Sci. USA 112, 15420–15425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Smith, A. L. et al. Discovery of 1H-pyrazol-3(2H)-ones as potent and selective inhibitors of protein kinase R-like endoplasmic reticulum kinase (PERK). J. Med. Chem. 58, 1426–1441 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Yousuf, M. S. et al. Endoplasmic reticulum stress in the dorsal root ganglia regulates large-conductance potassium channels and contributes to pain in a model of multiple sclerosis. FASEB J. 34, 12577–12598 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Sidrauski, C. et al. Pharmacological brake-release of mRNA translation enhances cognitive memory. eLife 2, e00498 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Nguyen, H. G. et al. Development of a stress response therapy targeting aggressive prostate cancer. Sci. Transl. Med. 10, eaar2036 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Ozcan, U. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313, 1137–1140 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Ozcan, L. et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 9, 35–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Kars, M. et al. Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes 59, 1899–1905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Qi, X., Hosoi, T., Okuma, Y., Kaneko, M. & Nomura, Y. Sodium 4-phenylbutyrate protects against cerebral ischemic injury. Mol. Pharmacol. 66, 899–908 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Mizukami, T. et al. Sodium 4-phenylbutyrate protects against spinal cord ischemia by inhibition of endoplasmic reticulum stress. J. Vasc. Surg. 52, 1580–1586 (2010).

    Article  PubMed  Google Scholar 

  141. Cox, J. S., Shamu, C. E. & Walter, P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73, 1197–1206 (1993).

    Article  CAS  PubMed  Google Scholar 

  142. Mori, K., Ma, W., Gething, M. J. & Sambrook, J. A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell 74, 743–756 (1993).

    Article  CAS  PubMed  Google Scholar 

  143. Cox, J. S. & Walter, P. A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87, 391–404 (1996).

    Article  CAS  PubMed  Google Scholar 

  144. Credle, J. J., Finer-Moore, J. S., Papa, F. R., Stroud, R. M. & Walter, P. On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 102, 18773–18784 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhou, J. et al. The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response. Proc. Natl Acad. Sci. USA 103, 14343–14348 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891 (2001).

    Article  CAS  PubMed  Google Scholar 

  147. Calfon, M. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96 (2002).

    Article  CAS  PubMed  Google Scholar 

  148. Hollien, J. & Weissman, J. S. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313, 104–107 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Han, D. et al. IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 138, 562–575 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Harding, H. P., Zhang, Y. & Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271–274 (1999).

    Article  CAS  PubMed  Google Scholar 

  151. Harding, H. P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619–633 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Han, J. et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol. 15, 481–490 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Mukherjee, D., Bercz, L. S., Torok, M. A. & Mace, T. A. Regulation of cellular immunity by activating transcription factor 4. Immunol. Lett. 228, 24–34 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Haze, K., Yoshida, H., Yanagi, H., Yura, T. & Mori, K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell 10, 3787–3799 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ye, J. et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6, 1355–1364 (2000).

    Article  CAS  PubMed  Google Scholar 

  156. Osorio, F., Lambrecht, B. N. & Janssens, S. Antigen presentation unfolded: identifying convergence points between the UPR and antigen presentation pathways. Curr. Opin. Immunol. 52, 100–107 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Zhou, Y. et al. The roles of endoplasmic reticulum in NLRP3 inflammasome activation. Cells 9, 1219 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Bainter, W. et al. Combined immunodeficiency due to a mutation in the gamma1 subunit of the coat protein I complex. J. Clin. Invest. 131, e140494 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ono, S. J., Liou, H. C., Davidon, R., Strominger, J. L. & Glimcher, L. H. Human X-box-binding protein 1 is required for the transcription of a subset of human class II major histocompatibility genes and forms a heterodimer with c-fos. Proc. Natl Acad. Sci. USA 88, 4309–4312 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Price, B. D., Mannheim-Rodman, L. A. & Calderwood, S. K. Brefeldin A, thapsigargin, and AIF4 stimulate the accumulation of GRP78 mRNA in a cycloheximide dependent manner, whilst induction by hypoxia is independent of protein synthesis. J. Cell Physiol. 152, 545–552 (1992).

    Article  CAS  PubMed  Google Scholar 

  161. Koditz, J. et al. Oxygen-dependent ATF-4 stability is mediated by the PHD3 oxygen sensor. Blood 110, 3610–3617 (2007).

    Article  PubMed  Google Scholar 

  162. Rouschop, K. M. et al. PERK/eIF2alpha signaling protects therapy resistant hypoxic cells through induction of glutathione synthesis and protection against ROS. Proc. Natl Acad. Sci. USA 110, 4622–4627 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Romero-Ramirez, L. et al. XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res. 64, 5943–5947 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Fu, S. et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 473, 528–531 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Rong, X. et al. LXRs regulate ER stress and inflammation through dynamic modulation of membrane phospholipid composition. Cell Metab. 18, 685–697 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Volmer, R., van der Ploeg, K. & Ron, D. Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc. Natl Acad. Sci. USA 110, 4628–4633 (2013). This study shows that IRE1 and PERK can sense disbalanced lipid saturation within the ER membrane through their ER-spanning transmembrane domains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Olzmann, J. A. & Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 20, 137–155 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

P.-C.H. was supported in part by SNSF project grants (31003A_182470), Helmut Horten Stifung, Cancer Research Institute Lloyd J. Old STAR Award and the ERC Starting Grant (802773-MitoGuide). S.C.-C.H. was supported by American Cancer Society Research Scholar Grant (RSG-22-135-01-IBCD), Melanoma Research Foundation Career Development Award, Andrew McDonough B+ Foundation Grant Award, Cancer Research Institute CLIP Investigator Award, VeloSano Pilot Award, Case GI SPORE DRP Grant (5P50CA150964-08) and Case Comprehensive Cancer Center American Cancer Society Pilot Grants (IRG-91-022-19, IRG-16-186-21). J.C.-R. has been supported in part by US Department of Defense Grants OC190443, OC200166 and OC200224; Stand Up to Cancer Grants SU2C-AACR-IRG-03-16 and SU2C-AACR-PS-24; National Institutes of Health Grants R01NS114653 and R21CA248106 and The Mark Foundation for Cancer Research ASPIRE Award.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Ping-Chih Ho, Juan R. Cubillos-Ruiz or Stanley Ching-Cheng Huang.

Ethics declarations

Competing interests

G.D.C. is employed at iOnctura SA. P.-C.H. serves as a scientific advisor for Elixiron Immunotherapeutics and is a co-founder of Pilatus Biosciences. J.R.C.-R. serves as scientific consultant for NextRNA Therapeutics, Inc., Immagene, B.V. and Autoimmunity Biologic Solutions, Inc. J.R.C.-R. holds patents on the targeting of ER stress responses for the treatment of disease. S.C.-C.H. declares no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks B. Tirosh, J. E. Thaxton and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Conza, G., Ho, PC., Cubillos-Ruiz, J.R. et al. Control of immune cell function by the unfolded protein response. Nat Rev Immunol 23, 546–562 (2023). https://doi.org/10.1038/s41577-023-00838-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-023-00838-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing