Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mosaic variegated aneuploidy in development, ageing and cancer

Abstract

Mosaic variegated aneuploidy (MVA) is a rare condition in which abnormal chromosome counts (that is, aneuploidies), affecting different chromosomes in each cell (making it variegated) are found only in a certain number of cells (making it mosaic). MVA is characterized by various developmental defects and, despite its rarity, presents a unique clinical scenario to understand the consequences of chromosomal instability and copy number variation in humans. Research from patients with MVA, genetically engineered mouse models and functional cellular studies have found the genetic causes to be mutations in components of the spindle-assembly checkpoint as well as in related proteins involved in centrosome dynamics during mitosis. MVA is accompanied by tumour susceptibility (depending on the genetic basis) as well as cellular and systemic stress, including chronic immune response and the associated clinical implications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Developmental origin of human aneuploidy syndromes.
Fig. 2: Clinical symptoms of MVA.
Fig. 3: The SAC.

Similar content being viewed by others

References

  1. Nagaoka, S. I., Hassold, T. J. & Hunt, P. A. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat. Rev. Genet. 13, 493–504 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu, J. et al. DNA microarray reveals that high proportions of human blastocysts from women of advanced maternal age are aneuploid and mosaic. Biol. Reprod. 87, 148 (2012).

    Article  PubMed  Google Scholar 

  3. McCoy, R. C. Mosaicism in preimplantation human embryos: when chromosomal abnormalities are the norm. Trends Genet. 33, 448–463 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Taylor, T. H. et al. The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans. Hum. Reprod. Update 20, 571–581 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Zellweger, H. & Abbo, G. Familial mosaicism attributable to a new gene. Lancet 1, 455–457 (1965).

    Article  CAS  PubMed  Google Scholar 

  6. Tolmie, J. L. et al. Siblings with chromosome mosaicism, microcephaly, and growth retardation: the phenotypic expression of a human mitotic mutant? Hum. Genet. 80, 197–200 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Warburton, D., Anyane-Yeboa, K., Taterka, P., Yu, C. Y. & Olsen, D. Mosaic variegated aneuploidy with microcephaly: a new human mitotic mutant? Ann. Genet. 34, 287–292 (1991).

    CAS  PubMed  Google Scholar 

  8. Kajii, T. et al. Cancer-prone syndrome of mosaic variegated aneuploidy and total premature chromatid separation: report of five infants. Am. J. Med. Genet. 104, 57–64 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Jacquemont, S., Boceno, M., Rival, J. M., Mechinaud, F. & David, A. High risk of malignancy in mosaic variegated aneuploidy syndrome. Am. J. Med. Genet. 109, 17–21 (2002).

    Article  PubMed  Google Scholar 

  10. Grange, L. J. et al. Pathogenic variants in SLF2 and SMC5 cause segmented chromosomes and mosaic variegated hyperploidy. Nat. Commun. 13, 6664 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hanks, S. et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat. Genet. 36, 1159–1161 (2004). This study reports biallelic mutations in the BUB1B gene in five patients with MVA syndrome, establishing for the first time a link between MVA syndrome and loss-of-function mutations in a core component of the SAC.

    Article  CAS  PubMed  Google Scholar 

  12. Snape, K. et al. Mutations in CEP57 cause mosaic variegated aneuploidy syndrome. Nat. Genet. 43, 527–529 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. de Voer, R. M. et al. Germline mutations in the spindle assembly checkpoint genes BUB1 and BUB3 are risk factors for colorectal cancer. Gastroenterology 145, 544–547 (2013).

    Article  PubMed  Google Scholar 

  14. Carvalhal, S. et al. Biallelic BUB1 mutations cause microcephaly, developmental delay, and variable effects on cohesion and chromosome segregation. Sci. Adv. 8, eabk0114 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yost, S. et al. Biallelic TRIP13 mutations predispose to Wilms tumor and chromosome missegregation. Nat. Genet. 49, 1148–1151 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de Wolf, B. et al. Chromosomal instability by mutations in the novel minor spliceosome component CENATAC. EMBO J. 40, e106536 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Villarroya-Beltri, C. et al. Biallelic germline mutations in MAD1L1 induce a syndrome of aneuploidy with high tumor susceptibility. Sci. Adv. 8, eabq5914 (2022). This study uses single-cell transcriptomics to describe clonal selection and chronic immune response in a patient with MVA with an unprecedented number of tumours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Abdel-Salam, G. M. H. et al. Biallelic MAD2L1BP (p31comet) mutation is associated with mosaic aneuploidy and juvenile granulosa cell tumors. JCI Insight 8, e170079 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Guo, J. et al. Mosaic variegated aneuploidy syndrome with tetraploid, and predisposition to male infertility triggered by mutant CEP192. HGG Adv. 5, 100256 (2024).

    CAS  PubMed  Google Scholar 

  20. McAinsh, A. D. & Kops, G. Principles and dynamics of spindle assembly checkpoint signalling. Nat. Rev. Mol. Cell Biol. 24, 543–559 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Ricke, R. M. & van Deursen, J. M. Correction of microtubule-kinetochore attachment errors: mechanisms and role in tumor suppression. Semin. Cell Dev. Biol. 22, 559–565 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matsuura, S. et al. Monoallelic BUB1B mutations and defective mitotic-spindle checkpoint in seven families with premature chromatid separation (PCS) syndrome. Am. J. Med. Genet. A 140, 358–367 (2006).

    Article  PubMed  Google Scholar 

  23. Suijkerbuijk, S. J. et al. Molecular causes for BUBR1 dysfunction in the human cancer predisposition syndrome mosaic variegated aneuploidy. Cancer Res. 70, 4891–4900 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eytan, E. et al. Disassembly of mitotic checkpoint complexes by the joint action of the AAA-ATPase TRIP13 and p31(comet). Proc. Natl Acad. Sci. USA 111, 12019–12024 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ye, Q. et al. TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching. eLife 4, e07367 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Alfieri, C., Chang, L. & Barford, D. Mechanism for remodelling of the cell cycle checkpoint protein MAD2 by the ATPase TRIP13. Nature 559, 274–278 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ma, H. T. & Poon, R. Y. C. TRIP13 regulates both the activation and inactivation of the spindle-assembly checkpoint. Cell Rep. 14, 1086–1099 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Hoang, D., Sue, G. R., Xu, F., Li, P. & Narayan, D. Absence of aneuploidy and gastrointestinal tumours in a man with a chromosomal 2q13 deletion and BUB1 monoallelic deficiency. BMJ Case Rep. 2013, bcr2013008684 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mur, P. et al. Germline mutations in the spindle assembly checkpoint genes BUB1 and BUB3 are infrequent in familial colorectal cancer and polyposis. Mol. Cancer 17, 23 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fujita, H. et al. Premature aging syndrome showing random chromosome number instabilities with CDC20 mutation. Aging Cell 19, e13251 (2020). This study reports a unique case of MVA and premature ageing in a patient with a heterozygous germline missense mutation in CDC20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, O. J. et al. Germline missense variants in CDC20 result in aberrant mitotic progression and familial cancer. Cancer Res. 82, 3499–3515 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Villarroya-Beltri, C. & Malumbres, M. Mitotic checkpoint imbalances in familial cancer. Cancer Res. 82, 3432–3434 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Watanabe, K., Takao, D., Ito, K. K., Takahashi, M. & Kitagawa, D. The Cep57-pericentrin module organizes PCM expansion and centriole engagement. Nat. Commun. 10, 931 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhou, H., Wang, T., Zheng, T., Teng, J. & Chen, J. Cep57 is a Mis12-interacting kinetochore protein involved in kinetochore targeting of Mad1-Mad2. Nat. Commun. 7, 10151 (2016). This paper reports an unexpected function of CEP57 in the recruitment of MAD1 to kinetochores.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bossard, C. et al. Translokin is an intracellular mediator of FGF-2 trafficking. Nat. Cell Biol. 5, 433–439 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Chinen, T. et al. Centriole and PCM cooperatively recruit CEP192 to spindle poles to promote bipolar spindle assembly. J. Cell Biol. 220, e202006085 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Park, J. G. et al. Structural basis for CEP192-mediated regulation of centrosomal AURKA. Sci. Adv. 9, eadf8582 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bai, R. et al. Structural basis of U12-type intron engagement by the fully assembled human minor spliceosome. Science 383, 1245–1252 (2024).

    Article  CAS  PubMed  Google Scholar 

  39. Valcarcel, J. & Malumbres, M. Splicing together sister chromatids. EMBO J. 33, 2601–2603 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, T., Zou, Y., Huang, N., Teng, J. & Chen, J. CCDC84 acetylation oscillation regulates centrosome duplication by modulating HsSAS-6 degradation. Cell Rep. 29, 2078–2091.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Krivega, M., Stiefel, C. M. & Storchova, Z. Consequences of chromosome gain: a new view on trisomy syndromes. Am. J. Hum. Genet. 109, 2126–2140 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Torres, E. M. Consequences of gaining an extra chromosome. Chromosome Res. 31, 24 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, R. & Zhu, J. Effects of aneuploidy on cell behaviour and function. Nat. Rev. Mol. Cell Biol. 23, 250–265 (2022).

    Article  PubMed  Google Scholar 

  44. Stingele, S. et al. Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Mol. Syst. Biol. 8, 608 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chunduri, N. K. & Storchova, Z. The diverse consequences of aneuploidy. Nat. Cell Biol. 21, 54–62 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Bolton, H. et al. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat. Commun. 7, 11165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pfau, S. J., Silberman, R. E., Knouse, K. A. & Amon, A. Aneuploidy impairs hematopoietic stem cell fitness and is selected against in regenerating tissues in vivo. Genes Dev. 30, 1395–1408 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Singla, S., Iwamoto-Stohl, L. K., Zhu, M. & Zernicka-Goetz, M. Autophagy-mediated apoptosis eliminates aneuploid cells in a mouse model of chromosome mosaicism. Nat. Commun. 11, 2958 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pavelka, N. et al. Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature 468, 321–325 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yona, A. H. et al. Chromosomal duplication is a transient evolutionary solution to stress. Proc. Natl Acad. Sci. USA 109, 21010–21015 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Watson, E. V. et al. Chromosome evolution screens recapitulate tissue-specific tumor aneuploidy patterns. Nat. Genet. 56, 900–912 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schvartzman, J. M., Sotillo, R. & Benezra, R. Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nat. Rev. Cancer 10, 102–115 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Naylor, R. M. & van Deursen, J. M. Aneuploidy in cancer and aging. Annu. Rev. Genet. 50, 45–66 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, Q. et al. BUBR1 deficiency results in abnormal megakaryopoiesis. Blood 103, 1278–1285 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Dai, W. et al. Slippage of mitotic arrest and enhanced tumor development in mice with BubR1 haploinsufficiency. Cancer Res. 64, 440–445 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Simmons, A. J. et al. Nearly complete deletion of BubR1 causes microcephaly through shortened mitosis and massive cell death. Hum. Mol. Genet. 28, 1822–1836 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Baker, D. J. et al. BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat. Genet. 36, 744–749 (2004). This pioneering study shows that BUBR1 is haploinsufficient and mutant mice expressing low levels of BUBR1 develop aneuploidy, infertility and progeroid features.

    Article  CAS  PubMed  Google Scholar 

  58. Baker, D. J. et al. Early aging-associated phenotypes in Bub3/Rae1 haploinsufficient mice. J. Cell Biol. 172, 529–540 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sieben, C. J. et al. BubR1 allelic effects drive phenotypic heterogeneity in mosaic-variegated aneuploidy progeria syndrome. J. Clin. Invest. 130, 6188 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Baker, D. J. et al. Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan. Nat. Cell Biol. 15, 96–102 (2013). This paper describes a gain-of-function mouse model with overexpressesion of BUBR1. Sustained expression of BUBR1 reduces tumorigenesis, extends lifespan, and delays age-related deterioration and aneuploidy.

    Article  CAS  PubMed  Google Scholar 

  61. Weaver, R. L. et al. BubR1 alterations that reinforce mitotic surveillance act against aneuploidy and cancer. eLife 5, e16620 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tilston, V., Taylor, S. S. & Perera, D. Inactivating the spindle checkpoint kinase Bub1 during embryonic development results in a global shutdown of proliferation. BMC Res. Notes 2, 190 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Schliekelman, M. et al. Impaired Bub1 function in vivo compromises tension-dependent checkpoint function leading to aneuploidy and tumorigenesis. Cancer Res. 69, 45–54 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Abdel-Hafiz, H. A. et al. Y chromosome loss in cancer drives growth by evasion of adaptive immunity. Nature 619, 624–631 (2023). This work shows that loss of the Y chromosome, the most common spontaneous aneuploidy, does not change proliferation in vitro but promotes exhaustion of CD8+ T cells in the tumour microenvironment and correlates with worse prognoses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, R. W., Vigano, S., Ben-David, U., Amon, A. & Santaguida, S. Aneuploid senescent cells activate NF-κB to promote their immune clearance by NK cells. EMBO Rep. 22, e52032 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xian, S. et al. The unfolded protein response links tumor aneuploidy to local immune dysregulation. EMBO Rep. 22, e52509 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kuang, X. & Li, J. Chromosome instability and aneuploidy as context-dependent activators or inhibitors of antitumor immunity. Front. Immunol. 13, 895961 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Santaguida, S. et al. Chromosome mis-segregation generates cell-cycle-arrested cells with complex karyotypes that are eliminated by the immune system. Dev. Cell 41, 638–651.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Senovilla, L. et al. An immunosurveillance mechanism controls cancer cell ploidy. Science 337, 1678–1684 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Davoli, T., Uno, H., Wooten, E. C. & Elledge, S. J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355, eaaf8399 (2017). This study shows that tumour aneuploidy inversely correlates with markers of cytotoxic immune cells, especially CD8+ T cells, and predicts poor survival in patients undergoing immunotherapy.

    Article  PubMed  PubMed Central  Google Scholar 

  71. van Jaarsveld, R. H. & Kops, G. Difference makers: chromosomal instability versus aneuploidy in cancer. Trends Cancer 2, 561–571 (2016).

    Article  PubMed  Google Scholar 

  72. Shoshani, O. et al. Transient genomic instability drives tumorigenesis through accelerated clonal evolution. Genes Dev. 35, 1093–1108 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Trakala, M. et al. Clonal selection of stable aneuploidies in progenitor cells drives high-prevalence tumorigenesis. Genes Dev. 35, 1079–1092 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Baker, D. J., Jin, F., Jeganathan, K. B. & van Deursen, J. M. Whole chromosome instability caused by Bub1 insufficiency drives tumorigenesis through tumor suppressor gene loss of heterozygosity. Cancer Cell 16, 475–486 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sotillo, R., Schvartzman, J. M., Socci, N. D. & Benezra, R. Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal. Nature 464, 436–440 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lukow, D. A. et al. Chromosomal instability accelerates the evolution of resistance to anti-cancer therapies. Dev. Cell 56, 2427–2439.e4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ippolito, M. R. et al. Gene copy-number changes and chromosomal instability induced by aneuploidy confer resistance to chemotherapy. Dev. Cell 56, 2440–2454.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Replogle, J. M. et al. Aneuploidy increases resistance to chemotherapeutics by antagonizing cell division. Proc. Natl Acad. Sci. USA 117, 30566–30576 (2020). Refs. 75–78 provide elegant examples of how CIN contributes to improved fitness and response to stress conditions (therapeutic treatment) in tumour cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rio Frio, T. et al. Homozygous BUB1B mutation and susceptibility to gastrointestinal neoplasia. N. Engl. J. Med. 363, 2628–2637 (2010).

    Article  PubMed  Google Scholar 

  80. Forsberg, L. A. et al. Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer. Nat. Genet. 46, 624–628 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ogawa, H., Horitani, K., Izumiya, Y. & Sano, S. Somatic mosaicism in biology and disease. Annu. Rev. Physiol. 84, 113–133 (2022).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, Y. & Sano, S. Why Y matters? The implication of loss of Y chromosome in blood and cancer. Cancer Sci. 115, 706–714 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wright, D. J. et al. Genetic variants associated with mosaic Y chromosome loss highlight cell cycle genes and overlap with cancer susceptibility. Nat. Genet. 49, 674–679 (2017). This study shows that allelic variants in SAC genes may contribute to loss of other chromosomes and associated pathologies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Thompson, D. J. et al. Genetic predisposition to mosaic Y chromosome loss in blood. Nature 575, 652–657 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cahill, D. P. et al. Mutations of mitotic checkpoint genes in human cancers. Nature 392, 300–303 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Hahn, M. M. et al. Prevalence of germline mutations in the spindle assembly checkpoint gene BUB1B in individuals with early-onset colorectal cancer. Genes Chromosomes Cancer 55, 855–863 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Tsukasaki, K. et al. Mutations in the mitotic check point gene, MAD1L1, in human cancers. Oncogene 20, 3301–3305 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Terao, C. et al. Chromosomal alterations among age-related haematopoietic clones in Japan. Nature 584, 130–135 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhong, R. et al. MAD1L1 Arg558His and MAD2L1 Leu84Met interaction with smoking increase the risk of colorectal cancer. Sci. Rep. 5, 12202 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Holland, A. J. & Cleveland, D. W. Losing balance: the origin and impact of aneuploidy in cancer. EMBO Rep. 13, 501–514 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Raaijmakers, J. A. et al. BUB1 is essential for the viability of human cells in which the spindle assembly checkpoint is compromised. Cell Rep. 22, 1424–1438 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Rodriguez-Rodriguez, J. A. et al. Distinct roles of RZZ and Bub1-KNL1 in mitotic checkpoint signaling and kinetochore expansion. Curr. Biol. 28, 3422–3429.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vanneste, E. et al. Chromosome instability is common in human cleavage-stage embryos. Nat. Med. 15, 577–583 (2009). A surprising analysis describing the commonality of chromosomal instability in postzygotic human embryos.

    Article  CAS  PubMed  Google Scholar 

  94. McCoy, R. C. et al. Evidence of selection against complex mitotic-origin aneuploidy during preimplantation development. PLoS Genet. 11, e1005601 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sansregret, L. & Swanton, C. The role of aneuploidy in cancer evolution. Cold Spring Harb. Perspect. Med. 7, a028373 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zhang, G. et al. Efficient mitotic checkpoint signaling depends on integrated activities of Bub1 and the RZZ complex. EMBO J. 38, e100977 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wolthuis, R. et al. Cdc20 and Cks direct the spindle checkpoint-independent destruction of cyclin A. Mol. Cell 30, 290–302 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Tsang, M. J. & Cheeseman, I. M. Alternative CDC20 translational isoforms tune mitotic arrest duration. Nature 617, 154–161 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sansregret, L. et al. APC/C dysfunction limits excessive cancer chromosomal instability. Cancer Discov. 7, 218–233 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ochiai, H. et al. TALEN-mediated single-base-pair editing identification of an intergenic mutation upstream of BUB1B as causative of PCS (MVA) syndrome. Proc. Natl Acad. Sci. USA 111, 1461–1466 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Kato, M. et al. PCS/MVA syndrome caused by an Alu insertion in the BUB1B gene. Hum. Genome Var. 4, 17021 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Laberko, A. et al. Hematopoietic stem cell transplantation in a patient with type 1 mosaic variegated aneuploidy syndrome. Orphanet J. Rare Dis. 14, 97 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Lin, S. M. et al. Prenatal diagnosis and long-term follow-up of a Chinese patient with mosaic variegated aneuploidy and its molecular analysis. Clin. Case Rep. 8, 1369–1375 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Pavone, P. et al. Pathogenic correlation between mosaic variegated aneuploidy 1 (MVA1) and a novel BUB1B variant: a reappraisal of a severe syndrome. Neurol. Sci. 43, 6529–6538 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  105. He, T., Cui, D., Huang, Y., Luo, X. & Yang, J. Clinical features and genetic analysis of a child with mosaic variegated aneuploidy syndrome [Chinese]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 35, 844–847 (2018).

    PubMed  Google Scholar 

  106. Pinson, L. et al. CEP57 mutation in a girl with mosaic variegated aneuploidy syndrome. Am. J. Med. Genet. A 164A, 177–181 (2014).

    Article  PubMed  Google Scholar 

  107. Santos-Simarro, F. et al. Mosaic variegated aneuploidy syndrome 2 caused by biallelic variants in CEP57, two new cases and review of the phenotype. Eur. J. Med. Genet. 64, 104338 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Feng, B. et al. A novel CEP57 variant associated with mosaic variegated aneuploidy syndrome in a Chinese female presenting with short stature, microcephaly, brachydactyly, and small teeth. Mol. Genet. Genom. Med. 10, e1951 (2022).

    Article  Google Scholar 

  109. Hubner, C. T., Amin, A. K., Dey, D., Meyer, R. & Eggermann, T. Mosaic variegated aneuploidy syndrome and Noonan syndrome in the same family. Mol. Syndromol. 13, 402–408 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Langeh, N. et al. Mosaic variegated aneuploidy syndrome 2 with biallelic novel CEP57 splice site variation in Indian siblings: expanding the clinical and molecular spectrum. Clin. Genet. 103, 478–483 (2023).

    Article  CAS  PubMed  Google Scholar 

  111. De la Torre-Garcia, O. et al. A homozygous CEP57 c.915_925dupCAATGTTCAGC mutation in a patient with mosaic variegated aneuploidy syndrome with rhizomelic shortening in the upper and lower limbs and a narrow thorax. Eur. J. Med. Genet. 62, 195–197 (2019).

    Article  PubMed  Google Scholar 

  112. Brightman, D. S., Ejaz, S. & Dauber, A. Mosaic variegated aneuploidy syndrome caused by a CEP57 mutation diagnosed by whole exome sequencing. Clin. Case Rep. 6, 1531–1534 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Pezzani, L. et al. Double homozygosity in CEP57 and DYNC2H1 genes detected by WES: composite or expanded phenotype? Mol. Genet. Genom. Med. 8, e1064 (2020).

    Article  CAS  Google Scholar 

  114. Dery, T. et al. Follow-up of two adult brothers with homozygous CEP57 pathogenic variants expands the phenotype of mosaic variegated aneuploidy syndrome. Eur. J. Med. Genet. 63, 104044 (2020).

    Article  PubMed  Google Scholar 

  115. Wijshake, T. et al. Reduced life- and healthspan in mice carrying a mono-allelic BubR1 MVA mutation. PLoS Genet. 8, e1003138 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Aziz, K. et al. Mosaic-variegated aneuploidy syndrome mutation or haploinsufficiency in Cep57 impairs tumor suppression. J. Clin. Invest. 128, 3517–3534 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Leland, S. et al. Heterozygosity for a Bub1 mutation causes female-specific germ cell aneuploidy in mice. Proc. Natl Acad. Sci. USA 106, 12776–12781 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ricke, R. M., Jeganathan, K. B., Malureanu, L., Harrison, A. M. & van Deursen, J. M. Bub1 kinase activity drives error correction and mitotic checkpoint control but not tumor suppression. J. Cell Biol. 199, 931–949 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Li, X. C. & Schimenti, J. C. Mouse pachytene checkpoint 2 (trip13) is required for completing meiotic recombination but not synapsis. PLoS Genet. 3, e130 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Iwanaga, Y. et al. Heterozygous deletion of mitotic arrest-deficient protein 1 (MAD1) increases the incidence of tumors in mice. Cancer Res. 67, 160–166 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Choi, E., Zhang, X., Xing, C. & Yu, H. Mitotic checkpoint regulators control insulin signaling and metabolic homeostasis. Cell 166, 567–581 (2016). This study demonstrates an unexpected functional connection between the MAD2–BUBR1–p31Comet axis and signalling by the insulin receptor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Skibbens, R. V. et al. Cohesinopathies of a feather flock together. PLoS Genet. 9, e1004036 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Piche, J., Van Vliet, P. P., Puceat, M. & Andelfinger, G. The expanding phenotypes of cohesinopathies: one ring to rule them all! Cell Cycle 18, 2828–2848 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Davidson, I. F. & Peters, J. M. Genome folding through loop extrusion by SMC complexes. Nat. Rev. Mol. Cell Biol. 22, 445–464 (2021).

    Article  CAS  PubMed  Google Scholar 

  125. Losada, A. Cohesin in cancer: chromosome segregation and beyond. Nat. Rev. Cancer 14, 389–393 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Keijzers, G., Bakula, D. & Scheibye-Knudsen, M. Monogenic diseases of DNA repair. N. Engl. J. Med. 377, 1868–1876 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Jayaraman, D., Bae, B. I. & Walsh, C. A. The genetics of primary microcephaly. Annu. Rev. Genomics Hum. Genet. 19, 177–200 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Yamashita, D. et al. MCPH1 regulates chromosome condensation and shaping as a composite modulator of condensin II. J. Cell Biol. 194, 841–854 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hoencamp, C. & Rowland, B. D. Genome control by SMC complexes. Nat. Rev. Mol. Cell Biol. 24, 633–650 (2023).

    Article  CAS  PubMed  Google Scholar 

  130. Vader, G. Pch2(TRIP13): controlling cell division through regulation of HORMA domains. Chromosoma 124, 333–339 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Bhalla, N. PCH-2 and meiotic HORMADs: a module for evolutionary innovation in meiosis? Curr. Top. Dev. Biol. 151, 317–344 (2023).

    Article  CAS  PubMed  Google Scholar 

  132. Zhang, Z. et al. Bi-allelic missense pathogenic variants in TRIP13 cause female infertility characterized by oocyte maturation arrest. Am. J. Hum. Genet. 107, 15–23 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Huang, L. et al. Biallelic variants in MAD2L1BP (p31(comet)) cause female infertility characterized by oocyte maturation arrest. eLife 12, e85649 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Clairmont, C. S. et al. TRIP13 regulates DNA repair pathway choice through REV7 conformational change. Nat. Cell Biol. 22, 87–96 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sarangi, P., Clairmont, C. S., Galli, L. D., Moreau, L. A. & D’Andrea, A. D. p31(comet) promotes homologous recombination by inactivating REV7 through the TRIP13 ATPase. Proc. Natl Acad. Sci. USA 117, 26795–26803 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. de Krijger, I. et al. MAD2L2 dimerization and TRIP13 control shieldin activity in DNA repair. Nat. Commun. 12, 5421 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Jeong, H. et al. TRIP13 participates in immediate-early sensing of DNA strand breaks and ATM signaling amplification through MRE11. Cells 11, 4095 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Li, F. et al. The BUB3-BUB1 complex promotes telomere DNA replication. Mol. Cell 70, 395–407.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Xiao, M. et al. Kinetochore protein MAD1 participates in the DNA damage response through ataxia-telangiectasia mutated kinase-mediated phosphorylation and enhanced interaction with KU80. Cancer Biol. Med. 17, 640–651 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jessulat, M. et al. Spindle checkpoint factors Bub1 and Bub2 promote DNA double-strand break repair by nonhomologous end joining. Mol. Cell Biol. 35, 2448–2463 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Miyamoto, T. et al. Insufficiency of BUBR1, a mitotic spindle checkpoint regulator, causes impaired ciliogenesis in vertebrates. Hum. Mol. Genet. 20, 2058–2070 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Baker, D. J. et al. Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nat. Cell Biol. 10, 825–836 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Choi, E. & Yu, H. Spindle checkpoint regulators in insulin signaling. Front. Cell Dev. Biol. 6, 161 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Yang, S. et al. Bub1 facilitates virus entry through endocytosis in a model of Drosophila pathogenesis. J. Virol. 92, e00254-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Nyati, S., Young, G., Speers, C., Nyati, M. K. & Rehemtulla, A. Budding uninhibited by benzimidazoles-1 (BUB1) regulates EGFR signaling by reducing EGFR internalization. Aging 15, 6011–6030 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Nyati, S. et al. The kinase activity of the Ser/Thr kinase BUB1 promotes TGF-β signaling. Sci. Signal. 8, ra1 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Yoshida, S. et al. Bub1 suppresses inflammatory arthritis-associated bone loss in mice through inhibition of TNFα-mediated osteoclastogenesis. J. Bone Min. Res. 39, 341–356 (2024).

    Article  Google Scholar 

  148. Zhang, Q. et al. Bub1 and Bub3 regulate metabolic adaptation via macrolipophagy in Drosophila. Cell Rep. 42, 112343 (2023).

    Article  CAS  PubMed  Google Scholar 

  149. Wan, J. et al. A Golgi-localized pool of the mitotic checkpoint component Mad1 controls integrin secretion and cell migration. Curr. Biol. 24, 2687–2692 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Goo, B. S. et al. Schizophrenia-associated mitotic arrest deficient-1 (MAD1) regulates the polarity of migrating neurons in the developing neocortex. Mol. Psychiatry 28, 856–870 (2023).

    Article  CAS  PubMed  Google Scholar 

  151. Wan, J. et al. Mad1 destabilizes p53 by preventing PML from sequestering MDM2. Nat. Commun. 10, 1540 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Adrià López Fernández and Judith Balmaña (VHIO) and Ana Losada (CNIO, Madrid) for helpful discussions and comments on the manuscript. C.V.-B. received salary support from Amigos del CNIO, Madrid, and the Ramon y Cajal programme from the Ministerio de Ciencia y Universidades (MICIU)-Agencia Estatal de Investigación (AEI) (RYC2022-035259-I). The M.M. laboratory is supported by research grants from MICIU-AEI/FEDER (PID2021-128726, PDC2022-133408-I00 and RED2022-134792-T), Comunidad de Madrid (Y2020/BIO-6519 and S2022/BMD-7437), Asociación Española Contra el Cáncer (AECC) and the José Baselga Innovative Disruption programme from AstraZeneca. VHIO (CEX2020-001024-S/AEI/10.13039/501100011033) and CNIO (CEX2019-000891-S) are Centers of Excellence Severo Ochoa (MICIU-AEI).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the manuscript.

Corresponding authors

Correspondence to Marcos Malumbres or Carolina Villarroya-Beltri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Geert Kops and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

cBioPortal: https://www.cbioportal.org/

COSMIC: https://cancer.sanger.ac.uk/cosmic

Genomic Data Commons Data Portal: https://portal.gdc.cancer.gov/

Mitelman Database: https://mitelmandatabase.isb-cgc.org/

OMIM: https://www.omim.org/

Glossary

Autosomal recessive

A mode of inheritance in which the symptoms of the disease only manifest in individuals with syndrome-causing mutations in both alleles of the gene (one inherited from the mother and the other from the father).

Cell-cycle checkpoints

A signalling pathway ensuring that the cell has properly terminated the previous cell-cycle phase before transitioning to the next phase.

Chromosomal instability

(CIN). The acquired elevated chance of unequal distribution of genomic content between two daughter cells and is thus a ‘cellular phenotype’. The level of CIN refers to the frequency and severity of these errors over successive cell-division cycles.

Genome instability

An increased tendency to acquire alterations in the genome, ranging from single nucleotide modifications to structural or numerical alterations of whole chromosomes.

Hypomorphic

A type of mutation that causes only partial loss of function of the protein encoded.

Lordokyphosis

A condition characterized by a combination of lordosis and kyphosis, where the spine exhibits abnormal curvature both inward (lordosis) and outward (kyphosis) simultaneously.

Mitotic checkpoint complex

(MCC). The network of proteins responsible for inhibiting the ubiquitin ligase activity of the anaphase-promoting complex/cyclosome in the spindle-assembly checkpoint. It maintains cells in prometaphase until all chromosomes are properly attached to the mitotic spindle.

Monosomy

A form of aneuploidy in which only one chromosome from a pair of homologous chromosomes is present.

Tetraploidy

The condition of having four, instead of two, complete sets of chromosomes.

Trisomy

A form of aneuploidy in which homologous chromosomes are represented by three copies instead of two.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malumbres, M., Villarroya-Beltri, C. Mosaic variegated aneuploidy in development, ageing and cancer. Nat Rev Genet (2024). https://doi.org/10.1038/s41576-024-00762-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41576-024-00762-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing