Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Recommendation
  • Published:

Rethinking nomenclature for interspecies cell fusions

Abstract

Cell fusions have a long history of supporting biomedical research. These experimental models, historically referred to as ‘somatic cell hybrids’, involve combining the plasma membranes of two cells and merging their nuclei within a single cytoplasm. Cell fusion studies involving human and chimpanzee pluripotent stem cells, rather than somatic cells, highlight the need for responsible communication and a revised nomenclature. Applying the terms ‘hybrid’ and ‘parental’ to the fused and source cell lines, respectively, evokes reproductive relationships that do not exist between humans and other species. These misnomers become more salient in the context of fused pluripotent stem cells derived from different but closely related species. Here, we propose a precise, versatile and generalizable framework to describe these fused cell lines. We recommend the term ‘composite cell line’, to distinguish cell lines that are experimentally created through fusions from both reproductive hybrids and natural cell fusion events without obscuring the model in overly technical terms. For scientific audiences, we further recommend technical nomenclature that describes the contributing species, ploidy and cell type.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distinct nomenclature for reproductive hybrids and composite cell lines.
Fig. 2: Example of nomenclature applied to a three-species composite cell line.

Similar content being viewed by others

References

  1. Ephrussi, B. & Weiss, M. C. Interspecific hybridization of somatic cells. Proc. Natl Acad. Sci. USA 53, 1040–1042 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harris, H., Watkins, J. F., Campbell, G. L., Evans, E. P. & Ford, C. E. Mitosis in hybrid cells derived from mouse and man. Nature 207, 606–608 (1965).

    Article  CAS  PubMed  Google Scholar 

  3. Hyun, I. et al. Ethical standards for human-to-animal chimera experiments in stem cell research. Cell Stem Cell 1, 159–163 (2007).

    Article  PubMed  Google Scholar 

  4. Greely, H. T., Cho, M. K., Hogle, L. F. & Satz, D. M. Thinking about the human neuron mouse. Am. J. Bioeth. 7, 27–40 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Matthews, K. R. W., Wagner, D. S. & Warmflash, A. Stem cell-based models of embryos: the need for improved naming conventions. Stem Cell Rep. 16, 1014–1020 (2021).

    Article  Google Scholar 

  6. National Academies of Sciences, Engineering, and Medicine; Policy and Global Affairs; Committee on Science, Technology, and Law; and Committee on Ethical, Legal, and Regulatory Issues Associated with Neural Chimeras and Organoids. The Emerging Field of Human Neural Organoids, Transplants, and Chimeras: Science, Ethics, and Governance (National Academies Press, 2021). These guidelines carefully consider stem cell biology approaches that risk blurring species boundaries.

  7. Robert, J. S. & Baylis, F. Crossing species boundaries. Am. J. Bioeth. 3, 1–13 (2003).

    Article  PubMed  Google Scholar 

  8. Barski, G., Sorieul, S. & Cornefert, F. Production of cells of a “hybrid” nature in culturs in vitro of 2 cellular strains in combination [French]. C. R. Hebd. Seances Acad. Sci. 251, 1825–1827 (1960).

    CAS  PubMed  Google Scholar 

  9. Creagan, R. P. & Ruddle, F. H. The clone panel: a systematic approach to gene mapping using interspecific somatic cell hybrids. Cytogenet. Cell Genet. 14, 282–286 (1975).

    Article  CAS  PubMed  Google Scholar 

  10. Nabholz, M., Miggiano, V. & Bodmer, W. Genetic analysis with human–mouse somatic cell hybrids. Nature 223, 358–363 (1969).

    Article  CAS  PubMed  Google Scholar 

  11. Köhler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article  PubMed  Google Scholar 

  12. Parray, H. A. et al. Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives. Int. Immunopharmacol. 85, 106639 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Blau, H. M., Chiu, C. P. & Webster, C. Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell 32, 1171–1180 (1983).

    Article  CAS  PubMed  Google Scholar 

  14. Baron, M. H. & Maniatis, T. Rapid reprogramming of globin gene expression in transient heterokaryons. Cell 46, 591–602 (1986).

    Article  CAS  PubMed  Google Scholar 

  15. Piccolo, F. M. et al. Using heterokaryons to understand pluripotency and reprogramming. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2260–2265 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cowan, C. A., Atienza, J., Melton, D. A. & Eggan, K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309, 1369–1373 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Lee, J. H. et al. Systematic identification of cis-silenced genes by trans complementation. Hum. Mol. Genet. 18, 835–846 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Looney, T. J. et al. Systematic mapping of occluded genes by cell fusion reveals prevalence and stability of cis-mediated silencing in somatic cells. Genome Res. 24, 267–280 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cáceres, J. F., Screaton, G. R. & Krainer, A. R. A specific subset of SR proteins shuttles continuously between the nucleus and the cytoplasm. Genes Dev. 12, 55–66 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Piñol-Roma, S. & Dreyfuss, G. Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature 355, 730–732 (1992).

    Article  PubMed  Google Scholar 

  21. Ohnuki, M. & Takahashi, K. Present and future challenges of induced pluripotent stem cells. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140367 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. National Research Council; Division on Earth and Life Studies; Board on Life Sciences; Policy and Global Affairs; and Committee on Science, Engineering, and Public Policy. Scientific and Medical Aspects of Human Reproductive Cloning (National Academies Press, 2002).

  23. NIH. NIH research involving introduction of human pluripotent cells into non-human vertebrate anima0l pre-gastrulation embryos: notice number NOT-OD-15-158. National Institutes of Health https://grants.nih.gov/grants/guide/notice-files/NOT-OD-15-158.html (2015).

  24. Zhao, X.-Y. et al. iPS cells produce viable mice through tetraploid complementation. Nature 461, 86–90 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Boland, M. J. et al. Adult mice generated from induced pluripotent stem cells. Nature 461, 91–94 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Kang, L., Wang, J., Zhang, Y., Kou, Z. & Gao, S. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell 5, 135–138 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Gafni, O. et al. Derivation of novel human ground state naive pluripotent stem cells. Nature 504, 282–286 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Wu, J. et al. Interspecies chimerism with mammalian pluripotent stem cells. Cell 168, 473–486.e15 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tan, T. et al. Chimeric contribution of human extended pluripotent stem cells to monkey embryos ex vivo. Cell 184, 2020–2032.e14 (2021). This study demonstrates the potential of human pluripotent stem cells to contribute to organismal development in appreciable numbers.

    Article  CAS  PubMed  Google Scholar 

  30. Aach, J., Lunshof, J., Iyer, E. & Church, G. M. Correction: Addressing the ethical issues raised by synthetic human entities with embryo-like features. eLife 6, e27642 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Warmflash, A., Sorre, B., Etoc, F., Siggia, E. D. & Brivanlou, A. H. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat. Methods 11, 847–854 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. van den Brink, S. C. et al. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development 141, 4231–4242 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lovell-Badge, R. et al. ISSCR guidelines for stem cell research and clinical translation: the 2021 update. Stem Cell Rep. 16, 1398–1408 (2021).

    Article  Google Scholar 

  34. McNamee, S. Human–animal hybrids and chimeras: what’s in a name? Eur. J. Bioeth. 6, 45–66 (2015). These guidelines define categories of research and oversight levels required for human stem cell research, including the need for a compelling scientific rationale for experiments involving chimeric organisms.

    Google Scholar 

  35. St John, J. & Lovell-Badge, R. Human–animal cytoplasmic hybrid embryos, mitochondria, and an energetic debate. Nat. Cell Biol. 9, 988–992 (2007). This essay explores public communication and opinion about human–animal cybrid, hybrid and chimera experiments, and examines the connection between that reporting and research policy, particularly in the United Kingdom.

    Article  CAS  Google Scholar 

  36. Li, X. et al. Generation and application of mouse-rat allodiploid embryonic stem cells. Cell 164, 279–292 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Gokhman, D. et al. Human–chimpanzee fused cells reveal cis-regulatory divergence underlying skeletal evolution. Nat. Genet. 53, 467–476 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Agoglia, R. M. et al. Primate cell fusion disentangles gene regulatory divergence in neurodevelopment. Nature 592, 421–427 (2021). Together with Gokhman et al., this report extends cell fusions to human and chimpanzee pluripotent stem cells and highlights the need for a revised nomenclature.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Song, J. H. T. et al. Genetic studies of human–chimpanzee divergence using stem cell fusions. Proc. Natl Acad. Sci. USA 118, e2117557118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Department of Health. Human Fertilisation and Embryology Act 2008: explanatory notes. Legislation.gov.uk https://www.legislation.gov.uk/ukpga/2008/22/notes (2008).

  41. Matthews, K. R. & Moralí, D. National human embryo and embryoid research policies: a survey of 22 top research-intensive countries. Regen. Med. 15, 1905–1917 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Brownback, S. S.659 — Human Chimera Prohibition Act of 2005. Congress.gov https://www.congress.gov/109/bills/s659/BILLS-109s659is.pdf (2005).

  43. Smith, C. H.R.3542 — Human-Animal Chimera Prohibition Act of 2021. Congress.gov https://www.congress.gov/bill/117th-congress/house-bill/3542 (2021).

  44. Hyun, I., Bredenoord, A. L., Briscoe, J., Klipstein, S. & Tan, T. Human embryo research beyond the primitive streak. Science 371, 998–1000 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Svoboda, E. The next frontier for human embryo research. Nature 597, S15–S17 (2021).

    Article  CAS  Google Scholar 

  46. Gallego Romero, I. et al. A panel of induced pluripotent stem cells from chimpanzees: a resource for comparative functional genomics. eLife 4, e07103 (2015). This report establishes a widely used panel of human and chimpanzee iPSCs enabling in vitro studies of recent evolutionary changes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Storchova, Z. & Kuffer, C. The consequences of tetraploidy and aneuploidy. J. Cell Sci. 121, 3859–3866 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Nagy, A. et al. Embryonic stem cells alone are able to support fetal development in the mouse. Development 110, 815–821 (1990).

    Article  CAS  PubMed  Google Scholar 

  49. Horii, T. et al. p53 suppresses tetraploid development in mice. Sci. Rep. 5, 8907 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J. & Campbell, K. H. Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Wilson, M. D. et al. Species-specific transcription in mice carrying human chromosome 21. Science 322, 434–438 (2008). This report establishes a framework for studying gene regulatory evolution using reproductive hybrids that has now been extended to composite cell lines.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kazuki, Y. et al. A non-mosaic transchromosomic mouse model of Down syndrome carrying the long arm of human chromosome 21. eLife 9, e56223 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wittkopp, P. J., Haerum, B. K. & Clark, A. G. Evolutionary changes in cis and trans gene regulation. Nature 430, 85–88 (2004). This report describes a rare example of viable reproductive hybrids between chimpanzees and bonobos.

    Article  CAS  PubMed  Google Scholar 

  54. Hill, M. S., Vande Zande, P. & Wittkopp, P. J. Molecular and evolutionary processes generating variation in gene expression. Nat. Rev. Genet. 22, 203–215 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Vervaecke, H. & Van Elsacker, L. Hybrids between common chimpanzees (Pan troglodytes) and pygmy chimpanzees (Pan paniscus) in captivity. Mammalia 56, 667–669 (1992).

    Google Scholar 

  56. Prado-Martinez, J. et al. Great ape genetic diversity and population history. Nature 499, 471–475 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Greilhuber, J., Dolezel, J., Lysák, M. A. & Bennett, M. D. The origin, evolution and proposed stabilization of the terms “genome size” and “C-value” to describe nuclear DNA contents. Ann. Bot. 95, 255–260 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

N.K.S. is supported by the Weill Neurohub Fellowship. A.A.P. acknowledges funding from the National Institutes of Health (NIH) (DP2MH122400-01), the Schmidt Futures Foundation and the Shurl and Kay Curci Foundation and is a New York Stem Cell Foundation Robertson Investigator. The authors acknowledge C. Lowe, C. Dorsett and members of the Pollen laboratory for critical feedback and insights.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Alex A. Pollen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Genetics thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlovic, B.J., Fox, D., Schaefer, N.K. et al. Rethinking nomenclature for interspecies cell fusions. Nat Rev Genet 23, 315–320 (2022). https://doi.org/10.1038/s41576-021-00447-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-021-00447-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing