Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Control of tuberal hypothalamic development and its implications in metabolic disorders

Abstract

The tuberal hypothalamus regulates a range of crucial physiological processes, including energy homeostasis and metabolism. In this Review, we explore the intricate molecular mechanisms and signalling pathways that control the development of the tuberal hypothalamus, focusing on aspects that shape metabolic outcomes. Major developmental events are discussed in the context of their effect on the establishment of both functional hypothalamic neuronal circuits and brain–body interfaces that are pivotal to the control of metabolism. Emerging evidence indicates that aberrations in molecular pathways during tuberal hypothalamic development contribute to metabolic dysregulation. Understanding the molecular underpinnings of tuberal hypothalamic development provides a comprehensive view of neurodevelopmental processes and offers a promising avenue for future targeted interventions to prevent and treat metabolic disorders.

Key points

  • Energy balance is regulated by pro-opiomelanocortin and neuropeptide Y neurons within the arcuate nucleus and by tanycytes within the median eminence.

  • Sequential signalling events govern the progression of diencephalic prethalamic-like cells to generate regionally distinct populations of hypothalamic progenitors; sustained signalling events and hierarchical transcription factor networks mediate tuberal neurogenesis and the specification of tuberal neuronal subtypes and tanycytes.

  • Leptin and a high-fat diet regulate diverse aspects of tuberal cell specification, including neurogenesis, axon guidance and synaptic connectivity.

  • Neurons of the tuberal hypothalamus are sexually dimorphic in their distribution and regulate sexually dimorphic patterns of behaviour.

  • Genetic and environmental factors disrupt tuberal hypothalamic development and lead to lifelong metabolic defects.

  • Directed differentiation of human induced pluripotent stem cells towards hypothalamic identities is in its infancy but holds the promise of generating therapeutically important tuberal hypothalamic cell types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomy of the adult and developing tuberal hypothalamus.
Fig. 2: Gene regulatory networks underlying HypFP and tuberal progenitor specification.
Fig. 3: Topology of the hypothalamus at neurogenic stages.
Fig. 4: Molecular pathways underlying ARCN neuronal and tuberal tanycyte differentiation.
Fig. 5: Stage-specific insults to the developing hypothalamus and their role in metabolic disorders.

Similar content being viewed by others

References

  1. Tessmar-Raible, K. et al. Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. Cell 129, 1389–1400 (2007).

    Article  PubMed  CAS  Google Scholar 

  2. Fong, H., Zheng, J. & Kurrasch, D. The structural and functional complexity of the integrative hypothalamus. Science 382, 388–394 (2023).

    Article  PubMed  CAS  Google Scholar 

  3. Alcantara, I. C., Tapia, A. P. M., Aponte, Y. & Krashes, M. J. Acts of appetite: neural circuits governing the appetitive, consummatory, and terminating phases of feeding. Nat. Metab. 4, 836–847 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang, D. et al. Whole-brain mapping of the direct inputs and axonal projections of POMC and AgRP neurons. Front. Neuroanat. 9, 40 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dietrich, M. O. et al. AgRP neurons regulate development of dopamine neuronal plasticity and nonfood-associated behaviors. Nat. Neurosci. 15, 1108–1110 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Prevot, V. et al. Gonadotrophin-releasing hormone nerve terminals, tanycytes and neurohaemal junction remodelling in the adult median eminence: functional consequences for reproduction and dynamic role of vascular endothelial cells. J. Neuroendocrinol. 22, 639–649 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. García-Cáceres, C. et al. Role of astrocytes, microglia, and tanycytes in brain control of systemic metabolism. Nat. Neurosci. 22, 7–14 (2019).

    Article  PubMed  Google Scholar 

  8. Li, M. M. et al. The paraventricular hypothalamus regulates satiety and prevents obesity via two genetically distinct circuits. Neuron 102, 653–667.e6 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Schaeffer, M. et al. Rapid sensing of circulating ghrelin by hypothalamic appetite-modifying neurons. Proc. Natl Acad. Sci. USA 110, 1512–1517 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Balland, E. et al. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab. 19, 293–301 (2014).

    Article  PubMed  CAS  Google Scholar 

  11. Yoo, S. et al. Tanycyte ablation in the arcuate nucleus and median eminence increases obesity susceptibility by increasing body fat content in male mice. Glia 68, 1987–2000 (2020).

    Article  PubMed  Google Scholar 

  12. Yoo, S., Cha, D., Kim, D. W., Hoang, T. V. & Blackshaw, S. Tanycyte-independent control of hypothalamic leptin signaling. Front. Neurosci. 13, 240 (2019).

    Article  PubMed  Google Scholar 

  13. Lee, D. A. et al. Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat. Neurosci. 15, 700–702 (2012).

    Article  PubMed  CAS  Google Scholar 

  14. Robins, S. C. et al. α-Tanycytes of the adult hypothalamic third ventricle include distinct populations of FGF-responsive neural progenitors. Nat. Commun. 4, 2049 (2013).

    Article  PubMed  CAS  Google Scholar 

  15. Theodosis, D. T., Poulain, D. A. & Oliet, S. H. R. Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol. Rev. 88, 983–1008 (2008).

    Article  PubMed  CAS  Google Scholar 

  16. Anbalagan, S. et al. Pituicyte cues regulate the development of permeable neuro-vascular interfaces. Dev. Cell 47, 711–726.e5 (2018).

    Article  PubMed  CAS  Google Scholar 

  17. Campbell, J. N. et al. A molecular census of arcuate hypothalamus and median eminence cell types. Nat. Neurosci. 20, 484–496 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Chen, R., Wu, X., Jiang, L. & Zhang, Y. Single-cell RNA-seq reveals hypothalamic cell diversity. Cell Rep. 18, 3227–3241 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kim, D. W. et al. The cellular and molecular landscape of hypothalamic patterning and differentiation from embryonic to late postnatal development. Nat. Commun. 11, 4360 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Romanov, R. A. et al. Molecular design of hypothalamus development. Nature 582, 246–252 (2020).

    Article  PubMed  CAS  Google Scholar 

  21. Mickelsen, L. E. et al. Cellular taxonomy and spatial organization of the murine ventral posterior hypothalamus. eLife 9, e58901 (2020).

    Article  PubMed  CAS  Google Scholar 

  22. Ma, T., Wong, S. Z. H., Lee, B., Ming, G.-L. & Song, H. Decoding neuronal composition and ontogeny of individual hypothalamic nuclei. Neuron 109, 1150–1167.e6 (2021).

    Article  PubMed  CAS  Google Scholar 

  23. Steuernagel, L. et al. HypoMap-a unified single-cell gene expression atlas of the murine hypothalamus. Nat. Metab. 4, 1402–1419 (2022).

    Article  PubMed  CAS  Google Scholar 

  24. Yao, Z. et al. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 624, 317–332 (2023).

    Article  PubMed  CAS  Google Scholar 

  25. Harkany, T. et al. Molecularly stratified hypothalamic astrocytes are cellular foci for obesity. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-3748581/v1 (2024).

    Article  PubMed  Google Scholar 

  26. Sullivan, A. I., Potthoff, M. J. & Flippo, K. H. Tany-seq: integrated analysis of the mouse tanycyte transcriptome. Cells 11, 1565 (2022).

    Article  PubMed  CAS  Google Scholar 

  27. Placzek, M. & Briscoe, J. The floor plate: multiple cells, multiple signals. Nat. Rev. Neurosci. 6, 230–240 (2005).

    Article  PubMed  CAS  Google Scholar 

  28. Kim, D. W. et al. Single-cell analysis of early chick hypothalamic development reveals that hypothalamic cells are induced from prethalamic-like progenitors. Cell Rep. 38, 110251 (2022).

    Article  PubMed  CAS  Google Scholar 

  29. Chinnaiya, K. et al. A neuroepithelial wave of BMP signalling drives anteroposterior specification of the tuberal hypothalamus. eLife 12, e83133 (2023).

    Article  PubMed  CAS  Google Scholar 

  30. Manning, L. et al. Regional morphogenesis in the hypothalamus: a BMP-Tbx2 pathway coordinates fate and proliferation through Shh downregulation. Dev. Cell 11, 873–885 (2006).

    Article  PubMed  CAS  Google Scholar 

  31. Dale, J. K. et al. Cooperation of BMP7 and SHH in the induction of forebrain ventral midline cells by prechordal mesoderm. Cell 90, 257–269 (1997).

    Article  PubMed  CAS  Google Scholar 

  32. Dale, K. et al. Differential patterning of ventral midline cells by axial mesoderm is regulated by BMP7 and chordin. Development 126, 397–408 (1999).

    Article  PubMed  CAS  Google Scholar 

  33. Fu, T., Towers, M. & Placzek, M. A. Fgf10+ progenitors give rise to the chick hypothalamus by rostral and caudal growth and differentiation. Development 144, 3278–3288 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Szabó, N.-E. et al. Role of neuroepithelial sonic hedgehog in hypothalamic patterning. J. Neurosci. 29, 6989–7002 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shimogori, T. et al. A genomic atlas of mouse hypothalamic development. Nat. Neurosci. 13, 767–775 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Haddad-Tóvolli, R. et al. Differential requirements for Gli2 and Gli3 in the regional specification of the mouse hypothalamus. Front. Neuroanat. 9, 34 (2015).

    PubMed  PubMed Central  Google Scholar 

  37. Puelles, L. Recollections on the origins and development of the prosomeric model. Front. Neuroanat. 15, 787913 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Alvarez-Bolado, G., Grinevich, V. & Puelles, L. Editorial: development of the hypothalamus. Front. Neuroanat. 9, 83 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Manning, E. & Placzek, M. Organizing activities of axial mesoderm. Curr. Top. Dev. Biol. 157, 83–123 (2024).

    Article  PubMed  Google Scholar 

  40. Aoto, K. et al. Mouse Shh is required for prechordal plate maintenance during brain and craniofacial morphogenesis. Dev. Biol. 327, 106–120 (2009).

    Article  PubMed  CAS  Google Scholar 

  41. Placzek, M. & Briscoe, J. Sonic hedgehog in vertebrate neural tube development. Int. J. Dev. Biol. 62, 225–234 (2018).

    Article  PubMed  CAS  Google Scholar 

  42. Barratt, K. S., Drover, K. A., Thomas, Z. M. & Arkell, R. M. Patterning of the antero-ventral mammalian brain: lessons from holoprosencephaly comparative biology in man and mouse. WIREs Mech. Dis. 14, e1552 (2022).

    Article  PubMed  Google Scholar 

  43. Shimamura, K. & Rubenstein, J. L. Inductive interactions direct early regionalization of the mouse forebrain. Development 124, 2709–2718 (1997).

    Article  PubMed  CAS  Google Scholar 

  44. Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413 (1996).

    Article  PubMed  CAS  Google Scholar 

  45. Mukhopadhyay, M. et al. Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev. Cell 1, 423–434 (2001).

    Article  PubMed  CAS  Google Scholar 

  46. Lewis, S. L. et al. Dkk1 and Wnt3 interact to control head morphogenesis in the mouse. Development 135, 1791–1801 (2008).

    Article  PubMed  CAS  Google Scholar 

  47. Lagutin, O. V. et al. Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev. 17, 368–379 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Newman, E. A., Wu, D., Taketo, M. M., Zhang, J. & Blackshaw, S. Canonical Wnt signaling regulates patterning, differentiation and nucleogenesis in mouse hypothalamus and prethalamus. Dev. Biol. 442, 236–248 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Geng, X. et al. Haploinsufficiency of Six3 fails to activate Sonic hedgehog expression in the ventral forebrain and causes holoprosencephaly. Dev. Cell 15, 236–247 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Muthu, V., Eachus, H., Ellis, P., Brown, S. & Placzek, M. Rx3 and Shh direct anisotropic growth and specification in the zebrafish tuberal/anterior hypothalamus. Development 143, 2651–2663 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Orquera, D. P., Nasif, S., Low, M. J., Rubinstein, M. & de Souza, F. S. J. Essential function of the transcription factor Rax in the early patterning of the mammalian hypothalamus. Dev. Biol. 416, 212–224 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Manoli, M. & Driever, W. nkx2.1 and nkx2.4 genes function partially redundant during development of the zebrafish hypothalamus, preoptic region, and pallidum. Front. Neuroanat. 8, 145 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sussel, L., Marin, O., Kimura, S. & Rubenstein, J. L. Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126, 3359–3370 (1999).

    Article  PubMed  CAS  Google Scholar 

  54. Strähle, U., Blader, P. & Ingham, P. W. Expression of axial and sonic hedgehog in wildtype and midline defective zebrafish embryos. Int. J. Dev. Biol. 40, 929–940 (1996).

    PubMed  Google Scholar 

  55. Mathieu, J., Barth, A., Rosa, F. M., Wilson, S. W. & Peyriéras, N. Distinct and cooperative roles for Nodal and Hedgehog signals during hypothalamic development. Development 129, 3055–3065 (2002).

    Article  PubMed  CAS  Google Scholar 

  56. Ellis, P. S. et al. ProNodal acts via FGFR3 to govern duration of Shh expression in the prechordal mesoderm. Development 142, 3821–3832 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Angueyra, J. M. et al. Transcription factors underlying photoreceptor diversity. eLife 12, e81579 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Pearson, C. A. et al. FGF-dependent midline-derived progenitor cells in hypothalamic infundibular development. Development 138, 2613–2624 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Corman, T. S., Bergendahl, S. E. & Epstein, D. J. Distinct temporal requirements for Sonic hedgehog signaling in development of the tuberal hypothalamus. Development 145, dev167379 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Carreno, G. et al. Hypothalamic sonic hedgehog is required for cell specification and proliferation of LHX3/LHX4 pituitary embryonic precursors. Development 144, 3289–3302 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Trowe, M.-O. et al. Inhibition of Sox2-dependent activation of Shh in the ventral diencephalon by Tbx3 is required for formation of the neurohypophysis. Development 140, 2299–2309 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Goto, M. et al. Hes1 and Hes5 are required for differentiation of pituicytes and formation of the neurohypophysis in pituitary development. Brain Res. 1625, 206–217 (2015).

    Article  PubMed  CAS  Google Scholar 

  63. Salvatierra, J. et al. The LIM homeodomain factor Lhx2 is required for hypothalamic tanycyte specification and differentiation. J. Neurosci. 34, 16809–16820 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Oliver, G. et al. Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121, 4045–4055 (1995).

    Article  PubMed  CAS  Google Scholar 

  65. Jean, D., Bernier, G. & Gruss, P. Six6 (Optx2) is a novel murine Six3-related homeobox gene that demarcates the presumptive pituitary/hypothalamic axis and the ventral optic stalk. Mech. Dev. 84, 31–40 (1999).

    Article  PubMed  CAS  Google Scholar 

  66. Ikeda, Y., Luo, X., Abbud, R., Nilson, J. H. & Parker, K. L. The nuclear receptor steroidogenic factor 1 is essential for the formation of the ventromedial hypothalamic nucleus. Mol. Endocrinol. 9, 478–486 (1995).

    PubMed  CAS  Google Scholar 

  67. Fujiyama, T. et al. Forebrain Ptf1a is required for sexual differentiation of the brain. Cell Rep. 24, 79–94 (2018).

    Article  PubMed  CAS  Google Scholar 

  68. Wang, W., Grimmer, J. F., Van De Water, T. R. & Lufkin, T. Hmx2 and Hmx3 homeobox genes direct development of the murine inner ear and hypothalamus and can be functionally replaced by Drosophila Hmx. Dev. Cell 7, 439–453 (2004).

    Article  PubMed  CAS  Google Scholar 

  69. Pontecorvi, M., Goding, C. R., Richardson, W. D. & Kessaris, N. Expression of Tbx2 and Tbx3 in the developing hypothalamic-pituitary axis. Gene Expr. Patterns 8, 411–417 (2008).

    Article  PubMed  CAS  Google Scholar 

  70. Satoh, A., Brace, C. S., Rensing, N. & Imai, S.-I. Deficiency of Prdm13, a dorsomedial hypothalamus-enriched gene, mimics age-associated changes in sleep quality and adiposity. Aging Cell 14, 209–218 (2015).

    Article  PubMed  CAS  Google Scholar 

  71. Shi, X. et al. Hierarchical deployment of Tbx3 dictates the identity of hypothalamic KNDy neurons to control puberty onset. Sci. Adv. 8, eabq2987 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Shimada, M. & Nakamura, T. Time of neuron origin in mouse hypothalamic nuclei. Exp. Neurol. 41, 163–173 (1973).

    Article  PubMed  CAS  Google Scholar 

  73. Lee, J. E., Wu, S.-F., Goering, L. M. & Dorsky, R. I. Canonical Wnt signaling through Lef1 is required for hypothalamic neurogenesis. Development 133, 4451–4461 (2006).

    Article  PubMed  CAS  Google Scholar 

  74. Aujla, P. K., Naratadam, G. T., Xu, L. & Raetzman, L. T. Notch/Rbpjκ signaling regulates progenitor maintenance and differentiation of hypothalamic arcuate neurons. Development 140, 3511–3521 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Biehl, M. J. & Raetzman, L. T. Rbpj-κ mediated Notch signaling plays a critical role in development of hypothalamic Kisspeptin neurons. Dev. Biol. 406, 235–246 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Ratié, L. et al. Novel genes upregulated when NOTCH signalling is disrupted during hypothalamic development. Neural Dev. 8, 25 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ware, M., Hamdi-Rozé, H. & Dupé, V. Notch signaling and proneural genes work together to control the neural building blocks for the initial scaffold in the hypothalamus. Front. Neuroanat. 8, 140 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Place, E. et al. SHH and Notch regulate SOX9+ progenitors to govern arcuate POMC neurogenesis. Front. Neurosci. 16, 855288 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Pierfelice, T., Alberi, L. & Gaiano, N. Notch in the vertebrate nervous system: an old dog with new tricks. Neuron 69, 840–855 (2011).

    Article  PubMed  CAS  Google Scholar 

  80. Engler, A., Zhang, R. & Taylor, V. Notch and neurogenesis. Adv. Exp. Med. Biol. 1066, 223–234 (2018).

    Article  PubMed  CAS  Google Scholar 

  81. Aslanpour, S., Han, S., Schuurmans, C. & Kurrasch, D. M. Acts as a classical proneural gene in the ventromedial hypothalamus and is required for the early phase of neurogenesis. J. Neurosci. 40, 3549–3563 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Pelling, M. et al. Differential requirements for neurogenin 3 in the development of POMC and NPY neurons in the hypothalamus. Dev. Biol. 349, 406–416 (2011).

    Article  PubMed  CAS  Google Scholar 

  83. Hael, C. E., Rojo, D., Orquera, D. P., Low, M. J. & Rubinstein, M. The transcriptional regulator PRDM12 is critical for Pomc expression in the mouse hypothalamus and controlling food intake, adiposity, and body weight. Mol. Metab. 34, 43–53 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Lee, B. et al. Dlx1/2 and Otp coordinate the production of hypothalamic GHRH- and AgRP-neurons. Nat. Commun. 9, 2026 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lee, B., Lee, S., Lee, S.-K. & Lee, J. W. The LIM-homeobox transcription factor Isl1 plays crucial roles in the development of multiple arcuate nucleus neurons. Development 143, 3763–3773 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Padilla, S. L., Carmody, J. S. & Zeltser, L. M. Pomc-expressing progenitors give rise to antagonistic neuronal populations in hypothalamic feeding circuits. Nat. Med. 16, 403–405 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Yu, H., Rubinstein, M. & Low, M. J. Developmental single-cell transcriptomics of hypothalamic POMC neurons reveal the genetic trajectories of multiple neuropeptidergic phenotypes. eLife 11, e72883 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Orquera, D. P. et al. The homeodomain transcription factor NKX2.1 is essential for the early specification of melanocortin neuron identity and activates expression in the developing hypothalamus. J. Neurosci. 39, 4023–4035 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Quarta, C. et al. Functional identity of hypothalamic melanocortin neurons depends on Tbx3. Nat. Metab. 1, 222–235 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Nasif, S. et al. Islet 1 specifies the identity of hypothalamic melanocortin neurons and is critical for normal food intake and adiposity in adulthood. Proc. Natl Acad. Sci. USA 112, E1861–E1870 (2015).

    Article  PubMed  CAS  Google Scholar 

  91. Chen, X. et al. Comparative transcriptomic analyses of developing melanocortin neurons reveal new regulators for the anorexigenic neuron identity. J. Neurosci. 40, 3165–3177 (2020).

    Article  PubMed  CAS  Google Scholar 

  92. Jing, E., Nillni, E. A., Sanchez, V. C., Stuart, R. C. & Good, D. J. Deletion of the Nhlh2 transcription factor decreases the levels of the anorexigenic peptides α melanocyte-stimulating hormone and thyrotropin-releasing hormone and implicates prohormone convertases I and II in obesity. Endocrinology 145, 1503–1513 (2004).

    Article  PubMed  CAS  Google Scholar 

  93. Carraro, R. S. et al. Arcuate nucleus overexpression of NHLH2 reduces body mass and attenuates obesity-associated anxiety/depression-like behavior. J. Neurosci. 41, 10004–10022 (2021).

    Article  PubMed  CAS  Google Scholar 

  94. Croizier, S., Park, S., Maillard, J. & Bouret, S. G. Central Dicer-miR-103/107 controls developmental switch of POMC progenitors into NPY neurons and impacts glucose homeostasis. eLife 7, e40429 (2018).

    Article  PubMed  Google Scholar 

  95. Nogueiras, R. et al. Bsx, a novel hypothalamic factor linking feeding with locomotor activity, is regulated by energy availability. Endocrinology 149, 3009–3015 (2008).

    Article  PubMed  CAS  Google Scholar 

  96. Sokolowski, K. et al. Specification of select hypothalamic circuits and innate behaviors by the embryonic patterning gene dbx1. Neuron 86, 403–416 (2015).

    Article  PubMed  CAS  Google Scholar 

  97. Li, H., Zeitler, P. S., Valerius, M. T., Small, K. & Potter, S. S. Gsh-1, an orphan Hox gene, is required for normal pituitary development. EMBO J. 15, 714–724 (1996).

    Article  PubMed  CAS  Google Scholar 

  98. Huisman, C. et al. Single cell transcriptome analysis of developing arcuate nucleus neurons uncovers their key developmental regulators. Nat. Commun. 10, 3696 (2019).

    Article  PubMed  Google Scholar 

  99. Yee, C. L., Wang, Y., Anderson, S., Ekker, M. & Rubenstein, J. L. R. Arcuate nucleus expression of NKX2.1 and DLX and lineages expressing these transcription factors in neuropeptide Y+, proopiomelanocortin+, and tyrosine hydroxylase+ neurons in neonatal and adult mice. J. Comp. Neurol. 517, 37–50 (2009).

    Article  PubMed  CAS  Google Scholar 

  100. Zhang, Q. et al. Satb2 regulates the development of dopaminergic neurons in the arcuate nucleus by Dlx1. Cell Death Dis. 12, 879 (2021).

    Article  PubMed  CAS  Google Scholar 

  101. Atkin, S. D. et al. Nuclear receptor LRH-1 induces the reproductive neuropeptide kisspeptin in the hypothalamus. Mol. Endocrinol. 27, 598–605 (2013).

    Article  PubMed  CAS  Google Scholar 

  102. Whittaker, D. E. et al. A recessive PRDM13 mutation results in congenital hypogonadotropic hypogonadism and cerebellar hypoplasia. J. Clin. Invest. 131, e141587 (2021).

    Article  PubMed  CAS  Google Scholar 

  103. Altman, J. & Bayer, S. A. Development of the diencephalon in the rat. III. Ontogeny of the specialized ventricular linings of the hypothalamic third ventricle. J. Comp. Neurol. 182, 995–1015 (1978).

    Article  PubMed  CAS  Google Scholar 

  104. Lopez-Rodriguez, D. et al. Ontogeny of ependymoglial cells lining the third ventricle in mice. Front. Endocrinol. 13, 1073759 (2022).

    Article  Google Scholar 

  105. Yoo, S. & Blackshaw, S. Regulation and function of neurogenesis in the adult mammalian hypothalamus. Prog. Neurobiol. 170, 53–66 (2018).

    Article  PubMed  CAS  Google Scholar 

  106. Miranda-Angulo, A. L., Byerly, M. S., Mesa, J., Wang, H. & Blackshaw, S. Rax regulates hypothalamic tanycyte differentiation and barrier function in mice. J. Comp. Neurol. 522, 876–899 (2014).

    Article  PubMed  CAS  Google Scholar 

  107. Moore, A. et al. Loss of function of the neural cell adhesion molecule NrCAM regulates differentiation, proliferation and neurogenesis in early postnatal hypothalamic tanycytes. Front. Neurosci. 16, 832961 (2022).

    Article  PubMed  Google Scholar 

  108. Parkash, J. et al. Semaphorin7A regulates neuroglial plasticity in the adult hypothalamic median eminence. Nat. Commun. 6, 6385 (2015).

    Article  PubMed  CAS  Google Scholar 

  109. Yoo, S. et al. Control of neurogenic competence in mammalian hypothalamic tanycytes. Sci. Adv. 7, eabg3777 (2021).

    Article  PubMed  CAS  Google Scholar 

  110. Lee, D. A. et al. Dietary and sex-specific factors regulate hypothalamic neurogenesis in young adult mice. Front. Neurosci. 8, 157 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Goodman, T. et al. Fibroblast growth factor 10 is a negative regulator of postnatal neurogenesis in the mouse hypothalamus. Development 147, dev180950 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Recabal, A. et al. The FGF2-induced tanycyte proliferation involves a connexin 43 hemichannel/purinergic-dependent pathway. J. Neurochem. 156, 182–199 (2021).

    Article  PubMed  CAS  Google Scholar 

  113. Son, J. E. et al. Irx3 and Irx5 in Ins2-Cre cells regulate hypothalamic postnatal neurogenesis and leptin response. Nat. Metab. 3, 701–713 (2021).

    Article  PubMed  CAS  Google Scholar 

  114. Dou, Z., Son, J. E. & Hui, C. C. Irx3 and Irx5 — novel regulatory factors of postnatal hypothalamic neurogenesis. Front. Neurosci. 15, 763856 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Makarenko, I. G., Ugrumov, M. V. & Calas, A. Axonal projections from the hypothalamus to the median eminence in rats during ontogenesis: diI tracing study. Anat. Embryol. 204, 239–252 (2001).

    Article  CAS  Google Scholar 

  116. Liu, F. et al. Direct and indirect roles of Fgf3 and Fgf10 in innervation and vascularisation of the vertebrate hypothalamic neurohypophysis. Development 140, 1111–1122 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Liu, F., Placzek, M. & Xu, H. Axon guidance effect of classical morphogens Shh and BMP7 in the hypothalamo-pituitary system. Neurosci. Lett. 553, 104–109 (2013).

    Article  PubMed  CAS  Google Scholar 

  118. Makarenko, I. G. DiI tracing of the hypothalamic projection systems during perinatal development. Front. Neuroanat. 8, 144 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Jais, A. & Brüning, J. C. Arcuate nucleus-dependent regulation of metabolism-pathways to obesity and diabetes mellitus. Endocr. Rev. 43, 314–328 (2022).

    Article  PubMed  Google Scholar 

  120. Gervais, M., Labouèbe, G., Picard, A., Thorens, B. & Croizier, S. EphrinB1 modulates glutamatergic inputs into POMC-expressing progenitors and controls glucose homeostasis. PLoS Biol. 18, e3000680 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Bouret, S. G., Draper, S. J. & Simerly, R. B. Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J. Neurosci. 24, 2797–2805 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. van der Klaauw, A. A. et al. Human semaphorin 3 variants link melanocortin circuit development and energy balance. Cell 176, 729–742.e18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Coupé, B. et al. Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation. Cell Metab. 15, 247–255 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Lee, C. H. et al. Primary cilia mediate early life programming of adiposity through lysosomal regulation in the developing mouse hypothalamus. Nat. Commun. 11, 5772 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Swithers, S. E. Do metabolic signals stimulate intake in rat pups? Physiol. Behav. 79, 71–78 (2003).

    Article  PubMed  CAS  Google Scholar 

  126. Steculorum, S. M. & Bouret, S. G. Maternal diabetes compromises the organization of hypothalamic feeding circuits and impairs leptin sensitivity in offspring. Endocrinology 152, 4171–4179 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Bouret, S. G., Bates, S. H., Chen, S., Myers, M. G. Jr & Simerly, R. B. Distinct roles for specific leptin receptor signals in the development of hypothalamic feeding circuits. J. Neurosci. 32, 1244–1252 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Kamitakahara, A., Bouyer, K., Wang, C.-H. & Simerly, R. A critical period for the trophic actions of leptin on AgRP neurons in the arcuate nucleus of the hypothalamus. J. Comp. Neurol. 526, 133–145 (2018).

    Article  PubMed  CAS  Google Scholar 

  129. Mirzadeh, Z. et al. Perineuronal net formation during the critical period for neuronal maturation in the hypothalamic arcuate nucleus. Nat. Metab. 1, 212–221 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Nilsson, I., Johansen, J. E., Schalling, M., Hökfelt, T. & Fetissov, S. O. Maturation of the hypothalamic arcuate agouti-related protein system during postnatal development in the mouse. Brain Res. Dev. Brain Res. 155, 147–154 (2005).

    Article  PubMed  CAS  Google Scholar 

  131. Bouret, S. G., Draper, S. J. & Simerly, R. B. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304, 108–110 (2004).

    Article  PubMed  CAS  Google Scholar 

  132. Freeman, G. M. et al. GABA networks destabilize genetic oscillations in the circadian pacemaker. Neuron 78, 799–806 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Fan, J. et al. Vasoactive intestinal polypeptide (VIP)-expressing neurons in the suprachiasmatic nucleus provide sparse GABAergic outputs to local neurons with circadian regulation occurring distal to the opening of postsynaptic GABAA ionotropic receptors. J. Neurosci. 35, 1905–1920 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Shao, Y.-Q., Fan, L., Wu, W.-Y., Zhu, Y.-J. & Xu, H.-T. A developmental switch between electrical and neuropeptide communication in the ventromedial hypothalamus. Curr. Biol. 32, 3137–3145.e3 (2022).

    Article  PubMed  CAS  Google Scholar 

  135. Burdakov, D. & Karnani, M. M. Ultra-sparse connectivity within the lateral hypothalamus. Curr. Biol. 30, 4063–4070.e2 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Newton, A. J. et al. AgRP innervation onto POMC neurons increases with age and is accelerated with chronic high-fat feeding in male mice. Endocrinology 154, 172–183 (2013).

    Article  PubMed  CAS  Google Scholar 

  137. Baquero, A. F. et al. Developmental changes in synaptic distribution in arcuate nucleus neurons. J. Neurosci. 35, 8558–8569 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Yang, C. F. et al. Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell 153, 896–909 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Krause, W. C. et al. Oestrogen engages brain MC4R signalling to drive physical activity in female mice. Nature 599, 131–135 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Liu, M., Kim, D.-W., Zeng, H. & Anderson, D. J. Make war not love: the neural substrate underlying a state-dependent switch in female social behavior. Neuron 110, 841–856.e6 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. McCarthy, M. M. et al. The epigenetics of sex differences in the brain. J. Neurosci. 29, 12815–12823 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Bell, M. R. Comparing postnatal development of gonadal hormones and associated social behaviors in rats, mice, and humans. Endocrinology 159, 2596–2613 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Immenschuh, J. et al. Sex differences in distribution and identity of aromatase gene expressing cells in the young adult rat brain. Biol. Sex. Differ. 14, 54 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Shah, N. M. et al. Visualizing sexual dimorphism in the brain. Neuron 43, 313–319 (2004).

    Article  PubMed  CAS  Google Scholar 

  145. Knoedler, J. R. et al. A functional cellular framework for sex and estrous cycle-dependent gene expression and behavior. Cell 185, 654–671.e22 (2024).

    Article  Google Scholar 

  146. Gegenhuber, B., Wu, M. V., Bronstein, R. & Tollkuhn, J. Gene regulation by gonadal hormone receptors underlies brain sex differences. Nature 606, 153–159 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Griffin, G. D. & Flanagan-Cato, L. M. Ovarian hormone action in the hypothalamic ventromedial nucleus: remodelling to regulate reproduction. J. Neuroendocrinol. 23, 465–471 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Cabrera Zapata, L. E., Bollo, M. & Cambiasso, M. J. Estradiol-mediated axogenesis of hypothalamic neurons requires ERK1/2 and ryanodine receptors-dependent intracellular ca rise in male rats. Front. Cell. Neurosci. 13, 122 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Cisternas, C. D. et al. Estradiol-dependent axogenesis and Ngn3 expression are determined by XY sex chromosome complement in hypothalamic neurons. Sci. Rep. 10, 8223 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Tekendo-Ngongang, C., Muenke, M. & Kruszka, P. in GeneReviews® (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1530/ (Univ. Washington, Seattle, 2000).

  151. Diaz, C. & Puelles, L. Developmental genes and malformations in the hypothalamus. Front. Neuroanat. 14, 607111 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Angulo, M. A., Butler, M. G. & Cataletto, M. E. Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J. Endocrinol. Invest. 38, 1249–1263 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Maillard, J. et al. Loss of Magel2 impairs the development of hypothalamic anorexigenic circuits. Hum. Mol. Genet. 25, 3208–3215 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Mercer, R. E. et al. Magel2 is required for leptin-mediated depolarization of POMC neurons in the hypothalamic arcuate nucleus in mice. PLoS Genet. 9, e1003207 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Anthwal, N. et al. Conditional deletion of neurogenin-3 using Nkx2.1iCre results in a mouse model for the central control of feeding, activity and obesity. Dis. Model. Mech. 6, 1133–1145 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  156. Moir, L. et al. Disruption of the homeodomain transcription factor orthopedia homeobox (Otp) is associated with obesity and anxiety. Mol. Metab. 6, 1419–1428 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Farooqi, I. S. Monogenic obesity syndromes provide insights into the hypothalamic regulation of appetite and associated behaviors. Biol. Psychiatry 91, 856–859 (2022).

    Article  PubMed  CAS  Google Scholar 

  158. Loos, R. J. F. & Yeo, G. S. H. The genetics of obesity: from discovery to biology. Nat. Rev. Genet. 23, 120–133 (2022).

    Article  PubMed  CAS  Google Scholar 

  159. Loid, P. et al. Rare variants in genes linked to appetite control and hypothalamic development in early-onset severe obesity. Front. Endocrinol. 11, 81 (2020).

    Article  Google Scholar 

  160. Shugart, Y. Y. et al. Two British women studies replicated the association between the Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) and BMI. Eur. J. Hum. Genet. 17, 1050–1055 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Brewer, K. M., Brewer, K. K., Richardson, N. C. & Berbari, N. F. Neuronal cilia in energy homeostasis. Front. Cell Dev. Biol. 10, 1082141 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Guo, D.-F. et al. The BBSome in POMC and AgRP neurons is necessary for body weight regulation and sorting of metabolic receptors. Diabetes 68, 1591–1603 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Guo, D.-F. et al. The BBSome controls energy homeostasis by mediating the transport of the leptin receptor to the plasma membrane. PLoS Genet. 12, e1005890 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Woo Baidal, J. A. et al. Risk factors for childhood obesity in the first 1,000 days: a systematic review. Am. J. Prev. Med. 50, 761–779 (2016).

    Article  PubMed  Google Scholar 

  165. Larqué, E. et al. From conception to infancy - early risk factors for childhood obesity. Nat. Rev. Endocrinol. 15, 456–478 (2019).

    Article  PubMed  Google Scholar 

  166. Furigo, I. C. & Dearden, L. Mechanisms mediating the impact of maternal obesity on offspring hypothalamic development and later function. Front. Endocrinol. 13, 1078955 (2022).

    Article  Google Scholar 

  167. Lemes, S. F. et al. Maternal consumption of high-fat diet in mice alters hypothalamic notch pathway, NPY cell population and food intake in offspring. Neuroscience 371, 1–15 (2018).

    Article  PubMed  CAS  Google Scholar 

  168. Dearden, L., Buller, S., Furigo, I. C., Fernandez-Twinn, D. S. & Ozanne, S. E. Maternal obesity causes fetal hypothalamic insulin resistance and disrupts development of hypothalamic feeding pathways. Mol. Metab. 42, 101079 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Bae-Gartz, I. et al. Maternal obesity alters neurotrophin-associated MAPK signaling in the hypothalamus of male mouse offspring. Front. Neurosci. 13, 962 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Gali Ramamoorthy, T., Begum, G., Harno, E. & White, A. Developmental programming of hypothalamic neuronal circuits: impact on energy balance control. Front. Neurosci. 9, 126 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Catalano, P. M., Presley, L., Minium, J. & Hauguel-de Mouzon, S. Fetuses of obese mothers develop insulin resistance in utero. Diabetes Care 32, 1076–1080 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Chandrasekaran, S. et al. Exposure to gestational diabetes mellitus prior to 26 weeks is related to the presence of mediobasal hypothalamic gliosis in children. Diabetes 71, 2552–2556 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Wataya, T. et al. Minimization of exogenous signals in ES cell culture induces rostral hypothalamic differentiation. Proc. Natl Acad. Sci. USA 105, 11796–11801 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Wang, L. et al. Differentiation of hypothalamic-like neurons from human pluripotent stem cells. J. Clin. Invest. 125, 796–808 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Wang, L. et al. PC1/3 deficiency impacts pro-opiomelanocortin processing in human embryonic stem cell-derived hypothalamic neurons. Stem Cell Reports 8, 264–277 (2017).

    Article  PubMed  CAS  Google Scholar 

  176. Merkle, F. T. et al. Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells. Development 142, 633–643 (2015).

    Article  PubMed  CAS  Google Scholar 

  177. Kano, M. et al. Tanycyte-like cells derived from mouse embryonic stem culture show hypothalamic neural stem/progenitor cell functions. Endocrinology 160, 1701–1718 (2019).

    Article  PubMed  CAS  Google Scholar 

  178. Miwata, T. et al. Generation of hypothalamic neural stem cell-like cells in vitro from human pluripotent stem cells. Stem Cell Reports 18, 869–883 (2023).

    Article  PubMed  CAS  Google Scholar 

  179. Kasai, T. et al. Hypothalamic contribution to pituitary functions is recapitulated in vitro using 3D-cultured human iPS cells. Cell Rep. 30, 18–24.e5 (2020).

    Article  PubMed  CAS  Google Scholar 

  180. Rajamani, U. et al. Super-obese patient-derived iPSc hypothalamic neurons exhibit obesogenic signatures and hormone responses. Cell Stem Cell 22, 698–712.e9 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Huang, W.-K. et al. Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells. Cell Stem Cell 28, 1657–1670.e10 (2021).

    Article  PubMed  CAS  Google Scholar 

  182. Kowalko, J. Utilizing the blind cavefish to understand the genetic basis of behavioral evolution. J. Exp. Biol. 223, jeb208835 (2020).

    Article  PubMed  Google Scholar 

  183. Kashash, Y., Smarsh, G., Zilkha, N., Yovel, Y. & Kimchi, T. Alone, in the dark: the extraordinary neuroethology of the solitary blind mole rat. eLife 11, e78295 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Wellcome Trust (212247/Z/18/Z) to M.P., the NIH (R01MH126676) to S.B. and the Lundbeckfonden grant (R361-2020-2654) to D.W.K.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the preparation of this manuscript.

Corresponding authors

Correspondence to Marysia Placzek or Seth Blackshaw.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Karine Rizzoti, Julie Chowen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Placzek, M., Chinnaiya, K., Kim, D.W. et al. Control of tuberal hypothalamic development and its implications in metabolic disorders. Nat Rev Endocrinol (2024). https://doi.org/10.1038/s41574-024-01036-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41574-024-01036-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing