Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The multifactorial effect of obesity on the effectiveness and outcomes of cancer therapies

Abstract

Epidemiology studies have demonstrated a clear association between obesity and the development of several distinct malignancies, with excessive visceral adiposity being an increasingly prevalent feature in patients with cancer presenting for therapeutic intervention. Clinical trials and meta-analyses have helped to inform effective and safe dosing of traditional systemically administered anticancer agents in adult patients with cancer and obesity, but there remains much debate not only regarding the effect of obesity on the more novel targeted molecular and immune-based therapies, but also about how obesity is best defined and measured clinically. Low muscle mass is associated with poor outcomes in cancer, and body composition studies using biochemical and imaging modalities are helping to fully delineate the importance of both obesity and sarcopenia in clinical outcomes; such studies might also go some way to explaining how obesity can paradoxically be associated with favourable clinical outcomes in certain cancers. As the cancer survivorship period increases and the duration of anticancer treatment lengthens, this Review highlights the challenges facing appropriate treatment selection and emphasizes how a multidisciplinary approach is warranted to manage weight and skeletal muscle loss during and after cancer treatment.

Key points

  • Obesity drives pathological inflammation and simultaneously disrupts ongoing antitumour immune responses.

  • Patients with overweight or obesity and low muscle mass experience more surgical complications, treatment-related toxicities, a higher risk of recurrence and cancer-specific mortality than patients with a BMI in the normal range.

  • Research into dose optimization in patients with cancer and obesity is required, focusing on how body composition and BMI can affect drug distribution, dosing and toxicities.

  • Both muscle mass and quality are important factors to consider when assessing the functional influence of sarcopenia and obesity on toxicities and outcomes following cancer treatment.

  • During cancer treatment, patients with cancer can experience unintentional muscle loss owing to factors including treatment adverse effects, changes in food taste and changes in lifestyle.

  • The interplay of obesity with sex, psychosocial and socioeconomic factors influences access to cancer screening, diagnosis and treatments, ultimately affecting outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Obesity-associated cancers, relative risk, treatment efficacy, toxicities and outcomes.
Fig. 2: Increased visceral adiposity influences tumour growth at distal sites.
Fig. 3: The BMI paradox in patients with cancer.
Fig. 4: Weight management after cancer treatment.

Similar content being viewed by others

References

  1. Lobstein, T., Brinsden, H. & Neveux, M. World Obesity Atlas 2022. World Obesity Forum https://s3-eu-west-1.amazonaws.com/wof-files/World_Obesity_Atlas_2022.pdf (2022).

  2. World Health Organization. Obesity and overweight. WHO https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (2024).

  3. Gesta, S., Tseng, Y. H. & Kahn, C. R. Developmental origin of fat: tracking obesity to its source. Cell 131 (2), 242–256 (2007).

    Article  PubMed  CAS  Google Scholar 

  4. Shuster, A. et al. The clinical importance of visceral adiposity: a critical review of methods for visceral adipose tissue analysis. Br. J. Radiol. 85 (1009), 1–10 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. van Vliet-Ostaptchouk, J. V. et al. The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: a collaborative analysis of ten large cohort studies. BMC Endocr. Disord. 14, 9 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Crewe, C., An, Y. A. & Scherer, E. The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J. Clin. Invest. 127 (1), 74–82 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Avgerinos, K. I. et al. Obesity and cancer risk: emerging biological mechanisms and perspectives. Metabolism 92, 121–135 (2019).

    Article  PubMed  CAS  Google Scholar 

  8. Lauby-Secretan, B. et al. Body fatness and cancer – viewpoint of the IARC Working Group. N. Engl. J. Med. 375 (8), 794–798 (2016). The IARC Working Group concludes that the absence of excess adiposity lowers the risk of most cancers and supports the thesis that intentional weight loss might have a cancer-preventive effect.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Marinac, C. R. et al. Body mass index throughout adulthood, physical activity, and risk of multiple myeloma: a prospective analysis in three large cohorts. Br. J. Cancer 118 (7), 1013–1019 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Prado, C. M. et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 9 (7), 629–635 (2008). This study showed that, in patients with cancer of the respiratory and gastrointestinal tracts, sarcopenic obesity is associated with poorer functional status than obesity without sarcopenia, and identified sarcopenic obesity as an independent predictor of survival.

    Article  PubMed  Google Scholar 

  11. Cabia, B. et al. A role for novel adipose tissue-secreted factors in obesity-related carcinogenesis. Obes. Rev. 17 (4), 361–376 (2016).

    Article  PubMed  CAS  Google Scholar 

  12. Maurizi, G. et al. Adipocytes properties and crosstalk with immune system in obesity-related inflammation. J. Cell Physiol. 233 (1), 88–97 (2018).

    Article  PubMed  CAS  Google Scholar 

  13. Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15 (8), 914–920 (2009).

    Article  PubMed  CAS  Google Scholar 

  14. O’Rourke, R. W. et al. Systemic NK cell ablation attenuates intra-abdominal adipose tissue macrophage infiltration in murine obesity. Obesity 22 (10), 2109–2114 (2014).

    Article  PubMed  Google Scholar 

  15. Pecht, T. et al. Peripheral blood leucocyte subclasses as potential biomarkers of adipose tissue inflammation and obesity subphenotypes in humans. Obes. Rev. 15 (4), 322–337 (2014).

    Article  PubMed  CAS  Google Scholar 

  16. Wensveen, F. M. et al. The “big bang” in obese fat: events initiating obesity-induced adipose tissue inflammation. Eur. J. Immunol. 45 (9), 2446–2456 (2015).

    Article  PubMed  CAS  Google Scholar 

  17. Conroy, M. J. et al. Parallel profiles of inflammatory and effector memory T cells in visceral fat and liver of obesity-associated cancer patients. Inflammation 39 (5), 1729–1736 (2016).

    Article  PubMed  CAS  Google Scholar 

  18. Conroy, M. J. et al. Identifying a novel role for fractalkine (CX3CL1) in memory CD8+ T cell accumulation in the omentum of obesity-associated cancer patients. Front Immunol. 9, 1867 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mylod, E. et al. The omentum in obesity-associated cancer: a hindrance to effective natural killer cell migration towards tumour which can be overcome by CX3CR1 antagonism. Cancers 14, 64 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Smit, C. et al. Obesity and drug pharmacology: a review of the influence of obesity on pharmacokinetic and pharmacodynamic parameters. Expert Opin. Drug Metab. Toxicol. 14 (3), 275–285 (2018).

    Article  PubMed  CAS  Google Scholar 

  21. European Medicines Agency. Reflection paper on investigation of pharmacokinetics and pharmacodynamics in the obese population. Citeline https://pink.citeline.com/-/media/supporting-documents/pink-sheet/2018/03/ema_24_wc500242971.pdf (2018).

  22. Food & Drug Administration. Project Optimus. FDA https://www.fda.gov/about-fda/oncology-center-excellence/project-optimus. (2024).

  23. Field, K. M. et al. Chemotherapy dosing strategies in the obese, elderly, and thin patient: results of a nationwide survey. J. Oncol. Pract. 4 (3), 108–113 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Griggs, J. J. et al. Appropriate chemotherapy dosing for obese adult patients with cancer: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 30 (13), 1553–1561 (2012).

    Article  PubMed  Google Scholar 

  25. Lyman, G. H. Impact of chemotherapy dose intensity on cancer patient outcomes. J. Natl Compr. Canc Netw. 7 (1), 99–108 (2009).

    Article  PubMed  Google Scholar 

  26. Pinkel, D. The use of body surface area as a criterion of drug dosage in cancer chemotherapy. Cancer Res. 18 (7), 853–856 (1958).

    PubMed  CAS  Google Scholar 

  27. Hunter, R. J. et al. Dosing chemotherapy in obese patients: actual versus assigned body surface area (BSA). Cancer Treat. Rev. 35 (1), 69–78 (2009).

    Article  PubMed  CAS  Google Scholar 

  28. Griggs, J. J. et al. Appropriate systemic therapy dosing for obese adult patients with cancer: ASCO guideline update. J. Clin. Oncol. 39 (18), 2037–2048 (2021). Updated ASCO guidelines on dosing for chemotherapy, targeted therapies and immunotherapies for adult patients with cancer and obesity.

    Article  PubMed  Google Scholar 

  29. Rossi, T. et al. Obesity and dose of anti-cancer therapy: are we sure to be on the right track in the precision medicine era? Front. Med. 8, 725346 (2021).

    Article  Google Scholar 

  30. Araujo, D. et al. Oncology phase I trial design and conduct: time for a change – MDICT Guidelines 2022. Ann. Oncol. 34 (1), 48–60 (2023).

    Article  PubMed  CAS  Google Scholar 

  31. Murphy, R., Halford, S. & Symeonides, S. N. Project Optimus, an FDA initiative: considerations for cancer drug development internationally, from an academic perspective. Front. Oncol. 13, 1144056 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Slawinski, C. G. V. et al. Obesity and cancer treatment outcomes: interpreting the complex evidence. Clin. Oncol. 32 (9), 591–608 (2020).

    Article  CAS  Google Scholar 

  33. Shayne, M., Harvey, R. D. & Lyman, G. H. Prophylaxis and treatment strategies for optimizing chemotherapy relative dose intensity. Expert Rev. Anticancer Ther. 21 (10), 1145–1159 (2021).

    Article  PubMed  CAS  Google Scholar 

  34. Nielson, C. M. et al. Relative dose intensity of chemotherapy and survival in patients with advanced stage solid tumor cancer: a systematic review and meta-analysis. Oncologist 26 (9), e1609–e1618 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kjeldsted, E. et al. Patient-related characteristics associated with treatment modifications and suboptimal relative dose intensity of neoadjuvant chemotherapy in patients with breast cancer – a retrospective study. Cancers 15, 2483 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Martin, A. L. et al. Impact of obesity on chemotherapy dosing of carboplatin and survival of women with ovarian cancer. Br. J. Cancer 128 (12), 2236–2242 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Liu, Y. et al. Host obesity alters the ovarian tumor immune microenvironment and impacts response to standard of care chemotherapy. J. Exp. Clin. Cancer Res. 42 (1), 165 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Garibaldi, C. et al. Recent advances in radiation oncology. Ecancermedicalscience 11, 785 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hu, M. B. et al. Obesity has multifaceted impact on biochemical recurrence of prostate cancer: a dose-response meta-analysis of 36,927 patients. Med. Oncol. 31 (2), 829 (2014).

    Article  PubMed  Google Scholar 

  40. Wang, L. S. et al. Impact of obesity on outcomes after definitive dose-escalated intensity-modulated radiotherapy for localized prostate cancer. Cancer 121 (17), 3010–3017 (2015).

    Article  PubMed  CAS  Google Scholar 

  41. Ross, K. H. et al. Obesity and cancer treatment efficacy: existing challenges and opportunities. Cancer 125 (10), 1588–1592 (2019).

    Article  PubMed  Google Scholar 

  42. Winters, E. & Poole, C. Challenges and impact of patient obesity in radiation therapy practice. Radiography 26 (3), e158–e163 (2020).

    Article  PubMed  CAS  Google Scholar 

  43. Dandapani, S. V. et al. Radiation-associated toxicities in obese women with endometrial cancer: more than just BMI? ScientificWorldJournal 2015, 483208 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hu, J. J. et al. Association between inflammatory biomarker C-reactive protein and radiotherapy-induced early adverse skin reactions in a multiracial/ethnic breast cancer population. J. Clin. Oncol. 36 (24), 2473–2482 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. McCall, N. S. et al. Onco-metabolism: defining the prognostic significance of obesity and diabetes in women with brain metastases from breast cancer. Breast Cancer Res. Treat. 172 (1), 221–230 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sabol, R. A. et al. Obesity-altered adipose stem cells promote radiation resistance of estrogen receptor positive breast cancer through paracrine signaling. Int. J. Mol. Sci. 21, 2722 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Mongan, A. M. et al. Visceral adipose tissue modulates radiosensitivity in oesophageal adenocarcinoma. Int. J. Med. Sci. 16 (4), 519–528 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hicks, D. F. et al. Impact of obesity on outcomes for patients with head and neck cancer. Oral. Oncol. 83, 11–17 (2018).

    Article  PubMed  Google Scholar 

  49. Garland, M. et al. The impact of obesity on outcomes for patients undergoing mastectomy using the ACS-NSQIP data set. Breast Cancer Res. Treat. 168 (3), 723–726 (2018).

    Article  PubMed  Google Scholar 

  50. Zhou, C. J. et al. Metabolic syndrome, as defined based on parameters including visceral fat area, predicts complications after surgery for rectal cancer. Obes. Surg. 30 (1), 319–326 (2020).

    Article  PubMed  Google Scholar 

  51. Bouwman, F. et al. The impact of BMI on surgical complications and outcomes in endometrial cancer surgery – an institutional study and systematic review of the literature. Gynecol. Oncol. 139 (2), 369–376 (2015).

    Article  PubMed  Google Scholar 

  52. Nakauchi, M. et al. Association of obesity with worse operative and oncologic outcomes for patients undergoing gastric cancer resection. Ann. Surg. Oncol. 28 (12), 7040–7050 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kamiya, H. et al. Obesity paradox as a new insight from postoperative complications in gastric cancer. Sci. Rep. 13 (1), 10116 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Bajawi, M. et al. Impact of CT-measured sarcopenic obesity on postoperative outcomes following colon cancer surgery. Langenbecks Arch. Surg. 409 (1), 42 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Juez, L. D. et al. Impact of sarcopenic obesity on long-term cancer outcomes and postoperative complications after gastrectomy for gastric cancer. J. Gastrointest. Surg. 27 (1), 35–46 (2023).

    Article  PubMed  Google Scholar 

  56. Wang et al. Sarcopenic obesity and therapeutic outcomes in gastrointestinal surgical oncology: a meta-analysis. Front. Nutr. 9, 921817 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Malone, E. R. et al. Molecular profiling for precision cancer therapies. Genome Med. 12 (1), 8 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chatelut, E. et al. Unraveling the complexity of therapeutic drug monitoring for monoclonal antibody therapies to individualize dose in oncology. Pharm. Res. Perspect. 9 (2), e00757 (2021).

    Article  CAS  Google Scholar 

  59. Erstad, B. L. & Davis, L. E. Fixed versus body-sized-based dosing of monoclonal antibodies. Ann. Pharmacother. 58 (1), 91–95 (2024).

    Article  PubMed  CAS  Google Scholar 

  60. Krasniqi, E. et al. Impact of BMI on HER2+ metastatic breast cancer patients treated with pertuzumab and/or trastuzumab emtansine. Real-world evidence. J. Cell Physiol. 235 (11), 7900–7910 (2020).

    Article  PubMed  CAS  Google Scholar 

  61. Guenancia, C. et al. Obesity as a risk factor for anthracyclines and trastuzumab cardiotoxicity in breast cancer: a systematic review and meta-analysis. J. Clin. Oncol. 34 (26), 3157–3165 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. O’Sullivan, J. et al. Obesity and gastrointestinal cancer: the interrelationship of adipose and tumour microenvironments. Nat. Rev. Gastroenterol. Hepatol. 15 (11), 699–714 (2018).

    Article  PubMed  Google Scholar 

  63. Slaughter, K. N. et al. Measurements of adiposity as clinical biomarkers for first-line bevacizumab-based chemotherapy in epithelial ovarian cancer. Gynecol. Oncol. 133 (1), 11–15 (2014).

    Article  PubMed  CAS  Google Scholar 

  64. Guiu, B. et al. Visceral fat area is an independent predictive biomarker of outcome after first-line bevacizumab-based treatment in metastatic colorectal cancer. Gut 59 (3), 341–347 (2010). This study in 120 patients with metastatic colorectal cancer who had received bevacizumab showed that higher visceral adipose tissue area is associated with time to progression and poor overall survival.

    Article  PubMed  CAS  Google Scholar 

  65. Cybulska-Stopa, B. et al. Overweight is associated with better prognosis in metastatic colorectal cancer patients treated with bevacizumab plus FOLFOX chemotherapy. Contemp. Oncol. 24 (1), 34–41 (2020).

    CAS  Google Scholar 

  66. Goetz, M. et al. MONARCH 3: abemaciclib as initial therapy for advanced breast cancer. J. Clin. Oncol. 35 (32), 3638–3646 (2017).

    Article  PubMed  CAS  Google Scholar 

  67. Franzoi, M. A. et al. Computed tomography-based analyses of baseline body composition parameters and changes in breast cancer patients under treatment with CDK 4/6 inhibitors. Breast Cancer Res. Treat. 181 (1), 199–209 (2020).

    Article  PubMed  CAS  Google Scholar 

  68. Pfeiler, G. et al. Impact of BMI in patients with early hormone receptor-positive breast cancer receiving endocrine therapy with or without palbociclib in the PALLAS trial. J. Clin. Oncol. 41, 5118–5130 (2023).

    Article  PubMed  CAS  Google Scholar 

  69. Franzoi, M. A. et al. Clinical implications of body mass index in metastatic breast cancer patients treated with abemaciclib and endocrine therapy. J. Natl Cancer Inst. 113 (4), 462–470 (2021).

    Article  PubMed  Google Scholar 

  70. Hanker, A. B., Sudhan, D. R. & Arteaga, C. L. Overcoming endocrine resistance in breast cancer. Cancer Cell 37 (4), 496–513 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Ewertz, M. et al. Effect of obesity on prognosis after early-stage breast cancer. J. Clin. Oncol. 29 (1), 25–31 (2011).

    Article  PubMed  Google Scholar 

  72. Fedele et al. BMI variation increases recurrence risk in women with early-stage breast cancer. Future Oncol. 10 (15), 2459–2468 (2014).

    Article  PubMed  CAS  Google Scholar 

  73. Barone, I. et al. Obesity and endocrine therapy resistance in breast cancer: mechanistic insights and perspectives. Obes. Rev. 23 (2), e13358 (2022).

    Article  PubMed  Google Scholar 

  74. Chetta & Zadra, G. Metabolic reprogramming as an emerging mechanism of resistance to endocrine therapies in prostate cancer. Cancer Drug Resist. 4 (1), 143–162 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Stoykova, G. E. & Schlaepfer, I. R. Lipid Metabolism and endocrine resistance in prostate cancer, and new opportunities for therapy. Int. J. Mol. Sci. 20, 2626 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Labbe, D. et al. High-fat diet fuels prostate cancer progression by rewiring the metabolome and amplifying the MYC program. Nat. Commun. 10 (1), 4358 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Vidal, A. C. et al. Obese patients with castration-resistant prostate cancer may be at a lower risk of all-cause mortality: results from the Shared Equal Access Regional Cancer Hospital (SEARCH) database. BJU Int. 122 (1), 76–82 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bernstein, L. et al. Tamoxifen therapy for breast cancer and endometrial cancer risk. J. Natl Cancer Inst. 91 (19), 1654–1662 (1999).

    Article  PubMed  CAS  Google Scholar 

  79. Sharma et al. Immune checkpoint therapy – current perspectives and future directions. Cell 186 (8), 1652–1669 (2023).

    Article  PubMed  CAS  Google Scholar 

  80. Cortellini, A. et al. A multicenter study of body mass index in cancer patients treated with anti-PD-1/PD-L1 immune checkpoint inhibitors: when overweight becomes favorable. J. Immunother. Cancer 7 (1), 57 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Yoo, S. K. et al. Outcomes among patients with or without obesity and with cancer following treatment with immune checkpoint blockade. JAMA Netw. Open 5 (2), e220448 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kichenadasse, G. et al. Association between body mass index and overall survival with immune checkpoint inhibitor therapy for advanced non-small cell lung cancer. JAMA Oncol. 6 (4), 512–518 (2020).

    Article  PubMed  Google Scholar 

  83. An, Y. et al. Association between body mass index and survival outcomes for cancer patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis. J. Transl. Med. 18 (1), 235 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ahmed, M. et al. Association between body mass index, dosing strategy, and efficacy of immune checkpoint inhibitors. J. Immunother. Cancer 9, e002349 (2021). A study in 297 patients suggests that patients with a BMI >25 kg/m2 show improved progression-free survival if weight-based dosing, rather than fixed dosing, is used for immune checkpoint inhibitor treatment.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Xu, H. et al. The prognostic role of obesity is independent of sex in cancer patients treated with immune checkpoint inhibitors: a pooled analysis of 4090 cancer patients. Int. Immunopharmacol. 74, 105745 (2019).

    Article  PubMed  CAS  Google Scholar 

  86. Trinkner et al. Survival and immunotoxicities in association with sex-specific body composition patterns of cancer patients undergoing immune-checkpoint inhibitor therapy – a systematic review and meta-analysis. Eur. J. Cancer 184, 151–171 (2023).

    Article  PubMed  CAS  Google Scholar 

  87. Roccuzzo, G. et al. Obesity and immune-checkpoint inhibitors in advanced melanoma: a meta-analysis of survival outcomes from clinical studies. Semin Cancer Biol. 91, 27–34 (2023).

    Article  PubMed  CAS  Google Scholar 

  88. Guzman-Prado, Y., Ben Shimol, J. & Samson, O. Body mass index and immune-related adverse events in patients on immune checkpoint inhibitor therapies: a systematic review and meta-analysis. Cancer Immunol. Immunother. 70 (1), 89–100 (2021).

    Article  PubMed  Google Scholar 

  89. Pollack, R. et al. Immune checkpoint inhibitor-induced thyroid dysfunction is associated with higher body mass index. J. Clin. Endocrinol. Metab. 105, dgaa458 (2020).

    Article  PubMed  Google Scholar 

  90. McQuade, J. L. et al. Association of body mass index with the safety profile of nivolumab with or without ipilimumab. JAMA Oncol. 9 (1), 102–111 (2023).

    Article  PubMed  Google Scholar 

  91. Zhang, D. et al. Association between body mass index and immune-related adverse events (irAEs) among advanced-stage cancer patients receiving immune checkpoint inhibitors: a pan-cancer analysis. Cancers 13, 6109 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Ged, Y. et al. Associations between pretreatment body composition features and clinical outcomes among patients with metastatic clear cell renal cell carcinoma treated with immune checkpoint blockade. Clin. Cancer Res. 28, 5180–5189 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Daly, L. E. et al. The impact of body composition parameters on ipilimumab toxicity and survival in patients with metastatic melanoma. Br. J. Cancer 116 (3), 310–317 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Heidelberger, V. et al. Sarcopenic overweight is associated with early acute limiting toxicity of anti-PD1 checkpoint inhibitors in melanoma patients. Invest N. Drugs 35 (4), 436–441 (2017).

    Article  Google Scholar 

  95. Hirsch, L. et al. The impact of body composition parameters on severe toxicity of nivolumab. Eur. J. Cancer 124, 170–177 (2020).

    Article  PubMed  CAS  Google Scholar 

  96. Crombe, A. et al. Impact of CT-based body composition parameters at baseline, their early changes and response in metastatic cancer patients treated with immune checkpoint inhibitors. Eur. J. Radiol. 133, 109340 (2020).

    Article  PubMed  Google Scholar 

  97. Kim, L. H. et al. A systematic review and meta-analysis of the significance of body mass index on kidney cancer outcomes. J. Urol. 205 (2), 346–355 (2021).

    Article  PubMed  Google Scholar 

  98. Shahjehan, F. et al. Body mass index and long-term outcomes in patients with colorectal cancer. Front. Oncol. 8, 620 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Simkens, L. H. et al. Influence of body mass index on outcome in advanced colorectal cancer patients receiving chemotherapy with or without targeted therapy. Eur. J. Cancer 47 (17), 2560–2567 (2011). This study showed that BMI is an independent prognostic factor for better overall survival in patients with advanced colorectal cancer receiving chemotherapy (CAIRO trial); however, no significant association between BMI and overall survival was seen in patients receiving chemotherapy plus targeted therapy in the follow-up study (CAIRO2).

    Article  PubMed  Google Scholar 

  100. Caan, B. J., Cespedes Feliciano, E. M. & Kroenke, C. H. The importance of body composition in explaining the overweight paradox in cancer-counterpoint. Cancer Res. 78 (8), 1906–1912 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Gao, Q. et al. Prevalence and prognostic value of sarcopenic obesity in patients with cancer: a systematic review and meta-analysis. Nutrition 101, 111704 (2022).

    Article  PubMed  Google Scholar 

  102. Vecchie, A. et al. Obesity phenotypes and their paradoxical association with cardiovascular diseases. Eur. J. Intern. Med. 48, 6–17 (2018).

    Article  PubMed  Google Scholar 

  103. Winn, M. et al. Metabolic obesity phenotypes and obesity-related cancer risk in the National Health and Nutrition Examination Survey. Endocrinol. Diabetes Metab. 6 (4), e433 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Bluher, M. Metabolically healthy obesity. Endocr. Rev. 41, bnaa004 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Agius, R., Pace, N. & Fava, S. Phenotyping obesity: a focus on metabolically healthy obesity and metabolically unhealthy normal weight. Diabetes Metab. Res. Rev. 40 (2), e3725 (2024).

    Article  PubMed  Google Scholar 

  106. Zheng, X. et al. The association between metabolic status and risk of cancer among patients with obesity: metabolically healthy obesity vs. metabolically unhealthy obesity. Front. Nutr. 9, 783660 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Cespedes Feliciano, E. M., Kroenke, C. H. & Caan, B. J. The obesity paradox in cancer: how important is muscle? Annu. Rev. Nutr. 38, 357–379 (2018).

    Article  PubMed  CAS  Google Scholar 

  108. Plurphanswat, N. & Rodu, B. The association of smoking and demographic characteristics on body mass index and obesity among adults in the U.S., 1999-2012. BMC Obes. 1, 18 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Chao, A. M. et al. Tobacco smoking, eating behaviors, and body weight: a review. Curr. Addict. Rep. 6, 191–199 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ezzatvar, Y. et al. Cardiorespiratory fitness and all-cause mortality in adults diagnosed with cancer systematic review and meta-analysis. Scand. J. Med. Sci. Sports 31 (9), 1745–1752 (2021).

    Article  PubMed  Google Scholar 

  111. Schmid, D. & Leitzmann, M. F. Cardiorespiratory fitness as predictor of cancer mortality: a systematic review and meta-analysis. Ann. Oncol. 26 (2), 272–278 (2015).

    Article  PubMed  CAS  Google Scholar 

  112. Kearney, N. et al. Feasibility metrics of exercise interventions during chemotherapy: a systematic review. Crit. Rev. Oncol. Hematol. 195, 104272 (2024).

    Article  PubMed  Google Scholar 

  113. Yang, L., Alice, A. & Friedenreich, C. M. Physical activity for cancer prehabilitation: a scoping review. Crit. Rev. Oncol. Hematol. 196, 104319 (2024).

    Article  PubMed  Google Scholar 

  114. Yang, L. et al. Effects of exercise on cancer treatment efficacy: a systematic review of preclinical and clinical studies. Cancer Res. 81 (19), 4889–4895 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Bullard, T. et al. A systematic review and meta-analysis of adherence to physical activity interventions among three chronic conditions: cancer, cardiovascular disease, and diabetes. BMC Public Health 19 (1), 636 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Shachar, S. S. et al. Prognostic value of sarcopenia in adults with solid tumours: a meta-analysis and systematic review. Eur. J. Cancer 57, 58–67 (2016).

    Article  PubMed  Google Scholar 

  117. Severinsen, M. C. K. & Pedersen, B. K. Muscle-organ crosstalk: the emerging roles of myokines. Endocr. Rev. 41 (4), 594–609 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Garneau, L. & Aguer, C. Role of myokines in the development of skeletal muscle insulin resistance and related metabolic defects in type 2 diabetes. Diabetes Metab. 45 (6), 505–516 (2019).

    Article  PubMed  CAS  Google Scholar 

  119. Rier, H. N. et al. The prevalence and prognostic value of low muscle mass in cancer patients: a review of the literature. Oncologist 21 (11), 1396–1409 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Martin, L. et al. Diagnostic criteria for the classification of cancer-associated weight loss. J. Clin. Oncol. 33 (1), 90–99 (2015).

    Article  PubMed  Google Scholar 

  121. Mayoral, L. et al. Obesity subtypes, related biomarkers & heterogeneity. Indian J. Med. Res. 151 (1), 11–21 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Kim, J., Han, S. H. & Kim, H. I. Detection of sarcopenic obesity and prediction of long-term survival in patients with gastric cancer using preoperative computed tomography and machine learning. J. Surg. Oncol. 124 (8), 1347–1355 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Donini, L. M. et al. Obesity or BMI paradox? Beneath the tip of the iceberg. Front. Nutr. 7, 53 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Muscaritoli, M., Molfino, A. & Rossi Fanelli, F. Muscle depletion and the prediction of chemotherapy toxicity. Intern Emerg. Med. 8 (5), 373–375 (2013).

    Article  PubMed  Google Scholar 

  125. Ryan, A. M. et al. Effects of weight loss and sarcopenia on response to chemotherapy, quality of life, and survival. Nutrition 67–68, 110539 (2019). This review shows that low muscle mass and poor muscle quality in patients with cancer are associated with low tolerance of chemotherapy, low quality of life, high risk of postoperative complications and poor survival.

    Article  PubMed  Google Scholar 

  126. Prado, C. M. et al. Sarcopenia as a determinant of chemotherapy toxicity and time to tumor progression in metastatic breast cancer patients receiving capecitabine treatment. Clin. Cancer Res. 15 (8), 2920–2926 (2009).

    Article  PubMed  CAS  Google Scholar 

  127. Ataseven, B. et al. Skeletal muscle attenuation (sarcopenia) predicts reduced overall survival in patients with advanced epithelial ovarian cancer undergoing primary debulking surgery. Ann. Surg. Oncol. 25 (11), 3372–3379 (2018).

    Article  PubMed  Google Scholar 

  128. Rier, H. N. et al. Low muscle attenuation is a prognostic factor for survival in metastatic breast cancer patients treated with first line palliative chemotherapy. Breast 31, 9–15 (2017).

    Article  PubMed  Google Scholar 

  129. Akahori, T. et al. Prognostic significance of muscle attenuation in pancreatic cancer patients treated with neoadjuvant chemoradiotherapy. World J. Surg. 39 (12), 2975–2982 (2015).

    Article  PubMed  Google Scholar 

  130. Berkel, A. E. M. et al. Patient’s skeletal muscle radiation attenuation and sarcopenic obesity are associated with postoperative morbidity after neoadjuvant chemoradiation and resection for rectal cancer. Dig. Surg. 36 (5), 376–383 (2019).

    Article  PubMed  Google Scholar 

  131. Sanda, M. G. et al. Quality of life and satisfaction with outcome among prostate-cancer survivors. N. Engl. J. Med. 358 (12), 1250–1261 (2008).

    Article  PubMed  CAS  Google Scholar 

  132. Jansen, L. et al. Quality of life among long-term (≥5 years) colorectal cancer survivors – systematic review. Eur. J. Cancer 46 (16), 2879–2888 (2010).

    Article  PubMed  CAS  Google Scholar 

  133. Zamboni, W. C. et al. Effect of obesity on the pharmacokinetics and pharmacodynamics of anticancer agents. J. Clin. Pharmacol. 63(S2), S85–S102 (2023).

    Article  PubMed  Google Scholar 

  134. Kenkhuis, M. F. et al. Increases in adipose tissue and muscle function are longitudinally associated with better quality of life in colorectal cancer survivors. Sci. Rep. 11 (1), 12440 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Tyrovolas, S. et al. Factors associated with skeletal muscle mass, sarcopenia, and sarcopenic obesity in older adults: a multi-continent study. J. Cachexia Sarcopenia Muscle 7 (3), 312–321 (2016).

    Article  PubMed  Google Scholar 

  136. Renehan, A. G., Alam, N. N. & Sperrin, M. Interaction between co-morbidities and cancer survival. Eur. J. Epidemiol. 34 (11), 1103–1105 (2019).

    Article  PubMed  CAS  Google Scholar 

  137. Atkins, J. L. & Wannamathee, S. G. Sarcopenic obesity in ageing: cardiovascular outcomes and mortality. Br. J. Nutr. 124 (10), 1102–1113 (2020).

    Article  PubMed  CAS  Google Scholar 

  138. Jurdana, M. & Cemazar, M. Sarcopenic obesity in cancer. Radiol. Oncol. 58 (1), 1–8 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Purcell, S. A. et al. Pharmacokinetics of cancer therapeutics and energy balance: the role of diet intake, energy expenditure, and body composition. J. Natl Cancer Inst. Monogr. 2023 (61), 3–11 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Ulrich, C. M. et al. Energy balance and gastrointestinal cancer: risk, interventions, outcomes and mechanisms. Nat. Rev. Gastroenterol. Hepatol. 15 (11), 683–698 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Castro-Espin, C. & Agudo, A. The role of diet in prognosis among cancer survivors: a systematic review and meta-analysis of dietary patterns and diet interventions. Nutrients 14, 348 (2022). This review shows that higher adherence to a Mediterranean diet is associated with better survival in patients with prostate and colorectal cancer, and higher diet quality is associated with reduced mortality in patients with breast cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Laviano, A. et al. Safety and tolerability of targeted medical nutrition for cachexia in non-small-cell lung cancer: a randomized, double-blind, controlled pilot trial. Nutr. Cancer 72 (3), 439–450 (2020).

    Article  PubMed  CAS  Google Scholar 

  143. Curtis, A. R. et al. Associations between dietary patterns and malnutrition, low muscle mass and sarcopenia in adults with cancer: a scoping review. Int. J. Environ. Res. Public Health 19, 1769 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Kiss, N. & Curtis, A. Current insights in nutrition assessment and intervention for malnutrition or muscle loss in people with lung cancer: a narrative review. Adv. Nutr. 13 (6), 2420–2432 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Carayol, M. et al. Short- and long-term impact of adapted physical activity and diet counseling during adjuvant breast cancer therapy: the “APAD1” randomized controlled trial. BMC Cancer 19 (1), 737 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Sandhya, L. et al. Randomized double-blind placebo-controlled study of olanzapine for chemotherapy-related anorexia in patients with locally advanced or metastatic gastric, hepatopancreaticobiliary, and lung cancer. J. Clin. Oncol. 41 (14), 2617–2627 (2023).

    Article  PubMed  CAS  Google Scholar 

  147. Aminian, A. et al. Association of bariatric surgery with cancer risk and mortality in adults with obesity. JAMA 327 (24), 2423–2433 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Schauer, D. et al. Bariatric surgery and the risk of cancer in a large multisite cohort. Ann. Surg. 269 (1), 95–101 (2019).

    Article  PubMed  Google Scholar 

  149. Sjöström, L. et al. Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial. Lancet Oncol. 10 (7), 653–662 (2009).

    Article  PubMed  Google Scholar 

  150. Jones-Corneille, L. R. et al. Axis I psychopathology in bariatric surgery candidates with and without binge eating disorder: results of structured clinical interviews. Obes. Surg. 22 (3), 389–397 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Kalarchian, M. A. et al. Psychiatric disorders among bariatric surgery candidates: relationship to obesity and functional health status. Am. J. Psychiatry 164 (2), 328–334 (2007). quiz 374.

    Article  PubMed  Google Scholar 

  152. Mitchell, J. E. et al. Psychopathology before surgery in the longitudinal assessment of bariatric surgery-3 (LABS-3) psychosocial study. Surg. Obes. Relat. Dis. 8 (5), 533–541 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Rosenberger, H., Henderson, K. E. & Grilo, C. M. Correlates of body image dissatisfaction in extremely obese female bariatric surgery candidates. Obes. Surg. 16 (10), 1331–1336 (2006).

    Article  PubMed  Google Scholar 

  154. Carpenter, K. M. et al. Relationships between obesity and DSM-IV major depressive disorder, suicide ideation, and suicide attempts: results from a general population study. Am. J. Public Health 90 (2), 251–257 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Herpertz, S. et al. Does obesity surgery improve psychosocial functioning? A systematic review. Int. J. Obes. 27 (11), 1300–1314 (2003).

    Article  CAS  Google Scholar 

  156. Rosengren, A. et al. Psychosocial factors and obesity in 17 high-, middle- and low-income countries: the Prospective Urban Rural Epidemiologic study. Int. J. Obes. 39 (8), 1217–1223 (2015).

    Article  CAS  Google Scholar 

  157. Gomez, D. et al. Impact of obesity on quality of life, psychological distress, and coping on patients with colon cancer. Oncologist 26 (5), e874–e882 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Franck, J. E. et al. The determinants of cervical cancer screening uptake in women with obesity: application of the Andersen’s behavioral model to the CONSTANCES survey. Cancer Causes Control. 31 (1), 51–62 (2020).

    Article  PubMed  Google Scholar 

  159. Leone, L. A. et al. Race moderates the relationship between obesity and colorectal cancer screening in women. Cancer Causes Control. 21 (3), 373–385 (2010).

    Article  PubMed  Google Scholar 

  160. Messina, C. R., Lane, D. S. & Anderson, J. C. Body mass index and screening for colorectal cancer: gender and attitudinal factors. Cancer Epidemiol. 36 (4), 400–408 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Tekkel, M., Veideman, T. & Rahu, M. Use of mammography, Pap test and prostate examination by body mass index during the developmental period of cancer screening in Estonia. Public Health 125 (10), 697–703 (2011).

    Article  PubMed  CAS  Google Scholar 

  162. Hashemi, S. M. et al. Prevalence of anxiety among breast cancer patients: a systematic review and meta-analysis. Breast Cancer 27 (2), 166–178 (2020).

    Article  PubMed  Google Scholar 

  163. Faller, H. et al. Symptoms of depression and anxiety as predictors of physical functioning in breast cancer patients. A prospective study using path analysis. Acta Oncol. 56 (12), 1677–1681 (2017).

    Article  PubMed  CAS  Google Scholar 

  164. Seibert, R. G. et al. National disparities in colorectal cancer screening among obese adults. Am. J. Prev. Med. 53 (2), e41–e49 (2017). This study revealed that men with obesity are less likely to adhere to colorectal cancer screening guidelines than men with normal BMI, while significantly more women with obesity, compared with those without obesity, indicate pain and embarrassment as reasons for non-adherence.

    Article  PubMed  Google Scholar 

  165. Phelan, S. M. et al. Impact of weight bias and stigma on quality of care and outcomes for patients with obesity. Obes. Rev. 16 (4), 319–326 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Nutter, S. et al. Changing the global obesity narrative to recognize and reduce weight stigma: a position statement from the World Obesity Federation. Obes. Rev. 25, e13642 (2023).

    Article  PubMed  Google Scholar 

  167. Dyck, L. et al. Suppressive effects of the obese tumor microenvironment on CD8 T cell infiltration and effector function. J. Exp. Med. 219, e20210042 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. O’Neill, L. M. et al. The RESTORE randomized controlled trial: impact of a multidisciplinary rehabilitative program on cardiorespiratory fitness in esophagogastric cancer survivorship. Ann. Surg. 268 (5), 747–755 (2018).

    Article  PubMed  Google Scholar 

  169. Dickinson, H. et al. The effect of weight in the outcomes of meningioma patients. Surg. Neurol. Int. 4, 45 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Cao, J. et al. Potential impact of body mass index on the clinical outcome of papillary thyroid cancer after high-dose radioactive iodine therapy. Front. Endocrinol. 13, 870530 (2022).

    Article  Google Scholar 

  171. Dieringer et al. Associations between body mass and papillary thyroid cancer stage and tumor size: a population-based study. J. Cancer Res. Clin. Oncol. 141 (1), 93–98 (2015).

    Article  PubMed  Google Scholar 

  172. Kim, H. J. et al. Associations between body mass index and clinico-pathological characteristics of papillary thyroid cancer. Clin. Endocrinol. 78 (1), 134–140 (2013).

    Article  Google Scholar 

  173. Incio, J. et al. Obesity-induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy. Cancer Discov. 6 (8), 852–869 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Liu, X. & Xu, J. Body mass index and waistline are predictors of survival for hepatocellular carcinoma after hepatectomy. Med. Sci. Monit. 21, 2203–2209 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Mathur, A. et al. Obesity portends increased morbidity and earlier recurrence following liver transplantation for hepatocellular carcinoma. HPB 15 (7), 504–510 (2013).

    Article  PubMed  Google Scholar 

  176. Ochiai, M. et al. Unlocking drug resistance in multiple myeloma: adipocytes as modulators of treatment response. Cancers 15, 4347 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Ren, L. et al. The obesity paradox in multiple myeloma: a report from Multiple Myeloma Research Foundation (MMRF) dataset. Cancer Med. 12 (23), 21400–21407 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Bracht, J. R. et al. The role of estrogens in the adipose tissue milieu. Ann. N. Y. Acad. Sci. 1461 (1), 127–143 (2020).

    Article  PubMed  CAS  Google Scholar 

  179. He, Y. et al. Cancer-specific survival after diagnosis in men versus women: a pan-cancer analysis. MedComm 3 (3), e145 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Lopez et al. Associations of fat and muscle mass with overall survival in men with prostate cancer: a systematic review with meta-analysis. Prostate Cancer Prostatic Dis. 25 (4), 615–626 (2022).

    Article  PubMed  Google Scholar 

  181. Ferrante, J. M. et al. Family physicians’ barriers to cancer screening in extremely obese patients. Obesity 18 (6), 1153–1159 (2010).

    Article  PubMed  Google Scholar 

  182. Franck, J. E. et al. Patterns of gynaecological check-up and their association with body mass index within the CONSTANCES cohort. J. Med. Screen 28 (1), 10–17 (2021).

    Article  PubMed  Google Scholar 

  183. Hellmann, S. S. et al. Body mass index and participation in organized mammographic screening: a prospective cohort study. BMC Cancer 15, 294 (2015). This Danish study revealed that postmenopausal women with underweight or class II or III obesity are significantly less likely to participate in mammographic screening than postmenopausal women with normal weight.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Clarke, M. A. et al. Epidemiologic evidence that excess body weight increases risk of cervical cancer by decreased detection of precancer. J. Clin. Oncol. 36 (12), 1184–1191 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Vazquez, C. E. & Cubbin, C. Socioeconomic status and childhood obesity: a review of literature from the past decade to inform intervention research. Curr. Obes. Rep. 9 (4), 562–570 (2020).

    Article  PubMed  Google Scholar 

  186. Hastert, T. A. et al. Contribution of health behaviors to the association between area-level socioeconomic status and cancer mortality. Soc. Sci. Med. 148, 52–58 (2016).

    Article  PubMed  Google Scholar 

  187. Cheng, I. et al. Contribution of the neighborhood environment and obesity to breast cancer survival: the California Breast Cancer Survivorship Consortium. Cancer Epidemiol. Biomark. Prev. 24 (8), 1282–1290 (2015).

    Article  Google Scholar 

  188. Drewnowski, A., & Specter, S. E. Poverty and obesity: the role of energy density and energy costs. Am. J. Clin. Nutr. 79 (1), 6–16 (2004).

    Article  PubMed  CAS  Google Scholar 

  189. Akinyemiju, T. et al. Life-course socioeconomic status and breast and cervical cancer screening: analysis of the WHO’s Study on Global Ageing and Adult Health (SAGE). BMJ Open 6 (11), e012753 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Bozhar, H. et al. Socio-economic inequality of utilization of cancer testing in Europe: a cross-sectional study. Prev. Med. Rep. 26, 101733 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Joanne Lysaght.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

American Cancer Society: www.cancer.org

Physical activity: www.who.int/news-room/fact-sheets/detail/physical-activity

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lysaght, J., Conroy, M.J. The multifactorial effect of obesity on the effectiveness and outcomes of cancer therapies. Nat Rev Endocrinol (2024). https://doi.org/10.1038/s41574-024-01032-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41574-024-01032-5

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer