Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advanced neurobiological tools to interrogate metabolism

Abstract

Engineered neurobiological tools for the manipulation of cellular activity, such as chemogenetics and optogenetics, have become a cornerstone of modern neuroscience research. These tools are invaluable for the interrogation of the central control of metabolism as they provide a direct means to establish a causal relationship between brain activity and biological processes at the cellular, tissue and organismal levels. The utility of these methods has grown substantially due to advances in cellular-targeting strategies, alongside improvements in the resolution and potency of such tools. Furthermore, the potential to recapitulate endogenous cellular signalling has been enriched by insights into the molecular signatures and activity dynamics of discrete brain cell types. However, each modulatory tool has a specific set of advantages and limitations; therefore, tool selection and suitability are of paramount importance to optimally interrogate the cellular and circuit-based underpinnings of metabolic outcomes within the organism. Here, we describe the key principles and uses of engineered neurobiological tools. We also highlight inspiring applications and outline critical considerations to be made when using these tools within the field of metabolism research. We contend that the appropriate application of these biotechnological advances will enable the delineation of the central circuitry regulating systemic metabolism with unprecedented potential.

Key points

  • Neurobiological tools facilitate the probing of the interaction between discrete cell populations of the brain and systemic metabolism with unprecedented potential.

  • Chemogenetic and optogenetic tools have different properties, which enables their complementary use to optimize the testing of the necessity and sufficiency of metabolic neural circuitry.

  • The relative advantages and drawbacks of chemogenetic and optogenetic tools are important considerations as they dictate the ideal experimental conditions under which these tools should be used.

  • The delineation and subsequent dissection of the complex neural circuitry underlying metabolism can leverage novel translational elements and pharmacological strategies for the treatment of metabolic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Challenges of causally relating neural activity in defined brain pathways with metabolic processes.
Fig. 2: Advanced approaches for cell-specific targeting with recombinase systems.
Fig. 3: A guide for the appropriate use of advanced neurobiological tools in metabolism research: from the acute to the chronic stage of manipulation.
Fig. 4: Integrative strategies for determining connectivity, function and activity regulation of defined circuits.

Similar content being viewed by others

References

  1. Atasoy, D. & Sternson, S. M. Chemogenetic tools for causal cellular and neuronal biology. Physiol. Rev. 98, 391–418 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Roth, B. L. DREADDs for neuroscientists. Neuron 89, 683–694 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 18, 1213–1225 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Atasoy, D., Betley, J. N., Su, H. H. & Sternson, S. M. Deconstruction of a neural circuit for hunger. Nature 488, 172–177 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fenselau, H. et al. A rapidly acting glutamatergic ARC→PVH satiety circuit postsynaptically regulated by α-MSH. Nat. Neurosci. 20, 42–51 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Krashes, M. J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424–1428 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, X. & van den Pol, A. N. Hypothalamic arcuate nucleus tyrosine hydroxylase neurons play orexigenic role in energy homeostasis. Nat. Neurosci. 19, 1341–1347 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Steculorum, S. M. et al. AgRP Neurons control systemic insulin sensitivity via myostatin expression in brown adipose tissue. Cell 165, 125–138 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Garfield, A. S. et al. A parabrachial-hypothalamic cholecystokinin neurocircuit controls counterregulatory responses to hypoglycemia. Cell Metab. 20, 1030–1037 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Flak, J. N. et al. Ventromedial hypothalamic nucleus neuronal subset regulates blood glucose independently of insulin. J. Clin. Invest. 130, 2943–2952 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Myers, M. G. Jr, Affinati, A. H., Richardson, N. & Schwartz, M. W. Central nervous system regulation of organismal energy and glucose homeostasis. Nat. Metab. 3, 737–750 (2021).

    Article  PubMed  Google Scholar 

  12. Alcantara, I. C., Tapia, A. P. M., Aponte, Y. & Krashes, M. J. Acts of appetite: neural circuits governing the appetitive, consummatory, and terminating phases of feeding. Nat. Metab. 4, 836–847 (2022).

    Article  PubMed  Google Scholar 

  13. Steuernagel, L. et al. HypoMap-a unified single-cell gene expression atlas of the murine hypothalamus. Nat. Metab. 4, 1402–1419 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schnütgen, F. et al. A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat. Biotechnol. 21, 562–565 (2003).

    Article  PubMed  Google Scholar 

  15. Atasoy, D., Aponte, Y., Su, H. H. & Sternson, S. M. A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28, 7025–7030 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Quadros, R. M. et al. Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol. 18, 92 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Miura, H., Quadros, R. M., Gurumurthy, C. B. & Ohtsuka, M. Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Nat. Protoc. 13, 195–215 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Nectow, A. R. & Nestler, E. J. Viral tools for neuroscience. Nat. Rev. Neurosci. 21, 669–681 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Madisen, L. et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat. Neurosci. 15, 793–802 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fenno, L. E. et al. Targeting cells with single vectors using multiple-feature Boolean logic. Nat. Methods 11, 763–772 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fenno, L. E. et al. Comprehensive dual- and triple-feature intersectional single-vector delivery of diverse functional payloads to cells of behaving mammals. Neuron 107, 836–853 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ludwig, M. Q. et al. A genetic map of the mouse dorsal vagal complex and its role in obesity. Nat. Metab. 3, 530–545 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Bai, L. et al. Genetic identification of vagal sensory neurons that control feeding. Cell 179, 1129–1143 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, Q. et al. Food-induced dopamine signaling in AgRP neurons promotes feeding. Cell Rep. 41, 111718 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kamm, G. B. et al. A synaptic temperature sensor for body cooling. Neuron 109, 3283–3297 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, L. et al. Delineating a serotonin 1B receptor circuit for appetite suppression in mice. J. Exp. Med. 219, e20212307 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sciolino, N. R. et al. Recombinase-dependent mouse lines for chemogenetic activation of genetically defined cell types. Cell Rep. 15, 2563–2573 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Madisen, L. et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85, 942–958 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gaziano, I. et al. Dopamine-inhibited POMCDrd2+ neurons in the ARC acutely regulate feeding and body temperature. JCI Insight 7, e162753 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Biglari, N. et al. Functionally distinct POMC-expressing neuron subpopulations in hypothalamus revealed by intersectional targeting. Nat. Neurosci. 24, 913–929 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Borgmann, D. et al. Gut-brain communication by distinct sensory neurons differently controls feeding and glucose metabolism. Cell Metab. 33, 1466–1482 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bai, L. et al. Enteroendocrine cell types that drive food reward and aversion. eLife 11, e74964 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hayashi, M. et al. Enteroendocrine cell lineages that differentially control feeding and gut motility. eLife 12, e78512 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ferrari, L. L., Ogbeide-Latario, O. E., Gompf, H. S. & Anaclet, C. Validation of DREADD agonists and administration route in a murine model of sleep enhancement. J. Neurosci. Methods 380, 109679 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vardy, E. et al. A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron 86, 936–946 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lynagh, T. & Lynch, J. W. An improved ivermectin-activated chloride channel receptor for inhibiting electrical activity in defined neuronal populations. J. Biol. Chem. 285, 14890–14897 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Magnus, C. J. et al. Ultrapotent chemogenetics for research and potential clinical applications. Science 364, eaav5282 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Magnus, C. J. et al. Chemical and genetic engineering of selective ion channel-ligand interactions. Science 333, 1292–1296 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gantz, S. C., Ortiz, M. M., Belilos, A. J. & Moussawi, K. Excitation of medium spiny neurons by ‘inhibitory’ ultrapotent chemogenetics via shifts in chloride reversal potential. eLife 10, e64241 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dodd, G. T. et al. Insulin regulates POMC neuronal plasticity to control glucose metabolism. eLife 7, e38704 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Üner, A. G. et al. Role of POMC and AgRP neuronal activities on glycaemia in mice. Sci. Rep. 9, 13068 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Duncan, A. et al. Habenular TCF7L2 links nicotine addiction to diabetes. Nature 574, 372–377 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carter, M. E., Soden, M. E., Zweifel, L. S. & Palmiter, R. D. Genetic identification of a neural circuit that suppresses appetite. Nature 503, 111–114 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ewbank, S. N. et al. Chronic Gq AgRP neurons does not cause obesity. Proc. Natl Acad. Sci. USA 117, 20874–20880 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sabatini, P. V. et al. GFRAL-expressing neurons suppress food intake via aversive pathways. Proc. Natl Acad. Sci. USA 118, e2021357118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dodd, G. T. et al. Leptin and insulin act on POMC neurons to promote the browning of white fat. Cell 160, 88–104 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Claes, M., De Groef, L. & Moons, L. The DREADDful hurdles and opportunities of the chronic chemogenetic toolbox. Cells 11, 1110 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jendryka, M. et al. Pharmacokinetic and pharmacodynamic actions of clozapine-N-oxide, clozapine, and compound 21 in DREADD-based chemogenetics in mice. Sci. Rep. 9, 4522 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kong, D. et al. GABAergic RIP-Cre neurons in the arcuate nucleus selectively regulate energy expenditure. Cell 151, 645–657 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, K. X. et al. Violet-light suppression of thermogenesis by opsin 5 hypothalamic neurons. Nature 585, 420–425 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ye, H. et al. An estrogen-sensitive hypothalamus-midbrain neural circuit controls thermogenesis and physical activity. Sci. Adv. 8, eabk0185 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nakamura, Y. et al. Prostaglandin EP3 receptor-expressing preoptic neurons bidirectionally control body temperature via tonic GABAergic signaling. Sci. Adv. 8, eadd5463 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yu, S. et al. Glutamatergic preoptic area neurons that express leptin receptors drive temperature-dependent body weight homeostasis. J. Neurosci. 36, 5034–5046 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hrvatin, S. et al. Neurons that regulate mouse torpor. Nature 583, 115–121 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Takahashi, T. M. et al. A discrete neuronal circuit induces a hibernation-like state in rodents. Nature 583, 109–114 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Nakajima, K.-i et al. Gs-coupled GPCR signalling in AgRP neurons triggers sustained increase in food intake. Nat. Commun. 7, 10268 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Durkee, C. A. et al. Gi/o protein-coupled receptors inhibit neurons but activate astrocytes and stimulate gliotransmission. Glia 67, 1076–1093 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Vaidyanathan, T. V., Collard, M., Yokoyama, S., Reitman, M. E. & Poskanzer, K. E. Cortical astrocytes independently regulate sleep depth and duration via separate GPCR pathways. eLife 10, e63329 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chai, H. et al. Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological, and functional evidence. Neuron 95, 531–549 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nagai, J. et al. Hyperactivity with disrupted attention by activation of an astrocyte synaptogenic cue. Cell 177, 1280–1292 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Van Den Herrewegen, Y. et al. Side-by-side comparison of the effects of Gq- and Gi-DREADD-mediated astrocyte modulation on intracellular calcium dynamics and synaptic plasticity in the hippocampal CA1. Mol. Brain 14, 144 (2021).

    Article  PubMed  Google Scholar 

  62. Goutaudier, R., Coizet, V., Carcenac, C. & Carnicella, S. Compound 21, a two-edged sword with both DREADD-selective and off-target outcomes in rats. PLoS One 15, e0238156 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Traut, J. et al. Effects of clozapine-N-oxide and compound 21 on sleep in laboratory mice. eLife 12, e84740 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  64. MacLaren, D. A. et al. Clozapine N-oxide administration produces behavioral effects in long-evans rats: implications for designing DREADD experiments. eNeuro 3, eneuro.0219-16.2016 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gomez, J. L. et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 357, 503–507 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wiegert, J. S., Mahn, M., Prigge, M., Printz, Y. & Yizhar, O. Silencing neurons: tools, applications, and experimental constraints. Neuron 95, 504–529 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Emiliani, V. et al. Optogenetics for light control of biological systems. Nat. Rev. Methods Prim. 2, 55 (2022).

    Article  CAS  Google Scholar 

  68. Stujenske, J. M., Spellman, T. & Gordon, J. A. Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics. Cell Rep. 12, 525–534 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen, Y., Lin, Y. C., Zimmerman, C. A., Essner, R. A. & Knight, Z. A. Hunger neurons drive feeding through a sustained, positive reinforcement signal. eLife 5, e18640 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chen, Y. et al. Sustained NPY signaling enables AgRP neurons to drive feeding. eLife 8, e46348 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zhang, X. & van den Pol, A. N. Rapid binge-like eating and body weight gain driven by zona incerta GABA neuron activation. Science 356, 853–859 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kwon, E. et al. Optogenetic stimulation of the liver-projecting melanocortinergic pathway promotes hepatic glucose production. Nat. Commun. 11, 6295 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Meek, T. H. et al. Functional identification of a neurocircuit regulating blood glucose. Proc. Natl Acad. Sci. USA 113, E2073–E2082 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Garfield, A. S. et al. A neural basis for melanocortin-4 receptor-regulated appetite. Nat. Neurosci. 18, 863–871 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jennings, J. H., Rizzi, G., Stamatakis, A. M., Ung, R. L. & Stuber, G. D. The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science 341, 1517–1521 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. D’Agostino, G. et al. Appetite controlled by a cholecystokinin nucleus of the solitary tract to hypothalamus neurocircuit. eLife 5, e12225 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Gong, R., Xu, S., Hermundstad, A., Yu, Y. & Sternson, S. M. Hindbrain double-negative feedback mediates palatability-guided food and water consumption. Cell 182, 1589–1605 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Sciolino, N. R. et al. Natural locus coeruleus dynamics during feeding. Sci. Adv. 8, eabn9134 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chen, Y., Lin, Y.-C., Kuo, T.-W. & Knight, Z. A. Sensory detection of food rapidly modulates arcuate feeding circuits. Cell 160, 829–841 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Betley, J. N. et al. Neurons for hunger and thirst transmit a negative-valence teaching signal. Nature 521, 180–185 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mandelblat-Cerf, Y. et al. Arcuate hypothalamic AgRP and putative POMC neurons show opposite changes in spiking across multiple timescales. eLife 4, e07122 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zhao, Z.-D. et al. A hypothalamic circuit that controls body temperature. Proc. Natl Acad. Sci. USA 114, 2042–2047 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kataoka, N., Shima, Y., Nakajima, K. & Nakamura, K. A central master driver of psychosocial stress responses in the rat. Science 367, 1105–1112 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Kim, W. S. et al. Organ-specific, multimodal, wireless optoelectronics for high-throughput phenotyping of peripheral neural pathways. Nat. Commun. 12, 157 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang, Y. et al. Wireless multilateral devices for optogenetic studies of individual and social behaviors. Nat. Neurosci. 24, 1035–1045 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tajima, K. et al. Wireless optogenetics protects against obesity via stimulation of non-canonical fat thermogenesis. Nat. Commun. 11, 1730 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Stuber, G. D. et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475, 377–380 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Stachniak, T. J., Ghosh, A. & Sternson, S. M. Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus→midbrain pathway for feeding behavior. Neuron 82, 797–808 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Raimondo, J. V., Kay, L., Ellender, T. J. & Akerman, C. J. Optogenetic silencing strategies differ in their effects on inhibitory synaptic transmission. Nat. Neurosci. 15, 1102–1104 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mahn, M., Prigge, M., Ron, S., Levy, R. & Yizhar, O. Biophysical constraints of optogenetic inhibition at presynaptic terminals. Nat. Neurosci. 19, 554–556 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Copits, B. A. et al. A photoswitchable GPCR-based opsin for presynaptic inhibition. Neuron 109, 1791–1809 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mahn, M. et al. Efficient optogenetic silencing of neurotransmitter release with a mosquito rhodopsin. Neuron 109, 1621–1635 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Owen, S. F., Liu, M. H. & Kreitzer, A. C. Thermal constraints on in vivo optogenetic manipulations. Nat. Neurosci. 22, 1061–1065 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Reinoß, P. et al. Hypothalamic Pomc neurons innervate the spinal cord and modulate the excitability of premotor circuits. Curr. Biol. 30, 4579–4593 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Grzelka, K. et al. A synaptic amplifier of hunger for regaining body weight in the hypothalamus. Cell Metab. 35, 770–785 (2023).

    Article  CAS  PubMed  Google Scholar 

  96. Mahn, M. et al. High-efficiency optogenetic silencing with soma-targeted anion-conducting channelrhodopsins. Nat. Commun9, 4125 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Feketa, V. V., Nikolaev, Y. A., Merriman, D. K., Bagriantsev, S. N. & Gracheva, E. O. CNGA3 acts as a cold sensor in hypothalamic neurons. eLife 9, e55370 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Jeong, J. H. et al. Activation of temperature-sensitive TRPV1-like receptors in ARC POMC neurons reduces food intake. PLoS Biol. 16, e2004399 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Zhou, Q. et al. Hypothalamic warm-sensitive neurons require TRPC4 channel for detecting internal warmth and regulating body temperature in mice. Neuron 111, 387–404 (2023).

    Article  CAS  PubMed  Google Scholar 

  100. Yang, Y. et al. Induction of a torpor-like hypothermic and hypometabolic state in rodents by ultrasound. Nat. Metab. 5, 789–803 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cheng, W. et al. NTS Prlh overcomes orexigenic stimuli and ameliorates dietary and genetic forms of obesity. Nat. Commun. 12, 5175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim, J. C. et al. Linking genetically defined neurons to behavior through a broadly applicable silencing allele. Neuron 63, 305–315 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Slezak, M. et al. Relevance of exocytotic glutamate release from retinal glia. Neuron 74, 504–516 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Yang, C. F. et al. Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell 153, 896–909 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Buch, T. et al. A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat. Methods 2, 419–426 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Zhan, C. et al. Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J. Neurosci. 33, 3624–3632 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Li, M. M. et al. The paraventricular hypothalamus regulates satiety and prevents obesity via two genetically distinct circuits. Neuron 102, 653–667 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Campos, C. A. et al. Cancer-induced anorexia and malaise are mediated by CGRP neurons in the parabrachial nucleus. Nat. Neurosci. 20, 934–942 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Li, H. et al. The melanocortin action is biased toward protection from weight loss in mice. Nat. Commun. 14, 2200 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhu, C. et al. Profound and redundant functions of arcuate neurons in obesity development. Nat. Metab. 2, 763–774 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10, 663–668 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Krashes, M. J. et al. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature 507, 238–242 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Garfield, A. S. et al. Dynamic GABAergic afferent modulation of AgRP neurons. Nat. Neurosci. 19, 1628–1635 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hanno, Y., Nakahira, M., Jishage, K.-I., Noda, T. & Yoshihara, Y. Tracking mouse visual pathways with WGA transgene. Eur. J. Neurosci. 18, 2910–2914 (2003).

    Article  PubMed  Google Scholar 

  115. He, Y. et al. 5-HT recruits distinct neurocircuits to inhibit hunger-driven and non-hunger-driven feeding. Mol. Psychiatry 26, 7211–7224 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang, C. et al. AgRP neurons trigger long-term potentiation and facilitate food seeking. Transl. Psychiatry 11, 11 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Li, Y. et al. TLR4 in POMC neurons regulates thermogenesis in a sex-dependent manner. J. Lipid Res. 64, 100368 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Alhadeff, A. L. et al. A neural circuit for the suppression of pain by a competing need state. Cell 173, 140–152 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Berrios, J. et al. Food cue regulation of AGRP hunger neurons guides learning. Nature 595, 695–700 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Xu, L. et al. An H2R-dependent medial septum histaminergic circuit mediates feeding behavior. Curr. Biol. 32, 1937–1948 (2022).

    Article  CAS  PubMed  Google Scholar 

  122. Kennedy, A. et al. Stimulus-specific hypothalamic encoding of a persistent defensive state. Nature 586, 730–734 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Berndt, A. et al. High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc. Natl Acad. Sci. USA 108, 7595–7600 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Murakoshi, H. et al. Kinetics of endogenous CaMKII required for synaptic plasticity revealed by optogenetic kinase inhibitor. Neuron 94, 37–47 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Anderson, K. A. et al. Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab. 7, 377–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Gruber, T. et al. Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metab. 33, 1155–1170 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Porniece Kumar, M. et al. Insulin signalling in tanycytes gates hypothalamic insulin uptake and regulation of AgRP neuron activity. Nat. Metab. 3, 1662–1679 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wiedemann, S. J. et al. The cephalic phase of insulin release is modulated by IL-1β. Cell Metab. 34, 991–1003 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Herrera Moro Chao, D. et al. Hypothalamic astrocytes control systemic glucose metabolism and energy balance. Cell Metab. 34, 1532–1547 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Könner, A. C. et al. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 5, 438–449 (2007).

    Article  PubMed  Google Scholar 

  131. Chen, W. et al. Nutrient-sensing AgRP neurons relay control of liver autophagy during energy deprivation. Cell Metab. 35, 786–806 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wu, Z., Lin, D. & Li, Y. Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators. Nat. Rev. Neurosci. 23, 257–274 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Zeng, W. et al. Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell 163, 84–94 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Buchanan, K. L. et al. The preference for sugar over sweetener depends on a gut sensor cell. Nat. Neurosci. 25, 191–200 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kaelberer, M. M. et al. A gut-brain neural circuit for nutrient sensory transduction. Science 361, eaat5236 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Dutton, A. & Dyball, R. E. Phasic firing enhances vasopressin release from the rat neurohypophysis. J. Physiol. 290, 433–440 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cazalis, M., Dayanithi, G. & Nordmann, J. J. The role of patterned burst and interburst interval on the excitation-coupling mechanism in the isolated rat neural lobe. J. Physiol. 369, 45–60 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Schöne, C., Apergis-Schoute, J., Sakurai, T., Adamantidis, A. & Burdakov, D. Coreleased orexin and glutamate evoke nonredundant spike outputs and computations in histamine neurons. Cell Rep. 7, 697–704 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Liu, J. J., Tsien, R. W. & Pang, Z. P. Hypothalamic melanin-concentrating hormone regulates hippocampus-dorsolateral septum activity. Nat. Neurosci. 25, 61–71 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jang, H. J. et al. Distinct roles of parvalbumin and somatostatin interneurons in gating the synchronization of spike times in the neocortex. Sci. Adv. 6, eaay5333 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yoshida, K. et al. Opposing ventral striatal medium spiny neuron activities shaped by striatal parvalbumin-expressing interneurons during goal-directed behaviors. Cell Rep. 31, 107829 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Marielle Minère, Thomas Wunderlich and Sophie Steculorum (Max Planck Institute for Metabolism Research) for helpful discussions and comments on the manuscript. H.F. has received funding from the European Research Council (ERC) under the European Union Horizon 2020 Research and Innovation Programme (grant agreement ID 851778), research funds through collaboration agreements with Novo Nordisk (Denmark), and funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation; grant IDs 409551513 and 505389599) and within the Excellence Initiative by German Federal and State Governments (CECAD).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Henning Fenselau.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Michael Krashes, Kazuhiro Nakamura and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Optogenetics: https://web.stanford.edu/group/dlab/cgi-bin/graph/chart.php

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirabella, P.N., Fenselau, H. Advanced neurobiological tools to interrogate metabolism. Nat Rev Endocrinol 19, 639–654 (2023). https://doi.org/10.1038/s41574-023-00885-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-023-00885-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing