Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer-related accelerated ageing and biobehavioural modifiers: a framework for research and clinical care

Abstract

A growing body of evidence indicates that patients with cancer who receive cytotoxic treatments (such as chemotherapy or radiotherapy) have an increased risk of accelerated physical and cognitive ageing. Furthermore, accelerated biological ageing is a suspected driving force behind many of these observed effects. In this Review, we describe the mechanisms of biological ageing and how they apply to patients with cancer. We highlight the important role of specific behavioural factors, namely stress, sleep and lifestyle-related factors such as physical activity, weight management, diet and substance use, in the accelerated ageing of patients with cancer and cancer survivors. We also present a framework of how modifiable behaviours could operate to either increase the risk of accelerated ageing, provide protection, or promote resilience at both the biological level and in terms of patient-reported outcomes.

Key points

  • Cancer and its treatments are thought to promote accelerated biological ageing, leading to adverse cognitive, behavioural and functional outcomes in cancer survivors.

  • Modifiable host-specific factors are known to affect ageing biology in individuals without cancer, including psychosocial stress, poor sleep, physical inactivity, obesity, and tobacco and alcohol use.

  • Behavioural interventions and/or modifications targeting these host factors might directly alter biological ageing processes in patients with cancer and cancer survivors, thereby improving both healthspan and lifespan.

  • We propose that these host factors be considered in models of cancer-related age acceleration and that interventions designed to reduce stress, improve sleep health, increase physical activity, manage weight, and/or reduce alcohol and tobacco use be investigated as promising approaches to address accelerated ageing in this context.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Model of biobehavioural modifiers of cancer-related accelerated ageing.
Fig. 2: Neuroendocrine-mediated pathways driving biological ageing following activation of the stress response.
Fig. 3: Interventions proposed to inhibit the effects of cancer treatments on biological ageing and to modify long-term physical and cognitive health.

Similar content being viewed by others

References

  1. Guida, J. L. et al. Measuring aging and identifying aging phenotypes in cancer survivors. J. Natl Cancer Inst. 111, 1245–1254 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Henderson, T. O., Ness, K. K. & Cohen, H. J. Accelerated aging among cancer survivors: from pediatrics to geriatrics. Am. Soc. Clin. Oncol. Educ. B. 34, e423–e430 (2014).

    Google Scholar 

  3. Maccormick, R. E. Possible acceleration of aging by adjuvant chemotherapy: a cause of early onset frailty? Med. Hypotheses 67, 212–215 (2006).

    CAS  PubMed  Google Scholar 

  4. Bluethmann, S. M., Mariotto, A. B. & Rowland, J. H. Anticipating the “Silver Tsunami”: prevalence trajectories and comorbidity burden among older cancer survivors in the United States. Cancer Epidemiol. Biomark. Prev. 25, 1029–1036 (2016).

    Google Scholar 

  5. Wood, W. A. et al. Chemotherapy and stem cell transplantation increase p16INK4a expression, a biomarker of T-cell aging. EBioMedicine 11, 227–238 (2016).

    PubMed  PubMed Central  Google Scholar 

  6. Ness, K. K. et al. Frailty in childhood cancer survivors. Cancer 121, 1540–1547 (2015).

    PubMed  Google Scholar 

  7. Ness, K. K. et al. Physiologic frailty as a sign of accelerated aging among adult survivors of childhood cancer: a report from the St Jude lifetime cohort study. J. Clin. Oncol. 31, 4496–4503 (2013).

    PubMed  PubMed Central  Google Scholar 

  8. Mandelblatt, J. S. et al. Cognitive effects of cancer and its treatments at the intersection of aging: what do we know; what do we need to know? Semin. Oncol. 40, 709–725 (2013).

    PubMed  Google Scholar 

  9. Cupit-Link, M. C. et al. Biology of premature ageing in survivors of cancer. ESMO Open 2, e000250 (2017).

    PubMed  PubMed Central  Google Scholar 

  10. Goedendorp, M. M. et al. Prolonged impact of chemotherapy on fatigue in breast cancer survivors: a longitudinal comparison with radiotherapy-treated breast cancer survivors and noncancer controls. Cancer 118, 3833–3841 (2012).

    PubMed  Google Scholar 

  11. Janelsins, M. C. et al. Cognitive complaints in survivors of breast cancer after chemotherapy compared with age-matched controls: an analysis from a nationwide, multicenter, prospective longitudinal study. J. Clin. Oncol. 35, 506–514 (2017).

    PubMed  Google Scholar 

  12. Bower, J. E. et al. Fatigue in long-term breast carcinoma survivors. Cancer 106, 751–758 (2006).

    PubMed  Google Scholar 

  13. Ganz, P. A. et al. Quality of life in long-term, disease-free survivors of breast cancer: a follow-up study. J. Natl Cancer Inst. 94, 39–49 (2002).

    PubMed  Google Scholar 

  14. Ganz, P. A., Rowland, J. H., Meyerowitz, B. E. & Desmond, K. A. Impact of different adjuvant therapy strategies on quality of life in breast cancer survivors. Recent Results Cancer Res. 152, 396–411 (1998).

    CAS  PubMed  Google Scholar 

  15. Ahles, T. A., Root, J. C. & Ryan, E. L. Cancer- and cancer treatment-associated cognitive change: an update on the state of the science. J. Clin. Oncol. 30, 3675–3686 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sehl, M. E. & Ganz, P. A. Potential mechanisms of age acceleration caused by estrogen deprivation: do endocrine therapies carry the same risks? JNCI Cancer Spectr. 2, pky035 (2018).

    PubMed  PubMed Central  Google Scholar 

  17. Khan, S. S., Singer, B. D. & Vaughan, D. E. Molecular and physiological manifestations and measurement of aging in humans. Aging Cell 16, 624–633 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Taffett G. E. in Geriatric Medicine: An Evidence-Based Approach, 4th ed. (ed. Cassel C. K.) 27–35 (Springer Science & Business Media, 2003).

  19. Cabeza R., Nyberg L., Park D. C. Cognitive Neuroscience of Aging: Linking Cognitive and Cerebral Aging (Oxford Scholarship Online, 2009). https://doi.org/10.1093/acprof:oso/9780195156744.001.0001

  20. Searle, S. D., Mitnitski, A., Gahbauer, E. A., Gill, T. M. & Rockwood, K. A standard procedure for creating a frailty index. BMC Geriatr. 8, 24 (2008).

    PubMed  PubMed Central  Google Scholar 

  21. Fried, L. P. et al. Frailty in older adults: evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 56, M146–M156 (2001).

    CAS  PubMed  Google Scholar 

  22. Ganz, P. A. et al. Cognitive complaints after breast cancer treatments: examining the relationship with neuropsychological test performance. J. Natl Cancer Inst. 105, 791–801 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bower, J. E. & Ganz, P. A. Symptoms: fatigue and cognitive dysfunction. Adv. Exp. Med. Biol. 862, 53–75 (2015).

    PubMed  Google Scholar 

  24. Stanton, A. L., Rowland, J. H. & Ganz, P. A. Life after diagnosis and treatment of cancer in adulthood: contributions from psychosocial oncology research. Am. Psychol. 70, 159–174 (2015).

    PubMed  Google Scholar 

  25. Chopra, I. & Kamal, K. M. A systematic review of quality of life instruments in long-term breast cancer survivors. Health Qual. Life Outcomes 10, 14 (2012).

    PubMed  PubMed Central  Google Scholar 

  26. Howard-Anderson, J., Ganz, P. A., Bower, J. E. & Stanton, A. L. Quality of life, fertility concerns, and behavioral health outcomes in younger breast cancer survivors: a systematic review. J. Natl Cancer Inst. 104, 386–405 (2012).

    PubMed  Google Scholar 

  27. Ahles, T. A. & Root, J. C. Cognitive effects of cancer and cancer treatments. Annu. Rev. Clin. Psychol. 14, 425–451 (2018).

    PubMed  PubMed Central  Google Scholar 

  28. Bernstein, L. J., McCreath, G. A., Komeylian, Z. & Rich, J. B. Cognitive impairment in breast cancer survivors treated with chemotherapy depends on control group type and cognitive domains assessed: a multilevel meta-analysis. Neurosci. Biobehav. Rev. 83, 417–428 (2017).

    PubMed  Google Scholar 

  29. Janelsins, M. C. et al. An update on cancer- and chemotherapy-related cognitive dysfunction: current status. Semin. Oncol. 38, 431–438 (2011).

    PubMed  PubMed Central  Google Scholar 

  30. Lim, A. S. P. et al. Modification of the relationship of the apolipoprotein E ε4 allele to the risk of Alzheimer disease and neurofibrillary tangle density by sleep. JAMA Neurol. 70, 1544 (2013).

    PubMed  Google Scholar 

  31. Petrick, J. L. et al. Functional status declines among cancer survivors: trajectory and contributing factors. J. Geriatr. Oncol. 5, 359–367 (2014).

    PubMed  PubMed Central  Google Scholar 

  32. Sehl, M., Lu, X., Silliman, R. & Ganz, P. A. Decline in physical functioning in first 2 years after breast cancer diagnosis predicts 10-year survival in older women. J. Cancer Surviv. 7, 20–31 (2013).

    PubMed  Google Scholar 

  33. Arora, M. et al. Longitudinal trajectory of frailty in blood or marrow transplant survivors: report from the blood or marrow transplant survivor study. Cancer 127, 794–800 (2020).

    PubMed  Google Scholar 

  34. Baker, K. S., Armenian, S. & Bhatia, S. Long-term consequences of hematopoietic stem cell transplantation: current state of the science. Biol. Blood Marrow Transpl. 16 (Suppl. 1), S90–S96 (2010).

    Google Scholar 

  35. Oeffinger, K. C. et al. Chronic health conditions in adult survivors of childhood cancer. N. Engl. J. Med. 355, 1572–1582 (2006).

    CAS  PubMed  Google Scholar 

  36. Armenian, S. H. et al. Long-term health-related outcomes in survivors of childhood cancer treated with HSCT versus conventional therapy: a report from the Bone Marrow Transplant Survivor Study (BMTSS) and Childhood Cancer Survivor Study (CCSS). Blood 118, 1413–1420 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ness, K. K. et al. Progression of frailty in young adult survivors of childhood cancer: St. Jude Lifetime Cohort. J. Clin. Oncol. 37, 10057–10057 (2019).

    Google Scholar 

  38. Bennett, J. A., Winters-Stone, K. M., Dobek, J. & Nail, L. M. Frailty in older breast cancer survivors: age, prevalence, and associated factors. Oncol. Nurs. Forum 40, E126–E134 (2013).

    PubMed  PubMed Central  Google Scholar 

  39. Arora, M. et al. Physiologic frailty in nonelderly hematopoietic cell transplantation patients. JAMA Oncol. 2, 1277 (2016).

    PubMed  PubMed Central  Google Scholar 

  40. Liu, S. & Kurzrock, R. Toxicity of targeted therapy: implications for response and impact of genetic polymorphisms. Cancer Treat. Rev. 40, 883–891 (2014).

    CAS  PubMed  Google Scholar 

  41. Totzeck, M., Schuler, M., Stuschke, M., Heusch, G. & Rassaf, T. Cardio-oncology - strategies for management of cancer-therapy related cardiovascular disease. Int. J. Cardiol. 280, 163–175 (2019).

    PubMed  Google Scholar 

  42. Escalante, C. P. et al. Meta-analysis of cardiovascular toxicity risks in cancer patients on selected targeted agents. Support. Care Cancer 24, 4057–4074 (2016).

    CAS  PubMed  Google Scholar 

  43. Joly, F., Castel, H., Tron, L., Lange, M. & Vardy, J. Potential effect of immunotherapy agents on cognitive function in cancer patients. J. Natl Cancer Inst. 112, 123–127 (2020).

    PubMed  Google Scholar 

  44. Cuzzubbo, S. et al. Neurological adverse events associated with immune checkpoint inhibitors: review of the literature. Eur. J. Cancer 73, 1–8 (2017).

    CAS  PubMed  Google Scholar 

  45. Weber, J. S., Yang, J. C., Atkins, M. B. & Disis, M. L. Toxicities of immunotherapy for the practitioner. J. Clin. Oncol. 33, 2092–2099 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    PubMed  PubMed Central  Google Scholar 

  47. Kennedy, B. K. et al. Geroscience: linking aging to chronic disease. Cell 159, 709–713 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522 (2005).

    CAS  PubMed  Google Scholar 

  49. Franceschi, C. & Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 69 (Suppl. 1), S4–S9 (2014).

    PubMed  Google Scholar 

  50. Salminen, A., Kauppinen, A. & Kaarniranta, K. Emerging role of NF-kB signaling in the induction of senescence-associated secretory phenotype (SASP). Cell Signal. 24, 835–845 (2012).

    CAS  PubMed  Google Scholar 

  51. Campisi, J. & d’Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8, 729–740 (2007).

    CAS  PubMed  Google Scholar 

  52. Coppé, J.-P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008).

    PubMed  Google Scholar 

  53. Freund, A., Orjalo, A. V., Desprez, P.-Y. & Campisi, J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol. Med. 16, 238–246 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Erusalimsky, J. D. Vascular endothelial senescence: from mechanisms to pathophysiology. J. Appl. Physiol. 106, 326–332 (2009).

    CAS  PubMed  Google Scholar 

  55. Effros, R. B. The role of CD8 T cell replicative senescence in human aging. Discov. Med. 5, 293–297 (2005).

    PubMed  Google Scholar 

  56. Coppé, J.-P., Desprez, P.-Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    PubMed  PubMed Central  Google Scholar 

  57. Yu, E. P. K. & Bennett, M. R. Mitochondrial DNA damage and atherosclerosis. Trends Endocrinol. Metab. 25, 481–487 (2014).

    CAS  PubMed  Google Scholar 

  58. Maassen, J. A. et al. Mitochondrial diabetes: molecular mechanisms and clinical presentation. Diabetes 53 (Suppl. 1), S103–S109 (2004).

    CAS  PubMed  Google Scholar 

  59. Sahin, E. & Depinho, R. A. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464, 520–528 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Vasto, S. et al. Inflammation, ageing and cancer. Mech Ageing Dev. 130, 40–45 (2009).

    CAS  PubMed  Google Scholar 

  61. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kirkland, J. L., Tchkonia, T., Zhu, Y., Niedernhofer, L. J. & Robbins, P. D. The clinical potential of senolytic drugs. J. Am. Geriatr. Soc. 65, 2297–2301 (2017).

    PubMed  PubMed Central  Google Scholar 

  63. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Palmer, A. K. et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell 25, e12950 (2019).

    Google Scholar 

  65. Demaria, M. et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 7, 165–176 (2017).

    CAS  PubMed  Google Scholar 

  66. Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2015).

    PubMed  PubMed Central  Google Scholar 

  67. Elder, S. S. & Emmerson, E. Senescent cells and macrophages: key players for regeneration? Open Biol. 10, 200309 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Da Silva-Álvarez, S. et al. Cell senescence contributes to tissue regeneration in zebrafish. Aging Cell 19, e13052 (2020).

    PubMed  Google Scholar 

  69. Grosse, L. et al. Defined p16High senescent cell types are indispensable for mouse healthspan. Cell Metab. 32, 87–99.e6 (2020).

    CAS  PubMed  Google Scholar 

  70. Kim, J. H., Jenrow, K. A. & Brown, S. L. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials. Radiat. Oncol. J. 32, 103–115 (2014).

    PubMed  PubMed Central  Google Scholar 

  71. Conroy, S. K. et al. Alterations in brain structure and function in breast cancer survivors: effect of post-chemotherapy interval and relation to oxidative DNA damage. Breast Cancer Res. Treat. 137, 493–502 (2013).

    CAS  PubMed  Google Scholar 

  72. Ermolaeva, M. A. et al. DNA damage in germ cells induces an innate immune response that triggers systemic stress resistance. Nature 501, 416–420 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sanoff, H. K. et al. Effect of cytotoxic chemotherapy on markers of molecular age in patients with breast cancer. J. Natl Cancer Inst. 106, dju057 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. Shachar, S. S. et al. Effects of breast cancer adjuvant chemotherapy regimens on expression of the aging biomarker, p16INK4a. JNCI Cancer Spectr. 4, pkaa082 (2020).

    PubMed  PubMed Central  Google Scholar 

  75. Sehl, M. E., Carroll, J. E., Horvath, S. & Bower, J. E. The acute effects of adjuvant radiation and chemotherapy on peripheral blood epigenetic age in early stage breast cancer patients. NPJ Breast Cancer 6, 23 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Scuric, Z. et al. Biomarkers of aging associated with past treatments in breast cancer survivors. NPJ Breast Cancer 3, 50 (2017).

    PubMed  PubMed Central  Google Scholar 

  77. Xiao, C. et al. Association of epigenetic age acceleration with risk factors, survival, and quality of life in patients with head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 111, 157–167 (2021).

    PubMed  Google Scholar 

  78. National Cancer Institute. Targeted Cancer Therapies Fact Sheet - National Cancer Institute https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies/targeted-therapies-fact-sheet (2020).

  79. Bower, J. E. The role of neuro-immune interactions in cancer-related fatigue: biobehavioral risk factors and mechanisms. Cancer 125, 353–364 (2019).

    PubMed  Google Scholar 

  80. de Moor, J. S. et al. Cancer survivors in the United States: prevalence across the survivorship trajectory and implications for care. Cancer Epidemiol. Biomark. Prev. 22, 561–570 (2013).

    Google Scholar 

  81. Mandelblatt, J. S. et al. Cancer-related cognitive outcomes among older breast cancer survivors in the thinking and living with cancer study. J. Clin. Oncol. 3, JCO1800140 (2018).

    Google Scholar 

  82. Bevans, M. et al. National Institutes of Health hematopoietic cell transplantation late effects initiative: the patient-centered outcomes working group report. Biol. Blood Marrow Transpl. 23, 538–551 (2017).

    Google Scholar 

  83. Jim, H. S. L. et al. Meta-analysis of cognitive functioning in breast cancer survivors previously treated with standard-dose chemotherapy. J. Clin. Oncol. 30, 3578–3587 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. McDougall, G. J., Oliver, J. S. & Scogin, F. Memory and cancer: a review of the literature. Arch. Psychiatr. Nurs. 28, 180–186 (2014).

    PubMed  PubMed Central  Google Scholar 

  85. Epel, E. S. & Lithgow, G. J. Stress biology and aging mechanisms: toward understanding the deep connection between adaptation to stress and longevity. J. Gerontol. A Biol. Sci. Med. Sci. 69 (Suppl. 1), S10–S16 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Rentscher, K. E., Carroll, J. E. & Mitchell, C. Psychosocial stressors and telomere length: a current review of the science. Annu. Rev. Public Health 41, 223–245 (2020).

    PubMed  Google Scholar 

  87. Entringer, S., de Punder, K., Buss, C. & Wadhwa, P. D. The fetal programming of telomere biology hypothesis: an update. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170151 (2018).

    Google Scholar 

  88. Carroll, J. E. et al. Epigenetic aging and immune senescence in women with insomnia symptoms: findings from the Women’s Health Initiative study. Biol. Psychiatry 81, 136–144 (2017).

    PubMed  Google Scholar 

  89. Carroll, J. E. et al. Partial sleep deprivation activates the DNA damage response (DDR) and the senescence-associated secretory phenotype (SASP) in aged adult humans. Brain Behav. Immun. 51, 223–229 (2016).

    CAS  PubMed  Google Scholar 

  90. Carreras, A. et al. Chronic sleep fragmentation induces endothelial dysfunction and structural vascular changes in mice. Sleep 37, 1817–1824 (2014).

    PubMed  PubMed Central  Google Scholar 

  91. Schafer, M. J. et al. Exercise prevents diet-induced cellular senescence in adipose tissue. Diabetes 65, 1606–1615 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Quach, A. et al. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging 9, 419–446 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Rebelo-Marques, A. et al. Aging hallmarks: the benefits of physical exercise. Front. Endocrinol. 9, 258 (2018).

    Google Scholar 

  94. Miller, A. H., Ancoli-Israel, S., Bower, J. E., Capuron, L. & Irwin, M. R. Neuroendocrine-immune mechanisms of behavioral comorbidities in patients with cancer. J. Clin. Oncol. 26, 971–982 (2008).

    CAS  PubMed  Google Scholar 

  95. Bower, J. E. Cancer-related fatigue–mechanisms, risk factors, and treatments. Nat. Rev. Clin. Oncol. 11, 597–609 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bower, J. E. et al. Fatigue after breast cancer treatment: biobehavioral predictors of fatigue trajectories. Health Psychol. 37, 1025–1034 (2018).

    PubMed  PubMed Central  Google Scholar 

  97. Lazarus R. S. & Folkman S. Stress, Appraisal, and Coping (Springer, 1984).

  98. Cohen S., Kessler R. C. & Gordon L. U. (eds) Measuring Stress: A Guide for Health and Social Scientists (Oxford Univ. Press, 1997).

  99. Carroll, J. E. et al. Childhood abuse, parental warmth, and adult multisystem biological risk in the coronary artery risk development in young adults study. Proc. Natl Acad. Sci. USA 110, 17149–17153 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Shalev, I. et al. Exposure to violence during childhood is associated with telomere erosion from 5 to 10 years of age: a longitudinal study. Mol. Psychiatry 18, 576–581 (2013).

    CAS  PubMed  Google Scholar 

  101. Marini, S. et al. Adversity exposure during sensitive periods predicts accelerated epigenetic aging in children. Psychoneuroendocrinology 113, 104484 (2020).

    CAS  PubMed  Google Scholar 

  102. Belsky, D. W. et al. Impact of early personal-history characteristics on the pace of aging: implications for clinical trials of therapies to slow aging and extend healthspan. Aging Cell 16, 644–651 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Miller, G. E., Chen, E. & Parker, K. J. Psychological stress in childhood and susceptibility to the chronic diseases of aging: moving toward a model of behavioral and biological mechanisms. Psychol. Bull. 137, 959–997 (2011).

    PubMed  PubMed Central  Google Scholar 

  104. Carroll, J. E., Mahrer, N. E., Shalowitz, M., Ramey, S. & Dunkel Schetter, C. Prenatal maternal stress prospectively relates to shorter child buccal cell telomere length. Psychoneuroendocrinology 121, 104841 (2020).

    CAS  PubMed  Google Scholar 

  105. Antoni, M. H. et al. The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nat. Rev. Cancer 6, 240–248 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Flint, M. S., Baum, A., Chambers, W. H. & Jenkins, F. J. Induction of DNA damage, alteration of DNA repair and transcriptional activation by stress hormones. Psychoneuroendocrinology 32, 470–479 (2007).

    CAS  PubMed  Google Scholar 

  107. Hara, M. R. et al. A stress response pathway regulates DNA damage through β2-adrenoreceptors and β-arrestin-1. Nature 477, 349–353 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Picard, M., Juster, R.-P. & McEwen, B. S. Mitochondrial allostatic load puts the “gluc” back in glucocorticoids. Nat. Rev. Endocrinol. 10, 303–310 (2014).

    CAS  PubMed  Google Scholar 

  109. Epel, E. S. Psychological and metabolic stress: a recipe for accelerated cellular aging? Hormones 8, 7–22 (2009).

    PubMed  Google Scholar 

  110. Choi, J., Fauce, S. R. & Effros, R. B. Reduced telomerase activity in human T lymphocytes exposed to cortisol. Brain Behav. Immun. 22, 600–605 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Picca, A. et al. Fueling inflamm-aging through mitochondrial dysfunction: mechanisms and molecular targets. Int. J. Mol. Sci. 18, 933 (2017).

    PubMed Central  Google Scholar 

  112. Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576–590 (2018).

    CAS  PubMed  Google Scholar 

  113. Chen, G. Y. & Nuñez, G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10, 826–837 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Irwin, M. R. & Cole, S. W. Reciprocal regulation of the neural and innate immune systems. Nat. Rev. Immunol. 11, 625–632 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Marsland, A. L., Walsh, C., Lockwood, K. & John-Henderson, N. A. The effects of acute psychological stress on circulating and stimulated inflammatory markers: a systematic review and meta-analysis. Brain Behav. Immun. 64, 208–219 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Cohen, S. et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc. Natl Acad. Sci. 109, 5995–5999 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kiecolt-Glaser, J. K. et al. Chronic stress and age-related increases in the proinflammatory cytokine IL-6. Proc. Natl Acad. Sci. USA 100, 9090–9095 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Flint, M. S. et al. Genomic profiling of restraint stress-induced alterations in mouse T lymphocytes. J. Neuroimmunol. 167, 34–44 (2005).

    CAS  PubMed  Google Scholar 

  119. Razzoli, M. et al. Social stress shortens lifespan in mice. Aging Cell 17, e12778 (2018).

    PubMed  PubMed Central  Google Scholar 

  120. Mathur, M. B. et al. Perceived stress and telomere length: a systematic review, meta-analysis, and methodologic considerations for advancing the field. Brain Behav. Immun. 54, 158–169 (2016).

    PubMed  PubMed Central  Google Scholar 

  121. Shalev, I. et al. Stress and telomere biology: a lifespan perspective. Psychoneuroendocrinology 38, 1835–1842 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Rentscher, K. E. et al. Chronic stress exposure and daily stress appraisals relate to biological aging marker p16INK4a. Psychoneuroendocrinology 102, 139–148 (2019).

    CAS  PubMed  Google Scholar 

  123. Boks, M. P. et al. Longitudinal changes of telomere length and epigenetic age related to traumatic stress and post-traumatic stress disorder. Psychoneuroendocrinology 51, 506–512 (2015).

    CAS  PubMed  Google Scholar 

  124. Simpkin, A. J. et al. Prenatal and early life influences on epigenetic age in children: a study of mother-offspring pairs from two cohort studies. Hum. Mol. Genet. 25, 191–201 (2016).

    CAS  PubMed  Google Scholar 

  125. Roberts, A. L. et al. Posttraumatic stress disorder and accelerated aging: PTSD and leukocyte telomere length in a sample of civilian women. Depress Anxiety 34, 391–400 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Sumner, J. A., Colich, N. L., Uddin, M., Armstrong, D. & McLaughlin, K. A. Early experiences of threat, but not deprivation, are associated with accelerated biological aging in children and adolescents. Biol. Psychiatry 85, 268–278 (2019).

    PubMed  Google Scholar 

  127. Zannas, A. S. et al. Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling. Genome Biol. 16, 266 (2015).

    PubMed  PubMed Central  Google Scholar 

  128. Jovanovic, T. et al. Exposure to violence accelerates epigenetic aging in children. Sci. Rep. 7, 8962 (2017).

    PubMed  PubMed Central  Google Scholar 

  129. Marini, S. et al. Adversity exposure during sensitive periods predicts accelerated epigenetic aging in children. Psychoneuroendocrinology 113, 104484 (2020).

    CAS  PubMed  Google Scholar 

  130. Stanton, A. L. Psychosocial concerns and interventions for cancer survivors. J. Clin. Oncol. 24, 5132–5137 (2016).

    Google Scholar 

  131. O’Keefe, E. B., Meltzer, J. P. & Bethea, T. N. Health disparities and cancer: racial disparities in cancer mortality in the United States, 2000–2010. Front. Public Health. 3, 51 (2015).

    PubMed  PubMed Central  Google Scholar 

  132. Kumachev, A., Trudeau, M. E. & Chan, K. K. W. Associations among socioeconomic status, patterns of care and outcomes in breast cancer patients in a universal health care system: Ontario’s experience. Cancer 122, 893–898 (2016).

    PubMed  Google Scholar 

  133. Dignam, J. J. Disparities in breast cancer: narrowing the gap. J. Natl Cancer Inst. 113, 349–350 (2021).

    PubMed  Google Scholar 

  134. de Punder, K., Heim, C., Wadhwa, P. D. & Entringer, S. Stress and immunosenescence: the role of telomerase. Psychoneuroendocrinology 101, 87–100 (2019).

    PubMed  Google Scholar 

  135. Cho, H. J., Bower, J. E., Kiefe, C. I., Seeman, T. E. & Irwin, M. R. Early life stress and inflammatory mechanisms of fatigue in the coronary artery risk development in young adults (CARDIA) study. Brain Behav. Immun. 26, 859–865 (2012).

    PubMed  PubMed Central  Google Scholar 

  136. Crosswell, A. D., Bower, J. E. & Ganz, P. A. Childhood adversity and inflammation in breast cancer survivors. Psychosom. Med. 76, 208–214 (2014).

    PubMed  PubMed Central  Google Scholar 

  137. Epel, E. S. & Prather, A. A. Stress, telomeres, and psychopathology: toward a deeper understanding of a triad of early aging. Annu. Rev. Clin. Psychol. 14, 371–397 (2018).

    PubMed  PubMed Central  Google Scholar 

  138. Han, T. J. et al. Association of childhood trauma with fatigue, depression, stress, and inflammation in breast cancer patients undergoing radiotherapy. Psychooncology 25, 187–193 (2016).

    PubMed  Google Scholar 

  139. Bower, J. E., Crosswell, A. D. & Slavich, G. M. Childhood adversity and cumulative life stress: risk factors for cancer-related fatigue. Clin. Psychol. Sci. 2, 108–115 (2014).

    PubMed Central  Google Scholar 

  140. Bower, J. E. et al. Childhood maltreatment and monocyte gene expression among women with breast cancer. Brain Behav. Immun. 88, 396–402 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Bower, J. E. et al. Testing a biobehavioral model of fatigue before adjuvant therapy in women with breast cancer. Cancer 125, 633–641 (2019).

    PubMed  Google Scholar 

  142. Papanastasiou, A. et al. Role of stress, age and adjuvant therapy in the cognitive function of patients with breast cancer. Oncol. Lett. 18, 507–517 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Huehnchen, P., van Kampen, A., Boehmerle, W. & Endres, M. Cognitive impairment after cytotoxic chemotherapy. Neurooncol. Pract. 7, 11–21 (2020).

    PubMed  Google Scholar 

  144. Kuring, J. K., Mathias, J. L. & Ward, L. Risk of dementia in persons who have previously experienced clinically-significant depression, anxiety, or PTSD: a systematic review and meta-analysis. J. Affect. Disord. 274, 247–261 (2020).

    CAS  PubMed  Google Scholar 

  145. Watson, N. F. et al. Joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society on the recommended amount of sleep for a healthy adult: methodology and discussion. Sleep 38, 1161–1183 (2015).

    PubMed  PubMed Central  Google Scholar 

  146. Carroll, J. E. & Prather, A. A. Sleep and biological aging: a short review. Curr. Opin. Endocr. Metab. Res. 18, 159–164 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Brown, M. K. & Naidoo, N. The UPR and the anti-oxidant response: relevance to sleep and sleep loss. Mol. Neurobiol. 42, 103–113 (2010).

    CAS  PubMed  Google Scholar 

  148. Jessen, N. A., Munk, A. S. F., Lundgaard, I. & Nedergaard, M. The glymphatic system: a beginner’s guide. Neurochem. Res. 40, 2583–2599 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013).

    CAS  PubMed  Google Scholar 

  150. Tempaku, P. F., Mazzotti, D. R. & Tufik, S. Telomere length as a marker of sleep loss and sleep disturbances: a potential link between sleep and cellular senescence. Sleep Med. 16, 559–563 (2015).

    PubMed  Google Scholar 

  151. Prather, A. A. et al. Tired telomeres: poor global sleep quality, perceived stress, and telomere length in immune cell subsets in obese men and women. Brain Behav. Immun. 47, 155–162 (2015).

    CAS  PubMed  Google Scholar 

  152. Cribbet, M. R. et al. Cellular aging and restorative processes: subjective sleep quality and duration moderate the association between age and telomere length in a sample of middle-aged and older adults. Sleep 37, 65–70 (2014).

    PubMed  PubMed Central  Google Scholar 

  153. Jackowska, M. et al. Short sleep duration is associated with shorter telomere length in healthy men: findings from the Whitehall II Cohort Study. PLoS ONE 7, e47292 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Huang, P. et al. The association between obstructive sleep apnea and shortened telomere length: a systematic review and meta-analysis. Sleep Med. 48, 107–112 (2018).

    PubMed  Google Scholar 

  155. Prather, A. A. et al. Shorter leukocyte telomere length in midlife women with poor sleep quality. J. Aging Res. 2011, 1–6 (2011).

    Google Scholar 

  156. Lee, K. A. et al. Telomere length is associated with sleep duration but not sleep quality in adults with human immunodeficiency virus. Sleep 37, 157–166 (2014).

    PubMed  PubMed Central  Google Scholar 

  157. Zgheib, N. K. et al. Short telomere length is associated with aging, central obesity, poor sleep and hypertension in lebanese individuals. Aging Dis. 9, 77–89 (2018).

    PubMed  PubMed Central  Google Scholar 

  158. Carroll, J. E. et al. Obstructive sleep apnea, nighttime arousals, and leukocyte telomere length: the multi-ethnic study of atherosclerosis. Sleep 42, zsz089 (2019).

    PubMed  PubMed Central  Google Scholar 

  159. Carroll, J. E. et al. Insomnia and telomere length in older adults. Sleep 39, 559–564 (2016).

    PubMed  PubMed Central  Google Scholar 

  160. Irwin, M. R. & Opp, M. R. Sleep health: reciprocal regulation of sleep and innate immunity. Neuropsychopharmacology 42, 129–155 (2017).

    CAS  PubMed  Google Scholar 

  161. Irwin, M. R., Olmstead, R. & Carroll, J. E. Sleep disturbance, sleep duration, and inflammation: a systematic review and meta-analysis of cohort studies and experimental sleep deprivation. Biol. Psychiatry 80, 40–52 (2016).

    PubMed  Google Scholar 

  162. Garland, S. N., Mahon, K. & Irwin, M. R. Integrative approaches for sleep health in cancer survivors. Cancer J. 25, 337–342 (2019).

    PubMed  Google Scholar 

  163. Palesh, O. et al. Actigraphy-measured sleep disruption as a predictor of survival among women with advanced breast cancer. Sleep 37, 837–842 (2014).

    PubMed  PubMed Central  Google Scholar 

  164. Trudel-Fitzgerald, C. et al. Sleep and survival among women with breast cancer: 30 years of follow-up within the Nurses’ Health Study. Br. J. Cancer 116, 1239–1246 (2017).

    PubMed  PubMed Central  Google Scholar 

  165. Irwin, M. R., Olmstead, R. E., Ganz, P. A. & Haque, R. Sleep disturbance, inflammation and depression risk in cancer survivors. Brain Behav. Immun. 30 (Suppl.), S58–S67 (2013).

    PubMed  Google Scholar 

  166. Savard, J. & Morin, C. M. Insomnia in the context of cancer: a review of a neglected problem. J. Clin. Oncol. 19, 895–908 (2001).

    CAS  PubMed  Google Scholar 

  167. Carroll, J. E. et al. Sleep disturbance and neurocognitive outcomes in older patients with breast cancer: interaction with genotype. Cancer 125, 4516–4524 (2019).

    PubMed  Google Scholar 

  168. Ancoli-Israel, S. et al. Sleep, fatigue, depression, and circadian activity rhythms in women with breast cancer before and after treatment: a 1-year longitudinal study. Support. Care Cancer 22, 2535–2545 (2014).

    PubMed  PubMed Central  Google Scholar 

  169. Savard, J. et al. Breast cancer patients have progressively impaired sleep-wake activity rhythms during chemotherapy. Sleep 32, 1155–1160 (2009).

    PubMed  PubMed Central  Google Scholar 

  170. Santoso, A. M. M. et al. Prevalence of sleep disturbances among head and neck cancer patients: a systematic review and meta-analysis. Sleep Med. Rev. 47, 62–73 (2019).

    PubMed  Google Scholar 

  171. Basen-Engquist, K. et al. Agenda for translating physical activity, nutrition, and weight management interventions for cancer survivors into clinical and community practice. Obesity 25 (Suppl. 2), S9–S22 (2017).

    PubMed  Google Scholar 

  172. Tucker, L. A. Physical activity and telomere length in U.S. men and women: an NHANES investigation. Prev. Med. 100, 145–151 (2017).

    PubMed  Google Scholar 

  173. Cherkas, L. F. et al. The association between physical activity in leisure time and leukocyte telomere length. Arch. Intern. Med. 168, 154–158 (2008).

    PubMed  Google Scholar 

  174. Soares-Miranda, L. et al. Physical activity, physical fitness, and leukocyte telomere length. Med. Sci. Sports Exerc. 47, 2525–2534 (2015).

    PubMed  PubMed Central  Google Scholar 

  175. Puterman, E. & et al. Aerobic exercise lengthens telomeres and reduces stress in family caregivers: a randomized controlled trial - Curt Richter Award Paper 2018. Psychoneuroendocrinology 98, 245–252 (2018).

    CAS  PubMed  Google Scholar 

  176. Figueiredo, N. et al. Anthracyclines induce DNA damage response-mediated protection against severe sepsis. Immunity 39, 874–884 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Garatachea, N. et al. Exercise attenuates the major hallmarks of aging. Rejuvenation Res. 18, 57–89 (2015).

    PubMed  PubMed Central  Google Scholar 

  178. Ramírez-Vélez, R. et al. Evidence-based exercise recommendations to improve mental wellbeing in women with breast cancer during active treatment: a systematic review and meta-analysis. Cancers 13, 264 (2021).

    PubMed Central  Google Scholar 

  179. Speck, R. M., Courneya, K. S., Mâsse, L. C., Duval, S. & Schmitz, K. H. An update of controlled physical activity trials in cancer survivors: a systematic review and meta-analysis. J. Cancer Surviv. 4, 87–100 (2010).

    PubMed  Google Scholar 

  180. Englund, D. A. et al. Exercise reduces circulating biomarkers of cellular senescence in humans. Aging Cell 20, e13415 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Kerr, J., Anderson, C. & Lippman, S. M. Physical activity, sedentary behaviour, diet, and cancer: an update and emerging new evidence. Lancet Oncol. 18, e457–e471 (2017).

    PubMed  Google Scholar 

  182. Arem, H. et al. Pre- and postdiagnosis physical activity, television viewing, and mortality among patients with colorectal cancer in the national institutes of health-AARP diet and health study. J. Clin. Oncol. 33, 180–188 (2015).

    PubMed  Google Scholar 

  183. Ligibel, J. A., Basen-Engquist, K. & Bea, J. W. Weight management and physical activity for breast cancer prevention and control. Am. Soc. Clin. Oncol. Educ. B. 39, e22–e33 (2019).

    Google Scholar 

  184. Wagner, M. A., Erickson, K. I., Bender, C. M. & Conley, Y. P. The influence of physical activity and epigenomics on cognitive function and brain health in breast cancer. Front. Aging Neurosci. 12, 123 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Bender, C. M. et al. Physical activity, cardiorespiratory fitness, and cognitive function in postmenopausal women with breast cancer. Support. Care Cancer 29, 3743–3752 (2020).

    PubMed  Google Scholar 

  186. Ho, M. et al. Effects of dietary and physical activity interventions on generic and cancer-specific health-related quality of life, anxiety, and depression in colorectal cancer survivors: a randomized controlled trial. J. Cancer Surviv. 14, 424–433 (2020).

    PubMed  PubMed Central  Google Scholar 

  187. Thorsen, L. et al. The association between self-reported physical activity and prevalence of depression and anxiety disorder in long-term survivors of testicular cancer and men in a general population sample. Support. Care Cancer 13, 637–646 (2005).

    PubMed  Google Scholar 

  188. Ribeiro, F. E. et al. Relationship of anxiety and depression symptoms with the different domains of physical activity in breast cancer survivors. J. Affect. Disord. 273, 210–214 (2020).

    PubMed  Google Scholar 

  189. An, R. & Yan, H. Body weight status and telomere length in U.S. middle-aged and older adults. Obes. Res. Clin. Pract. 11, 51–62 (2017).

    PubMed  Google Scholar 

  190. Hang, D. et al. Longitudinal associations of lifetime adiposity with leukocyte telomere length and mitochondrial DNA copy number. Eur. J. Epidemiol. 33, 485–495 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Horvath, S. et al. Obesity accelerates epigenetic aging of human liver. Proc. Natl Acad. Sci. USA 111, 15538–15543 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Nevalainen, T. et al. Obesity accelerates epigenetic aging in middle-aged but not in elderly individuals. Clin. Epigenetics 9, 20 (2017).

    PubMed  PubMed Central  Google Scholar 

  193. Ogrodnik, M. et al. Obesity-induced cellular senescence drives anxiety and impairs neurogenesis. Cell Metab. 29, 1061–1077.e8 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Almendáriz-Palacios, C., Mousseau, D. D., Eskiw, C. H. & Gillespie, Z. E. Still living better through chemistry: an update on caloric restriction and caloric restriction mimetics as tools to promote health and lifespan. Int. J. Mol. Sci. 21, 9220 (2020).

    PubMed Central  Google Scholar 

  195. Hoshino, S., Kobayashi, M. & Higami, Y. Mechanisms of the anti-aging and prolongevity effects of caloric restriction: evidence from studies of genetically modified animals. Aging 10, 2243 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Dorling, J. L. et al. Effects of caloric restriction on human physiological, psychological, and behavioral outcomes: highlights from CALERIE phase 2. Nutr. Rev. 79, 98–113 (2021).

    PubMed  Google Scholar 

  197. Gonzalez-Freire, M. et al. The road ahead for health and lifespan interventions. Ageing Res. Rev. 59, 101037 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Del Bo’, C. D. et al. Overview of human intervention studies evaluating the impact of the mediterranean diet on markers of DNA damage. Nutrients 11, 391 (2019).

    PubMed Central  Google Scholar 

  199. Sung, H., Hyun, N., Leach, C. R., Yabroff, K. R. & Jemal, A. Association of first primary cancer with risk of subsequent primary cancer among survivors of adult-onset cancers in the United States. J. Am. Med. Assoc. 324, 2521–2535 (2020).

    Google Scholar 

  200. Ganz, P. A. & Casillas, J. N. Incorporating the risk for subsequent primary cancers into the care of adult cancer survivors: moving beyond 5-year survival. J. Am. Med. Assoc. 324, 2493–2495 (2020).

    Google Scholar 

  201. Ruiz-Casado, A., Álvarez-Bustos, A., de Pedro, C. G., Méndez-Otero, M. & Romero-Elías, M. Cancer-related fatigue in breast cancer survivors: a review. Clin. Breast Cancer 21, 10–25 (2021).

    PubMed  Google Scholar 

  202. Lee, J. T. et al. Impact of community-based exercise program participation on aerobic capacity in women with and without breast cancer. World J. Clin. Oncol. 12, 468–481 (2021).

    PubMed  PubMed Central  Google Scholar 

  203. Hamajima, N. et al. Alcohol, tobacco and breast cancer - collaborative reanalysis of individual data from 53 epidemiological studies, including 58,515 women with breast cancer and 95,067 women without the disease. Br. J. Cancer 87, 1234–1245 (2002).

    CAS  PubMed  Google Scholar 

  204. Znaor, A. et al. Independent and combined effects of tobacco smoking, chewing and alcohol drinking on the risk of oral, pharyngeal and esophageal cancers in Indian men. Int. J. Cancer 105, 681–686 (2003).

    CAS  PubMed  Google Scholar 

  205. Baan, R. et al. Carcinogenicity of alcoholic beverages. Lancet Oncol. 8, 292–293 (2007).

    PubMed  Google Scholar 

  206. National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. Advances in Knowledge of the Health Consequences of Smoking: From 1964–2014, https://www.ncbi.nlm.nih.gov/books/NBK294317/ (2014).

  207. Centers for Disease Control and Prevention (US); National Center for Chronic Disease Prevention and Health Promotion (US); Office on Smoking and Health (US). How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-Attributable Disease: A Report of the Surgeon General https://pubmed.ncbi.nlm.nih.gov/21452462/ (2020).

  208. Harpaz, T. et al. The effect of ethanol on telomere dynamics and regulation in human cells. Cells 7, 169 (2018).

    CAS  PubMed Central  Google Scholar 

  209. Beach, S. R. H. et al. Methylomic aging as a window onto the influence of lifestyle: tobacco and alcohol use alter the rate of biological aging. J. Am. Geriatr. Soc. 63, 2519–2525 (2015).

    PubMed  PubMed Central  Google Scholar 

  210. Dixit, S. et al. Alcohol consumption and leukocyte telomere length. Sci. Rep. 9, 1404 (2019).

    PubMed  PubMed Central  Google Scholar 

  211. Latifovic, L., Peacock, S. D., Massey, T. E. & King, W. D. The influence of alcohol consumption, cigarette smoking, and physical activity on leukocyte telomere length. Cancer Epidemiol. Biomark. Prev. 25, 374–380 (2016).

    CAS  Google Scholar 

  212. Lu, A. T. et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging 11, 303–327 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Lei, M.-K., Gibbons, F. X., Simons, R. L., Philibert, R. A. & Beach, S. R. H. The effect of tobacco smoking differs across indices of DNA methylation-based aging in an African American sample: DNA methylation-based indices of smoking capture these effects. Genes 11, 311 (2020).

    CAS  PubMed Central  Google Scholar 

  214. Verde, Z. et al. Effects of cigarette smoking and nicotine metabolite ratio on leukocyte telomere length. Environ. Res. 140, 488–494 (2015).

    CAS  PubMed  Google Scholar 

  215. Needham, B. L. et al. Socioeconomic status, health behavior, and leukocyte telomere length in the National Health and Nutrition Examination Survey, 1999–2002. Soc. Sci. Med. 85, 1–8 (2013).

    PubMed  PubMed Central  Google Scholar 

  216. Valdes, A. et al. Obesity, cigarette smoking, and telomere length in women. Lancet 366, 662–664 (2005).

    CAS  PubMed  Google Scholar 

  217. Collins, F. Connecting senescent cells to obesity and anxiety. NIH Director’s Blog, https://directorsblog.nih.gov/2019/01/08/connecting-senescent-cells-to-obesity-and-anxiety/ (2019).

  218. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02652052 (2019).

  219. Hiller, J. G., Perry, N. J., Poulogiannis, G., Riedel, B. & Sloan, E. K. Perioperative events influence cancer recurrence risk after surgery. Nat. Rev. Clin. Oncol. 15, 205–218 (2017).

    PubMed  Google Scholar 

  220. Hiller, J. G. et al. Preoperative β-blockade with propranolol reduces biomarkers of metastasis in breast cancer: a phase II randomized trial. Clin. Cancer Res. 26, 1803–1811 (2020).

    CAS  PubMed  Google Scholar 

  221. Knight, J. M. et al. Propranolol inhibits molecular risk markers in HCT recipients: a phase 2 randomized controlled biomarker trial. Blood Adv. 4, 467–476 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Haldar, R. et al. Perioperative COX2 and β-adrenergic blockade improves biomarkers of tumor metastasis, immunity, and inflammation in colorectal cancer: a randomized controlled trial. Cancer 126, 3991–4001 (2020).

    CAS  PubMed  Google Scholar 

  223. Cole, S. W. & Sood, A. K. Molecular pathways: beta-adrenergic signaling in cancer. Clin. Cancer Res. 18, 1201–1206 (2012).

    CAS  PubMed  Google Scholar 

  224. Carlson, L. E., Toivonen, K. & Subnis, U. Integrative approaches to stress management. Cancer J. 25, 329–336 (2019).

    PubMed  Google Scholar 

  225. Greenlee, H. et al. Clinical practice guidelines on the evidence-based use of integrative therapies during and after breast cancer treatment. CA Cancer J. Clin. 67, 194–232 (2017).

    PubMed  PubMed Central  Google Scholar 

  226. Matis, J., Svetlak, M., Slezackova, A., Svoboda, M. & Šumec, R. Mindfulness-based programs for patients with cancer via eHealth and mobile health: systematic review and synthesis of quantitative research. J. Med. Internet Res. 22, e20709 (2020).

    PubMed  PubMed Central  Google Scholar 

  227. Antoni, M. H. et al. Cognitive-behavioral stress management reverses anxiety-related leukocyte transcriptional dynamics. Biol. Psychiatry 71, 366–372 (2012).

    CAS  PubMed  Google Scholar 

  228. Antoni, M. H. et al. Stress management, leukocyte transcriptional changes and breast cancer recurrence in a randomized trial: an exploratory analysis. Psychoneuroendocrinology 74, 269–277 (2016).

    PubMed  PubMed Central  Google Scholar 

  229. Bower, J. E. et al. Mindfulness meditation for younger breast cancer survivors: a randomized controlled trial. Cancer 121, 1231–1240 (2015).

    PubMed  Google Scholar 

  230. Bower, J. E. & Irwin, M. R. Mind-body therapies and control of inflammatory biology: a descriptive review. Brain Behav. Immun. 51, 1–11 (2016).

    PubMed  Google Scholar 

  231. Chaix, R. et al. Epigenetic clock analysis in long-term meditators. Psychoneuroendocrinology 85, 210–214 (2017).

    PubMed  PubMed Central  Google Scholar 

  232. Bower, J. E. et al. Yoga reduces inflammatory signaling in fatigued breast cancer survivors: a randomized controlled trial. Psychoneuroendocrinology 43, 20–29 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Kiecolt-Glaser, J. K. et al. Yoga’s impact on inflammation, mood, and fatigue in breast cancer survivors: a randomized controlled trial. J. Clin. Oncol. 32, 1040–1049 (2014).

    PubMed  PubMed Central  Google Scholar 

  234. Danhauer, S. C. et al. Yoga for symptom management in oncology: a review of the evidence base and future directions for research. Cancer 125, 1979–1989 (2019).

    PubMed  Google Scholar 

  235. Garland, S. N. et al. Sleeping well with cancer: a systematic review of cognitive behavioral therapy for insomnia in cancer patients. Neuropsychiatr. Dis. Treat. 10, 1113–1124 (2014).

    PubMed  PubMed Central  Google Scholar 

  236. Johnson, J. A. et al. A systematic review and meta-analysis of randomized controlled trials of cognitive behavior therapy for insomnia (CBT-I) in cancer survivors. Sleep Med. Rev. 27, 20–28 (2016).

    PubMed  Google Scholar 

  237. Zachariae, R. et al. Internet-delivered cognitive-behavioral therapy for insomnia in breast cancer survivors: a randomized controlled trial. J. Natl Cancer Inst. 110, 880–887 (2018).

    PubMed  PubMed Central  Google Scholar 

  238. Irwin, M. R. et al. Tai Chi Chih compared with cognitive behavioral therapy for the treatment of insomnia in survivors of breast cancer: a randomized, partially blinded, noninferiority trial. J. Clin. Oncol. 35, 2656–2665 (2017).

    PubMed  PubMed Central  Google Scholar 

  239. Garland, S. N. et al. Mindfulness-based stress reduction compared with cognitive behavioral therapy for the treatment of insomnia comorbid with cancer: a randomized, partially blinded, noninferiority trial. J. Clin. Oncol. 32, 449–457 (2014).

    PubMed  Google Scholar 

  240. Zhao, Y. et al. Effects of mindfulness-based cognitive therapy on breast cancer survivors with insomnia: a randomised controlled trial. Eur. J. Cancer Care 29, e13259 (2020).

    Google Scholar 

  241. Mustian, K. M. et al. Multicenter, randomized controlled trial of yoga for sleep quality among cancer survivors. J. Clin. Oncol. 31, 3233–3241 (2013).

    PubMed  PubMed Central  Google Scholar 

  242. Garland, S. N. et al. Acupuncture versus cognitive behavioral therapy for insomnia in cancer survivors: a randomized clinical trial. J. Natl Cancer Inst. 111, 1323–1331 (2019).

    PubMed  PubMed Central  Google Scholar 

  243. Irwin, M. R. et al. Cognitive behavioral therapy vs. Tai Chi for late life insomnia and inflammatory risk: a randomized controlled comparative efficacy trial. Sleep 37, 1543–1552 (2014).

    PubMed  PubMed Central  Google Scholar 

  244. Irwin, M. R. et al. Tai Chi, cellular Inflammation, and transcriptome dynamics in breast cancer survivors with insomnia: a randomized controlled trial. JNCI Monogr. 2014, 295–301 (2014).

    Google Scholar 

  245. Chen, T.-Y., Lee, S. & Buxton, O. M. A greater extent of insomnia symptoms and physician-recommended sleep medication use predict fall risk in community-dwelling older adults. Sleep https://doi.org/10.1093/sleep/zsx142 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Besedovsky, L. et al. Auditory closed-loop stimulation of EEG slow oscillations strengthens sleep and signs of its immune-supportive function. Nat. Commun. 8, 1984 (2017).

    PubMed  PubMed Central  Google Scholar 

  247. Charalambous, A. et al. Cancer-related fatigue and sleep deficiency in cancer care continuum: concepts, assessment, clusters, and management. Support. Care Cancer 27, 2747–2753 (2019).

    PubMed  Google Scholar 

  248. Matthews, E., Carter, P., Page, M., Dean, G. & Berger, A. Sleep-wake disturbance: a systematic review of evidence-based interventions for management in patients with cancer. Clin. J. Oncol. Nurs. 22, 37–52 (2018).

    PubMed  Google Scholar 

  249. Piercy, K. L. et al. The physical activity guidelines for Americans. J. Am. Med. Assoc. 320, 2020–2028 (2018).

    Google Scholar 

  250. Jensen, M. D. et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Obesity Society. Circulation 129 (Suppl. 2), S102–S138 (2014).

    PubMed  Google Scholar 

  251. Kaiser, E. G., Prochaska, J. J. & Kendra, M. S. Tobacco cessation in oncology care. Oncology 95, 129–137 (2018).

    PubMed  Google Scholar 

  252. Warren, G. W., Ostroff, J. S. & Goffin, J. R. Lung cancer screening, cancer treatment, and addressing the continuum of health risks caused by tobacco. Am. Soc. Clin. Oncol. Educ. B. 35, 223–229 (2016).

    Google Scholar 

  253. LoConte, N. K. et al. Lifestyle modifications and policy implications for primary and secondary cancer prevention: diet, exercise, sun safety, and alcohol reduction. Am. Soc. Clin. Oncol. Educ. B. 38, 88–100 (2018).

    Google Scholar 

  254. Demark-Wahnefried, W. et al. Weight management and physical activity throughout the cancer care continuum. CA Cancer J. Clin. 68, 64–89 (2018).

    PubMed  Google Scholar 

  255. Ligibel, J. A. et al. Impact of a pre-operative exercise intervention on breast cancer proliferation and gene expression: Results from the pre-operative health and body (PreHAB) study. Clin. Cancer Res. 25, 5398–5406 (2019).

    CAS  PubMed  Google Scholar 

  256. Gerritsen, J. K. W. & Vincent, A. J. P. E. Exercise improves quality of life in patients with cancer: A systematic review and meta-analysis of randomised controlled trials. Br. J. Sports Med. 50, 796–803 (2016).

    PubMed  Google Scholar 

  257. Ballard-Barbash, R. et al. Physical activity, biomarkers, and disease outcomes in cancer survivors: a systematic review. J. Natl Cancer Inst. 104, 815–840 (2012).

    PubMed  PubMed Central  Google Scholar 

  258. García-Calzón, S. et al. Telomere length as a biomarker for adiposity changes after a multidisciplinary intervention in overweight/obese adolescents: the EVASYON study. PLoS ONE 9, e89828 (2014).

    PubMed  PubMed Central  Google Scholar 

  259. Mctiernan, A. et al. Physical activity in cancer prevention and survival: a systematic review. Med. Sci. Sports Exerc. 51, 1252–1261 (2019).

    PubMed  PubMed Central  Google Scholar 

  260. Pinckard, K., Baskin, K. K. & Stanford, K. I. Effects of exercise to improve cardiovascular health. Front. Cardiovasc. Med. 6, 69 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Brown, J. C. et al. Effect of exercise or metformin on biomarkers of inflammation in breast and colorectal cancer: a randomized trial. Cancer Prev. Res. 13, 1055–1062 (2020).

    CAS  Google Scholar 

  262. Bower, J. E. et al. Screening, assessment, and management of fatigue in adult survivors of cancer: an American Society of Clinical Oncology clinical practice guideline adaptation. J. Clin. Oncol. 32, 1840–1850 (2014).

    PubMed  PubMed Central  Google Scholar 

  263. Pekmezi, D. et al. Physical activity maintenance following home-based, individually tailored print interventions for African American women. Health Promot. Pract. 21, 268–276 (2020).

    PubMed  Google Scholar 

  264. Mayer, D. K. et al. SurvivorCHESS to increase physical activity in colon cancer survivors: can we get them moving? J. Cancer Surviv. 12, 82–94 (2018).

    PubMed  Google Scholar 

  265. Demark-Wahnefried, W. et al. Pilot randomized controlled trial of a home vegetable gardening intervention among older cancer survivors shows feasibility, satisfaction, and promise in improving vegetable and fruit consumption, reassurance of worth, and the trajectory of central adiposity. J. Acad. Nutr. Diet. 118, 689–704 (2018).

    PubMed  PubMed Central  Google Scholar 

  266. Guida, J. L. et al. Strategies to prevent or remediate cancer and treatment-related aging. J. Natl Cancer Inst. 113, 112–122 (2021).

    PubMed  Google Scholar 

  267. Brandhorst, S. et al. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab. 22, 86–99 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Longo, V. D. & Mattson, M. P. Fasting: molecular mechanisms and clinical applications. Cell Metab. 19, 181–192 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Mattson, M. P., Longo, V. D. & Harvie, M. Impact of intermittent fasting on health and disease processes. Ageing Res. Rev. 39, 46–58 (2017).

    PubMed  Google Scholar 

  270. De Cabo, R. & Mattson, M. P. Effects of intermittent fasting on health, aging, and disease. N. Engl. J. Med. 381, 2541–2551 (2019).

    PubMed  Google Scholar 

  271. Hahn, O. et al. A nutritional memory effect counteracts the benefits of dietary restriction in old mice. Nat. Metab. 1, 1059–1073 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Espada, L. et al. Loss of metabolic plasticity underlies metformin toxicity in aged Caenorhabditis elegans. Nat. Metab. 2, 1316–1331 (2020).

    CAS  PubMed  Google Scholar 

  273. Fucito, L. M. et al. Pairing smoking-cessation services with lung cancer screening: a clinical guideline from the association for the treatment of tobacco use and dependence and the society for research on nicotine and tobacco. Cancer 122, 1150–1159 (2016).

    PubMed  Google Scholar 

  274. Taylor, K. L. et al. Preliminary evaluation of a telephone-based smoking cessation intervention in the lung cancer screening setting: a randomized clinical trial. Lung Cancer 108, 242–246 (2017).

    PubMed  Google Scholar 

  275. Zbikowski, S. M., Hapgood, J., Barnwell, S. S. & McAfee, T. Phone and web-based tobacco cessation treatment: real-world utilization patterns and outcomes for 11,000 tobacco users. J. Med. Internet Res. 10, e41 (2008).

    PubMed  PubMed Central  Google Scholar 

  276. McHugh, D. & Gil, J. Senescence and aging: causes, consequences, and therapeutic avenues. J. Cell Biol. 217, 65–77 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Van Waart, H. et al. Effect of low-intensity physical activity and moderate- to high-intensity physical exercise during adjuvant chemotherapy on physical fitness, fatigue, and chemotherapy completion rates: results of the PACES randomized clinical trial. J. Clin. Oncol. 33, 1918–1927 (2015).

    PubMed  Google Scholar 

  278. Courneya, K. S. et al. Effects of exercise during adjuvant chemotherapy on breast cancer outcomes. Med. Sci. Sports Exerc. 46, 1744–1751 (2014).

    CAS  PubMed  Google Scholar 

  279. Cannioto, R. A. et al. Physical activity before, during, and after chemotherapy for high-risk breast cancer: relationships with survival. J. Natl Cancer Inst. 113, 54–63 (2021).

    PubMed  Google Scholar 

  280. Antoni, M. H. et al. Reduction of cancer-specific thought intrusions and anxiety symptoms with a stress management intervention among women undergoing treatment for breast cancer. Am. J. Psychiatry 163, 1791–1797 (2006).

    PubMed  PubMed Central  Google Scholar 

  281. Gudenkauf, L. M. et al. Brief cognitive-behavioral and relaxation training interventions for breast cancer: a randomized controlled trial. J. Consult. Clin. Psychol. 83, 677–688 (2015).

    PubMed  PubMed Central  Google Scholar 

  282. Palesh, O. et al. Feasibility and acceptability of brief behavioral therapy for cancer-related insomnia: effects on insomnia and circadian rhythm during chemotherapy: a phase II randomised multicentre controlled trial. Br. J. Cancer 119, 274–281 (2018).

    PubMed  PubMed Central  Google Scholar 

  283. Johnson, J. A. et al. Bright light therapy improves cancer-related fatigue in cancer survivors: a randomized controlled trial. J. Cancer Surviv. 12, 206–215 (2018).

    PubMed  Google Scholar 

  284. Redd, W. H. et al. Systematic light exposure in the treatment of cancer-related fatigue: a preliminary study. Psychooncology 23, 1431–1434 (2014).

    PubMed  PubMed Central  Google Scholar 

  285. Fultz, N. E. et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science 366, 628–631 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Nedergaard, M. & Goldman, S. A. Glymphatic failure as a final common pathway to dementia. Science 370, 50–56 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Savard, J., Ivers, H., Savard, M.-H. & Morin, C. M. Cancer treatments and their side effects are associated with aggravation of insomnia: results of a longitudinal study. Cancer 121, 1703–1711 (2015).

    PubMed  Google Scholar 

  288. Palesh, O. et al. Secondary outcomes of a behavioral sleep intervention: a randomized clinical trial. Health Psychol. 38, 196–205 (2019).

    PubMed  PubMed Central  Google Scholar 

  289. Carlson, L., Rouleau, C. R. & Garland, S. N. The impact of mindfulness-based interventions on symptom burden, positive psychological outcomes, and biomarkers in cancer patients. Cancer Manag. Res. 7, 121 (2015).

    PubMed  PubMed Central  Google Scholar 

  290. Blackburn, E. H. Telomere states and cell fates. Nature 408, 53–56 (2000).

    CAS  PubMed  Google Scholar 

  291. Rodriguez–Mortera, R., Bains, Y. & Gugliucci, A. Fructose at the crossroads of the metabolic syndrome and obesity epidemics. Front. Biosci. 24, 186–211 (2019).

    Google Scholar 

  292. Nowotny, B. et al. Effects of acute psychological stress on glucose metabolism and subclinical inflammation in patients with post-traumatic stress disorder. Horm. Metab. Res. 42, 746–753 (2010).

    CAS  PubMed  Google Scholar 

  293. Fiorentino, T. V., Prioletta, A., Zuo, P. & Folli, F. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr. Pharm. Des. 19, 5695–5703 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of J.E.C. was supported in part by the American Cancer Society Research Scholars grant 128660-RSG-15-187-01-PCSM and the National Cancer Institute at the National Institutes of Health grant R01CA237535 and R35CA197289. The work of J.E.B. was supported in part by the National Cancer Institute at the National Institutes of Health grant R01CA237535 and the Breast Cancer Research Foundation. The work of P.A.G. was supported by the Breast Cancer Research Foundation and the author notes that she serves on the Scientific Advisory Board of the Breast Cancer Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Judith E. Carroll.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewer information

Nature Reviews Clinical Oncology thanks K. Ness and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carroll, J.E., Bower, J.E. & Ganz, P.A. Cancer-related accelerated ageing and biobehavioural modifiers: a framework for research and clinical care. Nat Rev Clin Oncol 19, 173–187 (2022). https://doi.org/10.1038/s41571-021-00580-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-021-00580-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer