Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways

Abstract

The discovery and clinical implementation of immune-checkpoint inhibitors (ICIs) targeting CTLA4, PD-1 and PD-L1 has revolutionized the treatment of cancer, as recognized by the 2018 Nobel Prize for Medicine and Physiology. This groundbreaking new approach has improved the outcomes of patients with various forms of advanced-stage cancer; however, the majority of patients receiving these therapies, even in combination, do not derive clinical benefit. Further development of agents targeting additional immune checkpoints, co-stimulatory receptors and/or co-inhibitory receptors that control T cell function is therefore critical. In this Review, we discuss the translational potential and clinical development of agents targeting both co-stimulatory and co-inhibitory T cell receptors. Specifically, we describe their mechanisms of action, and provide an overview of ongoing clinical trials involving novel ICIs including those targeting LAG3, TIM3, TIGIT and BTLA as well as agonists of the co-stimulatory receptors GITR, OX40, 41BB and ICOS. We also discuss several additional approaches, such as harnessing T cell metabolism, in particular via adenosine signalling, inhibition of IDO1, and targeting changes in glucose and fatty acid metabolism. We conclude that further efforts are needed to optimize the timing of combination ICI approaches and, most importantly, to individualize immunotherapy based on both patient-specific and tumour-specific characteristics.

Key points

  • Immune-checkpoint inhibitors (ICIs) have revolutionized cancer therapy, although clinically approved agents are currently restricted to those targeting PD-1/PD-L1 or CTLA4. The addition of therapies targeting a wider range of immune checkpoints will enable improved outcomes.

  • Among co-inhibitory immune checkpoints, targets include LAG3, TIM3, TIGIT and BTLA, with agents targeting LAG3 currently the most advanced in terms of clinical development.

  • Antibodies against co-stimulatory targets, such as GITR, OX40, 41BB and ICOS, have considerable potential to complement the currently available ICIs, although optimizing the timing of administration will be important.

  • Changes in tumour cell and T cell metabolism are a source of additional targets, both of which have highly promising preclinical data available, albeit with only modest success in clinical trials thus far.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The role of Fcγ receptor (FcγR) engagement.
Fig. 2: T cell metabolism and interactions with co-signalling receptors.

Similar content being viewed by others

References

  1. Coley, W. B. II. Contribution to the knowledge of sarcoma. Ann. Surg. 14, 199–220 (1891).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kirkwood, J. M. et al. High- and low-dose interferon alfa-2b in high-risk melanoma: first analysis of intergroup trial E1690/S9111/C9190. J. Clin. Oncol. 18, 2444–2458 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Old, L. J. Tumor necrosis factor (TNF). Science 230, 630–632 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Morales, A., Eidinger, D. & Bruce, A. W. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J. Urol. 116, 180–183 (1976).

    Article  CAS  PubMed  Google Scholar 

  5. Rosenberg, S. A. et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA 271, 907–913 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Couzin-Frankel, J. Cancer immunotherapy. Science 342, 1432–1433 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Wolchok, J. Putting the immunologic brakes on cancer. Cell 175, 1452–1454 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vaddepally, R. K., Kharel, P., Pandey, R., Garje, R. & Chandra, A. B. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers (Basel) 12, 738 (2020).

    Article  CAS  Google Scholar 

  10. Haslam, A. & Prasad, V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw. Open 2, e192535 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhao, B., Zhao, H. & Zhao, J. Efficacy of PD-1/PD-L1 blockade monotherapy in clinical trials. Ther. Adv. Med. Oncol. 12, 1758835920937612 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schadendorf, D. et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol. 33, 1889–1894 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Larkin, J. et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 381, 1535–1546 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Postow, M. A., Sidlow, R. & Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378, 158–168 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Postow, M. A. et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med. 372, 2006–2017 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wolchok, J. D. et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 377, 1345–1356 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Bruni, D., Angell, H. K. & Galon, J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 20, 662–680 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Spranger, S. & Gajewski, T. F. Impact of oncogenic pathways on evasion of antitumour immune responses. Nat. Rev. Cancer 18, 139–147 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khalil, D. N. et al. In situ vaccination with defined factors overcomes T cell exhaustion in distant tumors. J. Clin. Invest. 129, 3435–3447 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Andtbacka, R. H. et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 33, 2780–2788 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Middleton, M. R. et al. Intratumoural immunotherapies for unresectable and metastatic melanoma: current status and future perspectives. Br. J. Cancer 123, 885–897 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Trialsitenews. Amgen Pauses or Discontinues Several Therapeutics in Oncology Pipeline https://trialsitenews.com/amgen-pauses-or-discontinues-several-therapeutics-in-oncology-pipeline/ (2021).

  26. Dewan, M. Z. et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin. Cancer Res. 15, 5379–5388 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Postow, M. A. et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N. Engl. J. Med. 366, 925–931 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hwang, W. L., Pike, L. R. G., Royce, T. J., Mahal, B. A. & Loeffler, J. S. Safety of combining radiotherapy with immune-checkpoint inhibition. Nat. Rev. Clin. Oncol. 15, 477–494 (2018).

    Article  PubMed  Google Scholar 

  29. Waitz, R. et al. Potent induction of tumor immunity by combining tumor cryoablation with anti-CTLA-4 therapy. Cancer Res. 72, 430–439 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. O’Shaughnessy, M. J. et al. Systemic antitumor immunity by PD-1/PD-L1 inhibition is potentiated by vascular-targeted photodynamic therapy of primary tumors. Clin. Cancer Res. 24, 592–599 (2018).

    Article  PubMed  Google Scholar 

  31. Thoma, C. Enhancing VTP. Nat. Rev. Urol. 15, 204 (2018).

    Article  PubMed  Google Scholar 

  32. Saxena, M., van der Burg, S. H., Melief, C. J. M. & Bhardwaj, N. Therapeutic cancer vaccines. Nat. Rev. Cancer 21, 360–378 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. von Andrian, U. H. & Mackay, C. R. T-cell function and migration — two sides of the same coin. N. Engl. J. Med. 343, 1020–1034 (2000).

    Article  Google Scholar 

  34. Borst, J., Ahrends, T., Bąbała, N., Melief, C. J. M. & Kastenmüller, W. CD4+ T cell help in cancer immunology and immunotherapy. Nat. Rev. Immunol. 18, 635–647 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, L. & Flies, D. B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 13, 227–242 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Marin-Acevedo, J. A. et al. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J. Hematol. Oncol. 11, 39 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chapman, N. M., Boothby, M. R. & Chi, H. Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 20, 55–70 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Shyer, J. A., Flavell, R. A. & Bailis, W. Metabolic signaling in T cells. Cell Res. 30, 649–659 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Knee, D. A., Hewes, B. & Brogdon, J. L. Rationale for anti-GITR cancer immunotherapy. Eur. J. Cancer 67, 1–10 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Mayes, P. A., Hance, K. W. & Hoos, A. The promise and challenges of immune agonist antibody development in cancer. Nat. Rev. Drug Discov. 17, 509–527 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Chang, H. W. et al. Generating tumor-selective conditionally active biologic anti-CTLA4 antibodies via protein-associated chemical switches. Proc. Natl Acad. Sci. USA 118, e2020606118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jiang, Y., Huang, J., Xu, C. & Pu, K. Activatable polymer nanoagonist for second near-infrared photothermal immunotherapy of cancer. Nat. Commun. 12, 742 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao, X. W. et al. CD47-signal regulatory protein-α (SIRPα) interactions form a barrier for antibody-mediated tumor cell destruction. Proc. Natl Acad. Sci. USA 108, 18342–18347 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Beck, J. D. et al. mRNA therapeutics in cancer immunotherapy. Mol. Cancer 20, 69 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nocentini, G. et al. A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis. Proc. Natl Acad. Sci. USA 94, 6216–6221 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Vence, L. et al. Characterization and comparison of GITR expression in solid tumors. Clin. Cancer Res. 25, 6501–6510 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tran, B. et al. Dose escalation results from a first-in-human, phase 1 study of glucocorticoid-induced TNF receptor-related protein agonist AMG 228 in patients with advanced solid tumors. J. Immunother. Cancer 6, 93 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zappasodi, R. et al. Rational design of anti-GITR-based combination immunotherapy. Nat. Med. 25, 759–766 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sukumar, S. et al. Characterization of MK-4166, a clinical agonistic antibody that targets human GITR and inhibits the generation and suppressive effects of T regulatory cells. Cancer Res. 77, 4378–4388 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Gonzalez, A. M. et al. INCAGN1876, a unique GITR agonist antibody that facilitates GITR oligomerization [abstract]. Cancer Res. 77 (Suppl. 13), 3643 (2017).

    Article  Google Scholar 

  52. Balmanoukian, A. S. et al. Safety and clinical activity of MEDI1873, a novel GITR agonist, in advanced solid tumors. Clin. Cancer Res. 26, 6196–6203 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Heinhuis, K. M. et al. Safety, tolerability, and potential clinical activity of a glucocorticoid-induced TNF receptor–related protein agonist alone or in combination with nivolumab for patients with advanced solid tumors: a phase 1/2a dose-escalation and cohort-expansion clinical trial. JAMA Oncol. 6, 100–107 (2020).

    Article  PubMed  Google Scholar 

  54. Geva, R. et al. First-in-human phase 1 study of MK-1248, an anti-human glucocorticoid-induced tumor necrosis factor receptor (GITR) monoclonal antibody, as monotherapy or in combination with pembrolizumab in patients with advanced solid tumors [abstract]. J. Clin. Oncol. 36 (Suppl. 15), 3029 (2018).

    Article  Google Scholar 

  55. Wang, B. et al. Combination cancer immunotherapy targeting PD-1 and GITR can rescue CD8(+) T cell dysfunction and maintain memory phenotype. Sci. Immunol. 3, eaat7061 (2018).

    Article  PubMed  Google Scholar 

  56. Geva, R. et al. First-in-human phase 1 study of MK-1248, an anti–glucocorticoid-induced tumor necrosis factor receptor agonist monoclonal antibody, as monotherapy or with pembrolizumab in patients with advanced solid tumors. Cancer 126, 4926–4935 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Warner, A. B. et al. Treatment with agonist anti-GITR antibody after chemotherapy enhances tumor immunity [abstract]. Cancer Res. 78 (Suppl. 13), 1699 (2018).

    Article  Google Scholar 

  58. Zhao, J. et al. Selective depletion of CD4+CD25+Foxp3+ regulatory T cells by low-dose cyclophosphamide is explained by reduced intracellular ATP levels. Cancer Res. 70, 4850–4858 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Jeong, S. & Park, S.-H. Co-stimulatory receptors in cancers and their implications for cancer immunotherapy. Immune Netw. 20, e3 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gonzalez, A. M. et al. INCAGN1949, an anti-OX40 antibody with an optimal agonistic profile and the ability to selectively deplete intratumoral regulatory T cells [abstract]. Cancer Res. 77 (Suppl. 13), 4703 (2017).

    Article  Google Scholar 

  61. Schaer, D. A. et al. GITR pathway activation abrogates tumor immune suppression through loss of regulatory T cell lineage stability. Cancer Immunol. Res. 1, 320–331 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Polesso, F., Sarker, M., Weinberg, A. D., Murray, S. E. & Moran, A. E. OX40 agonist tumor immunotherapy does not impact regulatory T cell suppressive function. J. Immunol. 203, 2011–2019 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Hirschhorn-Cymerman, D. et al. OX40 engagement and chemotherapy combination provides potent antitumor immunity with concomitant regulatory T cell apoptosis. J. Exp. Med. 206, 1103–1116 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Postel-Vinay, S. et al. A first-in-human phase I study of the OX40 agonist GSK3174998 (GSK998)+/- pembrolizumab in patients (Pts) with selected advanced solid tumors (ENGAGE-1) [abstract]. Cancer Res. 80 (Suppl. 16), CT150 (2020).

    Article  Google Scholar 

  65. El-Khoueiry, A. B. et al. Analysis of OX40 agonist antibody (PF-04518600) in patients with hepatocellular carcinoma [abstract]. J. Clin. Oncol. 38 (Suppl. 4), 523 (2020).

    Article  Google Scholar 

  66. Duhen, R. et al. Neoadjuvant anti-OX40 (MEDI6469) therapy in patients with head and neck squamous cell carcinoma activates and expands antigen-specific tumor-infiltrating T cells. Nat. Commun. 12, 1047 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gutierrez, M. et al. OX40 agonist BMS-986178 alone or in combination with nivolumab and/or ipilimumab in patients with advanced solid tumors. Clin. Cancer Res. 27, 460–472 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Chiappori, A. et al. Results from a combination of OX40 (PF-04518600) and 4–1BB (utomilumab) agonistic antibodies in melanoma and non-small cell lung cancer in a phase 1 dose expansion cohort [abstract P860]. J. Immunother. Cancer 8 (Suppl. 1), A9–A10 (2020).

    Google Scholar 

  69. Kvarnhammar, A. M. et al. The CTLA-4 x OX40 bispecific antibody ATOR-1015 induces anti-tumor effects through tumor-directed immune activation. J. Immunother. Cancer 7, 103 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Messenheimer, D. J. et al. Timing of PD-1 blockade is critical to effective combination immunotherapy with anti-OX40. Clin. Cancer Res. 23, 6165–6177 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim, H. D. et al. 4-1BB delineates distinct activation status of exhausted tumor-infiltrating CD8(+) T cells in hepatocellular carcinoma. Hepatology 71, 955–971 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Ye, Q. et al. CD137 accurately identifies and enriches for naturally occurring tumor-reactive T cells in tumor. Clin. Cancer Res. 20, 44–55 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Guedan, S. et al. Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation. JCI Insight 3, e96976 (2018).

    Article  PubMed Central  Google Scholar 

  74. Qi, X. et al. Optimization of 4-1BB antibody for cancer immunotherapy by balancing agonistic strength with FcγR affinity. Nat. Commun. 10, 2141 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Cohen, E. E. W. et al. A phase Ib study of utomilumab (PF-05082566) in combination with mogamulizumab in patients with advanced solid tumors. J. Immunother. Cancer 7, 342 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Segal, N. H. et al. Phase I study of single-agent Utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in oatients with advanced cancer. Cin. Cancer Res. 24, 1816–1823 (2018).

    Article  CAS  Google Scholar 

  77. Martin, P. J. et al. A 44 kilodalton cell surface homodimer regulates interleukin 2 production by activated human T lymphocytes. J. Immunol. 136, 3282–3287 (1986).

    Article  CAS  PubMed  Google Scholar 

  78. Gmunder, H. & Lesslauer, W. A 45-kDa human T-cell membrane glycoprotein functions in the regulation of cell proliferative responses. Eur. J. Biochem. 142, 153–160 (1984).

    Article  CAS  PubMed  Google Scholar 

  79. Sainson, R. C. A. et al. An antibody targeting ICOS increases intratumoral cytotoxic to regulatory T-cell ratio and induces tumor regression. Cancer Immunol. Res. 8, 1568–1582 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Yap, T. A. et al. ICONIC: Biologic and clinical activity of first in class ICOS agonist antibody JTX-2011 +/- nivolumab (nivo) in patients (pts) with advanced cancers [abstract]. J. Clin. Oncol. 36 (Suppl. 15), 3000 (2018).

    Article  Google Scholar 

  81. Rischin, D. et al. Inducible T cell costimulatory (ICOS) receptor agonist, GSK3359609 (GSK609) alone and in combination with pembrolizumab (pembro): preliminary results from INDUCE-1 expansion cohorts (EC) in head and neck squamous cell carcinoma (HNSCC) [abstract 1119PD]. Ann. Oncol. 30 (Suppl. 5), v454–v455 (2019).

    Article  Google Scholar 

  82. Wei, S. C. et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170, 1120–1133.e17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Lucas, P. J., Negishi, I., Nakayama, K., Fields, L. E. & Loh, D. Y. Naive CD28-deficient T cells can initiate but not sustain an in vitro antigen-specific immune response. J. Immunol. 154, 5757–5768 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Gallimore, A., Hengartner, H. & Zinkernagel, R. Hierarchies of antigen-specific cytotoxic T-cell responses. Immunol. Rev. 164, 29–36 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Schietinger, A. & Greenberg, P. D. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 35, 51–60 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Speiser, D. E. et al. T cell differentiation in chronic infection and cancer: functional adaptation or exhaustion? Nat. Rev. Immunol. 14, 768–774 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Buchbinder, E. I. & Desai, A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol. 39, 98–106 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Andrews, L. P., Marciscano, A. E., Drake, C. G. & Vignali, D. A. LAG3 (CD223) as a cancer immunotherapy target. Immunol. Rev. 276, 80–96 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Monney, L. et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415, 536–541 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Yu, X. et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat. Immunol. 10, 48–57 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Wang, L. et al. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J. Exp. Med. 208, 577–592 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yu, X., Zheng, Y., Mao, R., Su, Z. & Zhang, J. BTLA/HVEM signaling: milestones in research and role in chronic hepatitis B virus infection. Front. Immunol. 10, 617 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Maruhashi, T., Sugiura, D., Okazaki, I. M. & Okazaki, T. LAG-3: from molecular functions to clinical applications. J. Immunother. Cancer 8, e001014 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Triebel, F. et al. LAG-3, a novel lymphocyte activation gene closely related to CD4. J. Exp. Med. 171, 1393–1405 (1990).

    Article  CAS  PubMed  Google Scholar 

  96. Workman, C. J. & Vignali, D. A. The CD4-related molecule, LAG-3 (CD223), regulates the expansion of activated T cells. Eur. J. Immunol. 33, 970–979 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Baixeras, E. et al. Characterization of the lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class II antigens. J. Exp. Med. 176, 327–337 (1992).

    Article  CAS  PubMed  Google Scholar 

  98. Kouo, T. et al. Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunol. Res. 3, 412–423 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xu, F. et al. LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Cancer Res. 74, 3418–3428 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Mao, X. et al. Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science 353, aah3374 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, J. et al. Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3. Cell 176, 334–347 e312 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Li, N., Workman, C. J., Martin, S. M. & Vignali, D. A. Biochemical analysis of the regulatory T cell protein lymphocyte activation gene-3 (LAG-3; CD223). J. Immunol. 173, 6806–6812 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Huang, C. T. et al. Role of LAG-3 in regulatory T cells. Immunity 21, 503–513 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Andrews, L. P. et al. Resistance to PD1 blockade in the absence of metalloprotease-mediated LAG3 shedding. Sci. Immunol. 5, eabc2728 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Woo, S.-R. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 72, 917–927 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Prigent, P., El Mir, S., Dreano, M. & Triebel, F. Lymphocyte activation gene-3 induces tumor regression and antitumor immune responses. Eur. J. Immunol. 29, 3867–3876 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Brignone, C., Escudier, B., Grygar, C., Marcu, M. & Triebel, F. A phase I pharmacokinetic and biological correlative study of IMP321, a novel MHC class II agonist, in patients with advanced renal cell carcinoma. Clin. Cancer Res. 15, 6225–6231 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Krebs, M. et al. A phase II study (TACTI-002) of eftilagimod alpha (a soluble LAG-3 protein) with pembrolizumab in PD-L1 unselected patients with metastatic non-small cell lung(NSCLC) or head and neck carcinoma(HNSCC) [abstract 790]. J. Immunother. Cancer 8 (Suppl. 3), A472–A473 (2020).

    Google Scholar 

  109. Ascierto, P. A. et al. Efficacy of BMS-986016, a monoclonal antibody that targets lymphocyte activation gene-3 (LAG-3), in combination with nivolumab in pts with melanoma who progressed during prior anti–PD-1/PD-L1 therapy (mel prior IO) in all-comer and biomarker-enriched populations [abstract LBA18]. Ann. Oncol. 28 (Suppl. 5), 611–612 (2017).

    Article  Google Scholar 

  110. Hong, D. S. et al. Phase I/II study of LAG525 ± spartalizumab (PDR001) in patients (pts) with advanced malignancies [abstract]. J. Clin. Oncol. 36 (Suppl. 15), 3012 (2018).

    Article  Google Scholar 

  111. Das, M., Zhu, C. & Kuchroo, V. K. Tim-3 and its role in regulating anti-tumor immunity. Immunol. Rev. 276, 97–111 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu, F., Liu, Y. & Chen, Z. Tim-3 expression and its role in hepatocellular carcinoma. J. Hematol. Oncol. 11, 126 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kang, C. W. et al. Apoptosis of tumor infiltrating effector TIM-3+CD8+ T cells in colon cancer. Sci. Rep. 5, 15659 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Huang, Y. H. et al. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 517, 386–390 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Hahn, A. W., Gill, D. M., Pal, S. K. & Agarwal, N. The future of immune checkpoint cancer therapy after PD-1 and CTLA-4. Immunotherapy 9, 681–692 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Weiss, G. J. et al. A phase 1 study of TSR-022, an anti-TIM-3 monoclonal antibody, in patients (pts) with advanced solid tumors [abstract]. J. Immunother. Cancer 5 (Suppl. 2), O13 (2017).

    Google Scholar 

  117. Curigliano, G. et al. Phase (Ph) I/II study of MBG453± spartalizumab (PDR001) in patients (pts) with advanced malignancies [abstract]. Cancer Res. 79 (Suppl. 13), CT183 (2019).

    Article  Google Scholar 

  118. Wolf, Y., Anderson, A. C. & Kuchroo, V. K. TIM3 comes of age as an inhibitory receptor. Nat. Rev. Immunol. 20, 173–185 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Zhang, Q. et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat. Immunol. 19, 723–732 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Fuchs, A. & Colonna, M. The role of NK cell recognition of nectin and nectin-like proteins in tumor immunosurveillance. Semin. Cancer Biol. 16, 359–366 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Tahara-Hanaoka, S. et al. Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int. Immunol. 16, 533–538 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Manieri, N. A., Chiang, E. Y. & Grogan, J. L. TIGIT: a key inhibitor of the cancer immunity cycle. Trends Immunol. 38, 20–28 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Lozano, E., Dominguez-Villar, M., Kuchroo, V. & Hafler, D. A. The TIGIT/CD226 axis regulates human T cell function. J. Immunol. 188, 3869–3875 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Rodriguez-Abreu, D. et al. Primary analysis of a randomized, double-blind, phase II study of the anti-TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first-line (1L) treatment in patients with PD-L1-selected NSCLC (CITYSCAPE) [abstract]. J. Clin. Oncol. 38 (Suppl. 15), 9503 (2020).

    Article  Google Scholar 

  125. Ahn, M. J. et al. Vibostolimab, an anti-TIGIT antibody, as monotherapy and in combination with pembrolizumab in anti-PD-1/PD-L1-refractory NSCLC [abstract 1400P]. Ann. Oncol. 31 (Suppl. 4), S887 (2020).

    Article  Google Scholar 

  126. Harjunpää, H. & Guillerey, C. TIGIT as an emerging immune checkpoint. Clin. Exp. Immunol. 200, 108–119 (2020).

    Article  PubMed  Google Scholar 

  127. Gavrieli, M., Watanabe, N., Loftin, S. K., Murphy, T. L. & Murphy, K. M. Characterization of phosphotyrosine binding motifs in the cytoplasmic domain of B and T lymphocyte attenuator required for association with protein tyrosine phosphatases SHP-1 and SHP-2. Biochem. Biophys. Res. Commun. 312, 1236–1243 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Toor, S. M., Sasidharan Nair, V., Decock, J. & Elkord, E. Immune checkpoints in the tumor microenvironment. Semin. Cancer Biol. 65, 1–12 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Jiang, Y., Li, Y. & Zhu, B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 6, e1792 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sedy, J. R. et al. B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat. Immunol. 6, 90–98 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Teijeira, A. et al. Metabolic consequences of T-cell costimulation in anticancer immunity. Cancer Immunol. Res. 7, 1564–1569 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Reznik, E. et al. A landscape of metabolic variation across tumor types. Cell Syst. 6, 301–313.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chang, C. H. & Pearce, E. L. Emerging concepts of T cell metabolism as a target of immunotherapy. Nat. Immunol. 17, 364–368 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zappasodi, R. et al. CTLA-4 blockade drives loss of Treg stability in glycolysis-low tumours. Nature 591, 652–658 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Watson, M. J. et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 591, 645–651 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Vardhana, S. A. et al. Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nat. Immunol. 21, 1022–1033 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Allard, B., Allard, D., Buisseret, L. & Stagg, J. The adenosine pathway in immuno-oncology. Nat. Rev. Clin. Oncol. 17, 611–629 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Effendi, W. I., Nagano, T., Kobayashi, K. & Nishimura, Y. Focusing on adenosine receptors as a potential targeted therapy in human diseases. Cells 9, 785 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  140. Leone, R. D. & Emens, L. A. Targeting adenosine for cancer immunotherapy. J. Immunother. Cancer 6, 57 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Manji, G. A. et al. ARC-8: phase I/Ib study to evaluate safety and tolerability of AB680 + chemotherapy + zimberelimab (AB122) in patients with treatment-naive metastatic pancreatic adenocarcinoma (mPDAC) [abstract]. J. Clin. Oncol. 39 (Suppl. 3), 404 (2021).

    Article  Google Scholar 

  142. Munn, D. H. et al. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 189, 1363–1372 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. O’Sullivan, D., Sanin, D. E., Pearce, E. J. & Pearce, E. L. Metabolic interventions in the immune response to cancer. Nat. Rev. Immunol. 19, 324–335 (2019).

    Article  PubMed  Google Scholar 

  144. Gutiérrez-Vázquez, C. & Quintana, F. J. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity 48, 19–33 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Krähenbühl, L. et al. A longitudinal analysis of IDO and PDL1 expression during immune- or targeted therapy in advanced melanoma. Neoplasia 20, 218–225 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Felip, E. et al. Initial results from a phase II study (TACTI-002) in metastatic non-small cell lung or head and neck carcinoma patients receiving eftilagimod alpha (soluble LAG-3 protein) and pembrolizumab [abstract]. J. Clin. Oncol. 38 (Suppl. 15), 3100 (2020).

    Article  Google Scholar 

  147. Mullard, A. IDO takes a blow. Nat. Rev. Drug Discov. 17, 307 (2018).

    PubMed  Google Scholar 

  148. Long, G. V. et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 20, 1083–1097 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Svane, I., Kjeldsen, J., Lorentzen, C., Martinenaite, E. & Andersen, M. LBA48 clinical efficacy and immunity of combination therapy with nivolumab and IDO/PD-L1 peptide vaccine in patients with metastatic melanoma: A phase I/II trial [abstract]. Ann. Oncol. 31 (Suppl. 4), 1176 (2020).

    Article  Google Scholar 

  150. Wang, K. et al. An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells. Cancer Lett. 340, 63–71 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chang, J. T., Chang, H., Chen, P. H., Lin, S. L. & Lin, P. Requirement of aryl hydrocarbon receptor overexpression for CYP1B1 up-regulation and cell growth in human lung adenocarcinomas. Clin. Cancer Res. 13, 38–45 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Liu, Z. et al. AhR expression is increased in hepatocellular carcinoma. J. Mol. Histol. 44, 455–461 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. DiNatale, B. C., Schroeder, J. C. & Perdew, G. H. Ah receptor antagonism inhibits constitutive and cytokine inducible IL6 production in head and neck tumor cell lines. Mol. Carcinog. 50, 173–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Koundouros, N. & Poulogiannis, G. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer 122, 4–22 (2020).

    Article  CAS  PubMed  Google Scholar 

  155. Zou, Z., Tao, T., Li, H. & Zhu, X. mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges. Cell Biosci. 10, 31 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Buzzai, M. et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 67, 6745–6752 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Scharping, N. E., Menk, A. V., Whetstone, R. D., Zeng, X. & Delgoffe, G. M. Efficacy of PD-1 blockade is potentiated by metformin-induced reduction of tumor hypoxia. Cancer Immunol. Res. 5, 9–16 (2017).

    Article  CAS  PubMed  Google Scholar 

  158. Li, L. et al. Metformin-induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancer. Cancer Res. 78, 1779–1791 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang, S. et al. Low-dose metformin reprograms the tumor immune microenvironment in human esophageal cancer: results of a phase II clinical trial. Clin. Cancer Res. 26, 4921–4932 (2020).

    Article  CAS  PubMed  Google Scholar 

  160. Curry, J. M. et al. Metformin clinical trial in HPV+ and HPV– head and neck squamous cell carcinoma: impact on cancer cell apoptosis and immune infiltrate. Front. Oncol. 8, 436 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Coyle, C., Cafferty, F. H., Vale, C. & Langley, R. E. Metformin as an adjuvant treatment for cancer: a systematic review and meta-analysis. Ann. Oncol. 27, 2184–2195 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Scharping, N. E. et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat. Immunol. 22, 205–215 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Turbitt, W. J., Buchta Rosean, C., Weber, K. S. & Norian, L. A. Obesity and CD8 T cell metabolism: implications for anti-tumor immunity and cancer immunotherapy outcomes. Immunol. Rev. 295, 203–219 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Lakins, M. A. et al. FS222, a CD137/PD-L1 tetravalent bispecific antibody, exhibits low toxicity and antitumor activity in colorectal cancer models. Clin. Cancer Res. 26, 4154–4167 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Khair, D. O. et al. Combining immune checkpoint inhibitors: established and emerging targets and strategies to improve outcomes in Melanoma. Front. Immunol. 10, 453 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by the Ludwig Institute for Cancer Research, NIH/NCI Cancer Center Support Grant P30 CA008748, the Parker Institute for Cancer Immunotherapy and Swim Across America. The work of L.K. is also supported by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of the preparation of the manuscript.

Corresponding author

Correspondence to Taha Merghoub.

Ethics declarations

Competing interests

S.E. has acted as a consultant for Cabaletta Bio. J.D.W. has acted as a consultant for Adaptive Biotech, Amgen, Apricity, Arsenal IO, Ascentage Pharma, Astellas, AstraZeneca, Bayer, Beigene, Boehringer Ingelheim, Bristol Myers Squibb, Celgene, Chugai, Daiichi Sankyo, Dragonfly, Eli Lilly, Elucida, F Star, Georgiamune, Idera, Imvaq, Kyowa Hakko Kirin, Linneaus, Maverick Therapeutics, Merck, Neon Therapeutics, Polynoma, Psioxus, Recepta, Sellas, Serametrix, Surface Oncology, Syndax, Syntalogic, Takara Bio, Trieza, Truvax, Trishula and Werewolf Therapeutics, has received research funding from Bristol Myers Squibb and Sephora, holds equity in Adaptive Biotechnologies, Apricity, Arsenal IO, Beigene, Georgiamune, Imvaq, Linneaus and Tizona Pharmaceuticals, and is listed as a co-inventor on patents relating to the use of anti-CD40 agonistic monoclonal antibodies fused with monophosphoryl lipid A (MPL) for cancer therapy, alphavirus replicon particles expressing TRP2, anti-PD-1 antibodies, anti-CTLA4 antibodies, anti-GITR antibodies and methods of use thereof, CAR T cells targeting differentiation antigens as a means to treat cancer, engineered vaccinia viruses for cancer immunotherapy, identifying and treating patients at risk of checkpoint blockade-associated colitis, genomic signatures to identify responders to ipilimumab in melanoma, immunosuppressive follicular helper-like T cells modulated by immune-checkpoint blockade and phosphatidylserine-targeting agents and uses thereof for adoptive T cell therapies, myeloid-derived suppressor cell (MDSC) assays, Newcastle Disease viruses for cancer therapy, and xenogeneic DNA vaccines. T.M. has acted as a consultant for Immunogenesis, Immunos Therapeutics and Pfizer, has received research support from Adaptive Biotechnologies, Aprea, Bristol Myers Squibb, Infinity Pharmaceuticals, Kyn Therapeutics, Leap Therapeutics, Peregrine Pharmaceuticals and Surface Oncology, is listed as a co-inventor on patents relating to the use of oncolytic viral therapy, alphavirus-based vaccines, antibodies targeting CD40, GITR, OX40, PD-1 and CTLA-4 and neo-antigen modelling, and is a cofounder of and holds an equity in IMVAQ Therapeutics. L.K. and C.-H.W. declare no competing interests.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks D. Johnson, E. Newell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraehenbuehl, L., Weng, CH., Eghbali, S. et al. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat Rev Clin Oncol 19, 37–50 (2022). https://doi.org/10.1038/s41571-021-00552-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-021-00552-7

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer