Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synthetic techniques for thermodynamically disfavoured substituted six-membered rings

Abstract

Six-membered rings are ubiquitous structural motifs in bioactive compounds and multifunctional materials. Notably, their thermodynamically disfavoured isomers, like disubstituted cyclohexanes featuring one substituent in an equatorial position and the other in an axial position, often exhibit enhanced physical and biological activities in comparison with their opposite isomers. However, the synthesis of thermodynamically disfavoured isomers is, by its nature, challenging, with only a limited number of possible approaches. In this Review, we summarize and compare synthetic methodologies that produce substituted six-membered rings with thermodynamically disfavoured substitution patterns. We place particular emphasis on elucidating the crucial stereoinduction factors within each transformation. Our aim is to stimulate interest in the synthesis of these unique structures, while simultaneously providing synthetic chemists with a guide to approaching this synthetic challenge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison between thermodynamically favoured and disfavoured disubstituted cyclohexanes.
Fig. 2: Hydrogenation reactions for the synthesis of thermodynamically disfavoured cyclohexanes.
Fig. 3: Metal-catalysed hydrogenation of substituted arenes.
Fig. 4: Transition metal-catalysed functionalization of alkenes.
Fig. 5: Diels–Alder cyclization reactions, and metal-catalysed and photo-promoted cyclization reactions.
Fig. 6: C–H functionalizations of substituted cyclohexanes.
Fig. 7: Synthesis of thermodynamically disfavoured substituted piperidines.

Similar content being viewed by others

References

  1. Sauer, W. H. B. & Schwarz, M. K. Molecular shape diversity of combinatorial libraries: a prerequisite for broad bioactivity. J. Chem. Inf. Comput. Sci. 43, 987–1003 (2003).

    CAS  PubMed  Google Scholar 

  2. Ishikawa, M. & Hashimoto, Y. Improvement in aqueous solubility in small molecule drug discovery programs by disruption of molecular planarity and symmetry. J. Med. Chem. 54, 1539–1554 (2011).

    CAS  PubMed  Google Scholar 

  3. Subbaiah, M. A. M. & Meanwell, N. A. Bioisosteres of the phenyl ring: recent strategic applications in lead optimization and drug design. J. Med. Chem. 64, 14046–14128 (2021).

    CAS  PubMed  Google Scholar 

  4. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    CAS  PubMed  Google Scholar 

  5. Epplin, R. C. et al. [2]-Ladderanes as isosteres for meta-substituted aromatic rings and rigidified cyclohexanes. Nat. Commun. 13, 6056 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dong, W. et al. Exploiting the sp2 character of bicyclo[1.1.1]pentyl radicals in the transition-metal-free multi-component difunctionalization of [1.1.1]propellane. Nat. Chem. 14, 1068–1077 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Frank, N. et al. Synthesis of meta-substituted arene bioisosteres from [3.1.1]propellane. Nature 611, 721–726 (2022).

    CAS  PubMed  Google Scholar 

  8. Zhang, X. et al. Copper-mediated synthesis of drug-like bicyclopentanes. Nature 580, 220–226 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wiesenfeldt, M. P. et al. General access to cubanes as benzene bioisosteres. Nature 618, 513–518 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Aldeghi, M., Malhotra, S., Selwood, D. L. & Chan, A. W. E. Two‐ and three‐dimensional rings in drugs. Chem. Biol. Drug Des. 83, 450–461 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Brameld, K. A., Kuhn, B., Reuter, D. C. & Stahl, M. Small molecule conformational preferences derived from crystal structure data. A medicinal chemistry focused analysis. J. Chem. Inf. Model. 48, 1–24 (2008).

    CAS  PubMed  Google Scholar 

  12. Thaler, T. et al. Highly diastereoselective Csp3–Csp2 Negishi cross-coupling with 1,2-, 1,3- and 1,4-substituted cycloalkylzinc compounds. Nat. Chem. 2, 125–130 (2010).

    CAS  PubMed  Google Scholar 

  13. Havale, S. H. & Pal, M. Medicinal chemistry approaches to the inhibition of dipeptidyl peptidase-4 for the treatment of type 2 diabetes. Bioorg. Med. Chem. 17, 1783–1802 (2009).

    CAS  PubMed  Google Scholar 

  14. Simonin, C. et al. Optimization of TRPV6 calcium channel inhibitors using a 3D ligand‐based virtual screening method. Angew. Chem. Int. Ed. 54, 14748–14752 (2015).

    CAS  Google Scholar 

  15. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    CAS  PubMed  Google Scholar 

  16. Johnson, R. A. Conformations of alkylpiperidine amides. J. Org. Chem. 33, 3627–3632 (1968).

    CAS  Google Scholar 

  17. Reymond, S. & Cossy, J. Copper-catalyzed Diels–Alder reactions. Chem. Rev. 108, 5359–5406 (2008).

    CAS  PubMed  Google Scholar 

  18. Masson, G., Lalli, C., Benohoud, M. & Dagousset, G. Catalytic enantioselective [4 + 2]-cycloaddition: a strategy to access aza-hexacycles. Chem. Soc. Rev. 42, 902–923 (2013).

    CAS  PubMed  Google Scholar 

  19. Mu, X., Shibata, Y., Makida, Y. & Fu, G. C. Control of vicinal stereocenters through nickel-catalyzed alkyl–alkyl cross-coupling. Angew. Chem. Int. Ed. 56, 5821–5824 (2017).

    CAS  Google Scholar 

  20. Li, J., Ren, Q., Cheng, X., Karaghiosoff, K. & Knochel, P. Chromium(II)-catalyzed diastereoselective and chemoselective Csp3–Csp2 cross-couplings using organomagnesium reagents. J. Am. Chem. Soc. 141, 18127–18135 (2019).

    CAS  PubMed  Google Scholar 

  21. Gärtner, D., Welther, A., Rad, B. R., Wolf, R. & Jacobi von Wangelin, A. Heteroatom-free arene-cobalt and arene-iron catalysts for hydrogenations. Angew. Chem. Int. Ed. 53, 3722–3726 (2014).

    Google Scholar 

  22. Iwasaki, K., Wan, K. K., Oppedisano, A., Crossley, S. W. M. & Shenvi, R. A. Simple, chemoselective hydrogenation with thermodynamic stereocontrol. J. Am. Chem. Soc. 136, 1300–1303 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Peters, B. K. et al. Enantio- and regioselective Ir-catalyzed hydrogenation of di- and trisubstituted cycloalkenes. J. Am. Chem. Soc. 138, 11930–11935 (2016).

    CAS  PubMed  Google Scholar 

  24. Mendelsohn, L. N. et al. Visible-light-enhanced cobalt-catalyzed hydrogenation: switchable catalysis enabled by divergence between thermal and photochemical pathways. ACS Catal. 11, 1351–1360 (2021).

    CAS  Google Scholar 

  25. Green, S. A., Vásquez-Céspedes, S. & Shenvi, R. A. Iron–nickel dual-catalysis: a new engine for olefin functionalization and the formation of quaternary centers. J. Am. Chem. Soc. 140, 11317–11324 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Siegel, S. & Dmuchovsky, B. Stereochemistry and the mechanism of hydrogenation of cyclo-alkenes. IV. 4-Tert-butyl-1-methylcyclohexene and 4-tert-butyl-1-methylenecyclohexane on platinum oxide and a palladium catalyst. J. Am. Chem. Soc. 84, 3132–3136 (1962).

    CAS  Google Scholar 

  27. Molander, G. A. & Winterfeld, J. Organolanthanide catalyzed hydrogenation and hydrosilylation of substituted methylenecycloalkanes. J. Organomet. Chem. 524, 275–279 (1996).

    CAS  Google Scholar 

  28. Gu, Y. et al. Highly selective hydrogenation of C=C bonds catalyzed by a rhodium hydride. J. Am. Chem. Soc. 143, 9657–9663 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Brown, H. C. & Krishnamurthy, S. Lithium tri-sec-butylborohydride. New reagent for the reduction of cyclic and bicyclic ketones with super stereoselectivity. Remarkably simple and practical procedure for the conversion of ketones to alcohols in exceptionally high stereochemical purity. J. Am. Chem. Soc. 94, 7159–7161 (1972).

    CAS  Google Scholar 

  30. Brown, C. A. Kaliation. II. Rapid quantitative reaction of potassium hydride with weak Lewis acids. Highly convenient new route to hindered complex borohydrides. J. Am. Chem. Soc. 95, 4100–4102 (1973).

    CAS  Google Scholar 

  31. Krishnamurthy, S. & Brown, H. C. Lithium trisiamylborohydride. A new sterically hindered reagent for the reduction of cyclic ketones with exceptional stereoselectivity. J. Am. Chem. Soc. 98, 3383–3384 (1976).

    CAS  Google Scholar 

  32. Zhong, R., Wei, Z., Zhang, W., Liu, S. & Liu, Q. A practical and stereoselective in situ NHC-cobalt catalytic system for hydrogenation of ketones and aldehydes. Chem 5, 1552–1566 (2019).

    CAS  Google Scholar 

  33. Xie, J.-H. et al. RuII-SDP-complex-catalyzed asymmetric hydrogenation of ketones. Effect of the alkali metal cation in the reaction. J. Org. Chem. 70, 2967–2973 (2005).

    CAS  PubMed  Google Scholar 

  34. Hudlicky, T. Introduction to enzymes in synthesis. Chem. Rev. 111, 3995–3997 (2011).

    CAS  PubMed  Google Scholar 

  35. Lloyd, M. D. et al. Racemases and epimerases operating through a 1,1-proton transfer mechanism: reactivity, mechanism and inhibition. Chem. Soc. Rev. 50, 5952–5984 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Luan, P. et al. Design of de novo three-enzyme nanoreactors for stereodivergent synthesis of α-substituted cyclohexanols. ACS Catal. 12, 7550–7558 (2022).

    CAS  Google Scholar 

  37. DeHovitz, J. S. et al. Static to inducibly dynamic stereocontrol: the convergent use of racemic β-substituted ketones. Science 369, 1113–1118 (2020). This work discloses a photo/enzyme synergistic catalysis strategy for the transformation of β-substituted ketones into stereodefined 1,3-trans γ-substituted alcohols via dynamic kinetic resolution.

    CAS  PubMed  Google Scholar 

  38. France, S. P., Hepworth, L. J., Turner, N. J. & Flitsch, S. L. Constructing biocatalytic cascades: in vitro and in vivo approaches to de novo multi-enzyme pathways. ACS Catal. 7, 710–724 (2016).

    Google Scholar 

  39. Shi, J. et al. Bioinspired construction of multi-enzyme catalytic systems. Chem. Soc. Rev. 47, 4295–4313 (2018).

    CAS  PubMed  Google Scholar 

  40. Thorpe, T. W. et al. Multifunctional biocatalyst for conjugate reduction and reductive amination. Nature 604, 86–91 (2022). This work describes a multifunctional enzyme that can achieve the assembly of thermodynamically disfavoured stereodefined cyclohexanes with 1,2-cis or 1,3-trans substitution pattern.

    CAS  PubMed  Google Scholar 

  41. Charvillat, T. et al. Hydrogenation of fluorinated molecules: an overview. Chem. Soc. Rev. 50, 8178–8192 (2021).

    CAS  PubMed  Google Scholar 

  42. Preuster, P., Papp, C. & Wasserscheid, P. Liquid organic hydrogen carriers (LOHCs): toward a hydrogen-free hydrogen economy. Acc. Chem. Res. 50, 74–85 (2017).

    CAS  PubMed  Google Scholar 

  43. Liu, W., Sahoo, B., Junge, K. & Beller, M. Cobalt complexes as an emerging class of catalysts for homogeneous hydrogenations. Acc. Chem. Res. 51, 1858–1869 (2018).

    CAS  PubMed  Google Scholar 

  44. Wertjes, W. C., Southgate, E. H. & Sarlah, D. Recent advances in chemical dearomatization of nonactivated arenes. Chem. Soc. Rev. 47, 7996–8017 (2018).

    CAS  PubMed  Google Scholar 

  45. Wiesenfeldt, M. P., Nairoukh, Z., Dalton, T. & Glorius, F. Selective arene hydrogenation for direct access to saturated carbo- and heterocycles. Angew. Chem. Int. Ed. 58, 10460–10476 (2019).

    CAS  Google Scholar 

  46. Luckemeier, L., Pierau, M. & Glorius, F. Asymmetric arene hydrogenation: towards sustainability and application. Chem. Soc. Rev. 52, 4996–5012 (2023).

    PubMed  PubMed Central  Google Scholar 

  47. Besson, M., Neto, S. & Pinel, C. Diastereoselective hydrogenation of o-toluic acid derivatives over supported rhodium and ruthenium heterogeneous catalysts. Chem. Commun. 1998, 1431–1432 (1998).

    Google Scholar 

  48. Stalzer, M. M. et al. Single‐face/all‐cis arene hydrogenation by a supported single‐site d0 organozirconium catalyst. Angew. Chem. Int. Ed. 55, 5263–5267 (2016).

    CAS  Google Scholar 

  49. Wei, Y., Rao, B., Cong, X. & Zeng, X. Highly selective hydrogenation of aromatic ketones and phenols enabled by cyclic (amino)(alkyl)carbene rhodium complexes. J. Am. Chem. Soc. 137, 9250–9253 (2015).

    CAS  PubMed  Google Scholar 

  50. Wiesenfeldt, M. P., Nairoukh, Z., Li, W. & Glorius, F. Hydrogenation of fluoroarenes: direct access to all-cis-(multi)fluorinated cycloalkanes. Science 357, 908–912 (2017). This article reports a synthetic strategy for the hydrogenation of fluoroarenes to access 1,2-cis and 1,4-cis fluorinated cycloalkanes with good-to-excellent diastereoselectivity.

    CAS  PubMed  Google Scholar 

  51. Wiesenfeldt, M. P., Knecht, T., Schlepphorst, C. & Glorius, F. Silylarene hydrogenation: a strategic approach that enables direct access to versatile silylated saturated carbo‐ and heterocycles. Angew. Chem. Int. Ed. 57, 8297–8300 (2018).

    CAS  Google Scholar 

  52. Ling, L., He, Y., Zhang, X., Luo, M. & Zeng, X. Hydrogenation of (hetero)aryl boronate esters with a cyclic (alkyl)(amino)carbene–rhodium complex: direct access to cis‐substitute borylated cycloalkanes and saturated heterocycles. Angew. Chem. Int. Ed. 58, 6554–6558 (2019).

    CAS  Google Scholar 

  53. Kaithal, A. et al. Cis-selective hydrogenation of aryl germanes: a direct approach to access saturated carbo- and heterocyclic germanes. J. Am. Chem. Soc. 145, 4109–4118 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu, H. et al. Asymmetric full saturation of vinylarenes with cooperative homogeneous and heterogeneous rhodium catalysis. J. Am. Chem. Soc. 143, 20377–20383 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. McDonald, R. I., Liu, G. & Stahl, S. S. Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. Chem. Rev. 111, 2981–3019 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yin, G., Mu, X. & Liu, G. Palladium(II)-catalyzed oxidative difunctionalization of alkenes: bond forming at a high-valent palladium center. Acc. Chem. Res. 49, 2413–2423 (2016).

    CAS  PubMed  Google Scholar 

  57. Li, Z.-L., Fang, G.-C., Gu, Q.-S. & Liu, X.-Y. Recent advances in copper-catalysed radical-involved asymmetric 1,2-difunctionalization of alkenes. Chem. Soc. Rev. 49, 32–48 (2020).

    CAS  PubMed  Google Scholar 

  58. Qi, X. & Diao, T. Nickel-catalyzed dicarbofunctionalization of alkenes. ACS Catal. 10, 8542–8556 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hong, K. & Morken, J. P. Catalytic enantioselective diboration of cyclic dienes. A modified ligand with general utility. J. Org. Chem. 76, 9102–9108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Larock, R. C., Lu, Y. D., Bain, A. C. & Russell, C. E. Palladium-catalyzed coupling of aryl iodides, nonconjugated dienes and carbon nucleophiles by palladium migration. J. Org. Chem. 56, 4589–4590 (1991).

    CAS  Google Scholar 

  61. Larock, R. C. et al. Palladium-catalyzed annulation of 1,4-dienes using ortho-functionally-substituted aryl halides. J. Org. Chem. 58, 4509–4510 (1993).

    CAS  Google Scholar 

  62. Larock, R. C., Wang, Y., Lu, Y. & Russell, C. A. Synthesis of aryl-substituted allylic amines via palladium-catalyzed coupling of aryl iodides, nonconjugated dienes, and amines. J. Org. Chem. 59, 8107–8114 (1994).

    CAS  Google Scholar 

  63. Zhu, D. et al. Asymmetric three-component Heck arylation/amination of nonconjugated cyclodienes. Angew. Chem. Int. Ed. 59, 5341–5345 (2020).

    CAS  Google Scholar 

  64. Gurak, J. A. Jr, Yang, K. S., Liu, Z. & Engle, K. M. Directed, regiocontrolled hydroamination of unactivated alkenes via protodepalladation. J. Am. Chem. Soc. 138, 5805–5808 (2016).

    CAS  PubMed  Google Scholar 

  65. Chen, C., Guo, W., Qiao, D. & Zhu, S. Synthesis of enantioenriched 1,2-cis disubstituted cycloalkanes by convergent NiH catalysis. Angew. Chem. Int. Ed. 62, e202308320 (2023).

    CAS  Google Scholar 

  66. Li, Y. et al. Modular access to substituted cyclohexanes with kinetic stereocontrol. Science 376, 749–753 (2022). This report describes a novel and modular strategy for the assembly of substituted cyclohexanes with kinetic stereocontrol via nickel catalysis. The installation of boronic acid pinacol ester group is the key to these excellent stereochemical outcomes.

    CAS  PubMed  Google Scholar 

  67. Diels, O. & Alder, K. Über die Ursachen der “Azoesterreaktion” [in German]. Justus Liebigs Ann. Chem. 450, 237–254 (1926).

    CAS  Google Scholar 

  68. Oppolzer, W. Asymmetric Diels-Alder and ene reactions in organic synthesis. New synthetic methods(48). Angew. Chem. Int. Ed. 23, 876–889 (1984).

    Google Scholar 

  69. Corey, E. J. Catalytic enantioselective Diels–Alder reactions: methods, mechanistic fundamentals, pathways, and applications. Angew. Chem. Int. Ed. 41, 1650–1667 (2002).

    CAS  Google Scholar 

  70. Denmark, S. E. & Thorarensen, A. Tandem [4 + 2]/[3 + 2] cycloadditions of nitroalkenes. Chem. Rev. 96, 137–166 (1996).

    CAS  PubMed  Google Scholar 

  71. Cativiela, C., García, J. I., Mayoral, J. A. & Salvatella, L. Modelling of solvent effects on the Diels–Alder reaction. Chem. Soc. Rev. 25, 209–218 (1996).

    Google Scholar 

  72. Behforouz, M. & Ahmadian, M. Diels–Alder reactions of 1-azadienes. Tetrahedron 56, 5259–5288 (2000).

    CAS  Google Scholar 

  73. Buonora, P., Olsen, J.-C. & Oh, T. Recent developments in imino Diels–Alder reactions. Tetrahedron 57, 6099–6138 (2001).

    CAS  Google Scholar 

  74. Needleman, S. B. & Kuo, M. C. C. Diels–Alder syntheses with heteroatomic compounds. Chem. Rev. 62, 405–431 (1962).

    CAS  Google Scholar 

  75. Jiang, X. & Wang, R. Recent developments in catalytic asymmetric inverse-electron-demand Diels–Alder reaction. Chem. Rev. 113, 5515–5546 (2013).

    CAS  PubMed  Google Scholar 

  76. Ahrendt, K. A., Borths, C. J. & MacMillan, D. W. C. New strategies for organic catalysis:  the first highly enantioselective organocatalytic Diels–Alder reaction. J. Am. Chem. Soc. 122, 4243–4244 (2000). This work is the first example of enantioselective organocatalytic Diels–Alder reaction.

    CAS  Google Scholar 

  77. He, M., Struble, J. R. & Bode, J. W. Highly enantioselective azadiene Diels–Alder reactions catalyzed by chiral N-heterocyclic carbenes. J. Am. Chem. Soc. 128, 8418–8420 (2006).

    CAS  PubMed  Google Scholar 

  78. Brachet, E. & Belmont, P. Inverse electron demand Diels-Alder (IEDDA) reactions: synthesis of heterocycles and natural products along with bioorthogonal and material sciences applications. Curr. Org. Chem. 20, 2136–2160 (2016).

    CAS  Google Scholar 

  79. He, M., Uc, G. J. & Bode, J. W. Chiral N-heterocyclic carbene catalyzed, enantioselective oxodiene Diels–Alder reactions with low catalyst loadings. J. Am. Chem. Soc. 128, 15088–15089 (2006).

    CAS  PubMed  Google Scholar 

  80. He, M., Beahm, B. J. & Bode, J. W. Chiral NHC-catalyzed oxodiene Diels–Alder reactions with α-chloroaldehyde bisulfite salts. Org. Lett. 10, 3817–3820 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhao, X., Ruhl, K. E. & Rovis, T. N-heterocyclic-carbene-catalyzed asymmetric oxidative hetero-Diels–Alder reactions with simple aliphatic aldehydes. Angew. Chem. Int. Ed. 51, 12330–12333 (2012).

    CAS  Google Scholar 

  82. Zhu, X.-Q., Wang, Q. & Zhu, J. Organocatalytic enantioselective Diels–Alder reaction of 2-trifluoroacetamido-1,3-dienes with α, β-unsaturated ketones. Angew. Chem. Int. Ed. 62, e202214925 (2023). This work achieves an asymmetric cyclization reaction utilizing 2-trifluoroacetamido-1,3-dienes and α, β-unsaturated ketones as starting materials through chiral phosphoric acid catalysis.

    CAS  Google Scholar 

  83. Yamamoto, Y. & Yamamoto, H. Catalytic asymmetric nitroso-Diels–Alder reaction with acyclic dienes. Angew. Chem. Int. Ed. 44, 7082–7085 (2005).

    CAS  Google Scholar 

  84. Zhu, C., Liu, J., Mai, B. K., Himo, F. & Backvall, J. E. Efficient stereoselective carbocyclization to cis-1,4-disubstituted heterocycles enabled by dual Pd/electron transfer mediator (ETM) catalysis. J. Am. Chem. Soc. 142, 5751–5759 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Fujii, K. et al. Stereoselective cyclohexadienylamine synthesis through rhodium-catalysed [2 + 2 + 2] cyclotrimerization. Nat. Synth. 1, 365–375 (2022).

    Google Scholar 

  86. Shimotsukue, R., Fujii, K., Sato, Y., Nagashima, Y. & Tanaka, K. Rhodium‐catalyzed chemo‐, regio‐, diastereo‐, and enantioselective intermolecular [2 + 2 + 2] cycloaddition of three unsymmetric 2π components. Angew. Chem. Int. Ed. 62, e202301346 (2023).

    CAS  Google Scholar 

  87. Pape, A. R., Kaliappan, K. P. & Kündig, E. P. Transition-metal-mediated dearomatization reactions. Chem. Rev. 100, 2917–2940 (2000).

    CAS  PubMed  Google Scholar 

  88. Zhuo, C.-X., Zheng, C. & You, S.-L. Transition-metal-catalyzed asymmetric allylic dearomatization reactions. Acc. Chem. Res. 47, 2558–2573 (2014).

    CAS  PubMed  Google Scholar 

  89. Wu, W.-T., Zhang, L. & You, S.-L. Catalytic asymmetric dearomatization (CADA) reactions of phenol and aniline derivatives. Chem. Soc. Rev. 45, 1570–1580 (2016).

    CAS  PubMed  Google Scholar 

  90. Cheng, Y.-Z., Feng, Z., Zhang, X. & You, S.-L. Visible-light induced dearomatization reactions. Chem. Soc. Rev. 51, 2145–2170 (2022).

    CAS  PubMed  Google Scholar 

  91. Okumura, M., Nakamata Huynh, S. M., Pospech, J. & Sarlah, D. Arenophile-mediated dearomative reduction. Angew. Chem. Int. Ed. 55, 15910–15914 (2016).

    CAS  Google Scholar 

  92. Okumura, M., Shved, A. S. & Sarlah, D. Palladium-catalyzed dearomative syn-1,4-carboamination. J. Am. Chem. Soc. 139, 17787–17790 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wasa, M. et al. Ligand-enabled methylene C(sp3)–H bond activation with a Pd(II) catalyst. J. Am. Chem. Soc. 134, 18570–18572 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. He, J., Wasa, M., Chan, K. S. & Yu, J. Q. Palladium(0)-catalyzed alkynylation of C(sp3)–H bonds. J. Am. Chem. Soc. 135, 3387–3390 (2013).

    CAS  PubMed  Google Scholar 

  95. Andrä, M. S. et al. Enantio- and diastereoswitchable C–H arylation of methylene groups in cycloalkanes. Chem. Eur. J. 25, 8503–8507 (2019).

    PubMed  Google Scholar 

  96. Topczewski, J. J., Cabrera, P. J., Saper, N. I. & Sanford, M. S. Palladium-catalysed transannular C–H functionalization of alicyclic amines. Nature 531, 220–224 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Xia, G. et al. Reversing conventional site-selectivity in C(sp3)–H bond activation. Nat. Chem. 11, 571–577 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kang, G., Strassfeld, D. A., Sheng, T., Chen, C. Y. & Yu, J.-Q. Transannular C–H functionalization of cycloalkane carboxylic acids. Nature 618, 519–525 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Coppola, G. A., Pillitteri, S., Van der Eycken, E. V., You, S.-L. & Sharma, U. K. Multicomponent reactions and photo/electrochemistry join forces: atom economy meets energy efficiency. Chem. Soc. Rev. 51, 2313–2382 (2022).

    CAS  PubMed  Google Scholar 

  101. Schultz, D. M. & Yoon, T. P. Solar synthesis: prospects in visible light photocatalysis. Science 343, 985–994 (2014).

    CAS  Google Scholar 

  102. Hossain, A., Bhattacharyya, A. & Reiser, O. Copper’s rapid ascent in visible-light photoredox catalysis. Science 364, 450–461 (2019).

    Google Scholar 

  103. Capaldo, L., Ravelli, D. & Fagnoni, M. Direct photocatalyzed hydrogen atom transfer (HAT) for aliphatic C–H bonds elaboration. Chem. Rev. 122, 1875–1924 (2022).

    CAS  PubMed  Google Scholar 

  104. Bellotti, P., Huang, H.-M., Faber, T. & Glorius, F. Photocatalytic late-stage C–H functionalization. Chem. Rev. 123, 4237–4352 (2023).

    CAS  PubMed  Google Scholar 

  105. Dondi, D. et al. Regio‐ and stereoselectivity in the decatungstate photocatalyzed alkylation of alkenes by alkylcyclohexanes. Chem. Eur. J. 15, 7949–7957 (2009).

    CAS  PubMed  Google Scholar 

  106. Zhang, Y.-A., Gu, X. & Wendlandt, A. E. A change from kinetic to thermodynamic control enables trans-selective stereochemical editing of vicinal diols. J. Am. Chem. Soc. 144, 599–605 (2022).

    CAS  PubMed  Google Scholar 

  107. Kudo, F., Hoshi, S., Kawashima, T., Kamachi, T. & Eguchi, T. Characterization of a radical s-adenosyl-l-methionine epimerase, neon, in the last step of neomycin b biosynthesis. J. Am. Chem. Soc. 136, 13909–13915 (2014).

    CAS  PubMed  Google Scholar 

  108. Wang, Y., Carder, H. M. & Wendlandt, A. E. Synthesis of rare sugar isomers through site-selective epimerization. Nature 578, 403–408 (2020). This study presents a novel approach for the thermodynamically disfavoured site-selective epimerization of biomass-derived precursors into rare sugar isomers. This transformation is achieved through visible light-driven sequential HAT events.

    CAS  PubMed  Google Scholar 

  109. Oswood, C. J. & MacMillan, D. W. C. Selective isomerization via transient thermodynamic control: dynamic epimerization of trans to cis diols. J. Am. Chem. Soc. 144, 93–98 (2022). This work describes a photochemical transient thermodynamic strategy that can achieve the transformation of 1,2-trans cyclic diols to their corresponding thermodynamically unstable 1,2-cis isomers.

    CAS  PubMed  Google Scholar 

  110. Lennox, A. J. J. et al. Electrochemical aminoxyl-mediated α-cyanation of secondary piperidines for pharmaceutical building block diversification. J. Am. Chem. Soc. 140, 11227–11231 (2018). This work describes the electrocatalysed α-C-H cyanation of unprotected piperidines for the construction of thermodynamically disfavoured 2,4-, 2,6-trans disubstituted piperidines.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Chen, K. et al. Functional-group translocation of cyano groups by reversible C–H sampling. Nature 620, 1007–1012 (2023).

    CAS  PubMed  Google Scholar 

  112. Chen, W., Ma, L., Paul, A. & Seidel, D. Direct α-C–H bond functionalization of unprotected cyclic amines. Nat. Chem. 10, 165–169 (2017).

    PubMed  PubMed Central  Google Scholar 

  113. Caramella, P., Rondan, N. G., Paddon-Row, M. N. & Houk, K. N. Origin of .pi.-facial stereoselectivity in additions to .pi.-bonds: generality of the anti-periplanar effect. J. Am. Chem. Soc. 103, 2438–2440 (1981).

    CAS  Google Scholar 

  114. Paul, A. & Seidel, D. α-Functionalization of cyclic secondary amines: Lewis acid promoted addition of organometallics to transient imines. J. Am. Chem. Soc. 141, 8778–8782 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang, B., Ruan, J., Seidel, D. & Chen, W. Palladium‐catalyzed arylation of endocyclic 1‐azaallyl anions: concise synthesis of unprotected enantioenriched cis‐2,3‐diarylpiperidines. Angew. Chem. Int. Ed. 62, e202307638 (2023).

    CAS  Google Scholar 

  116. Paulsen, H. & Todt, K. Magnetic anisotropy of the amide group. Angew. Chem. Int. Ed. 5, 899–900 (1966).

    Google Scholar 

  117. Zhao, H. Modulating conformational preferences by allylic strain toward improved physical properties and binding interactions. ACS Omega 7, 9080–9085 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Seel, S. et al. Highly diastereoselective arylations of substituted piperidines. J. Am. Chem. Soc. 133, 4774–4777 (2011). This work presents a stepwise Pd-catalysed C–H functionalization of piperidines to synthesize thermodynamically disfavoured cis-2,4-substituted piperidines.

    CAS  PubMed  Google Scholar 

  119. Wang, G., Mao, Y. & Liu, L. Diastereoselectively complementary C–H functionalization enables access to structurally and stereochemically diverse 2,6-substituted piperidines. Org. Lett. 18, 6476–6479 (2016).

    CAS  PubMed  Google Scholar 

  120. Larsen, M. A. et al. A modular and diastereoselective [5 + 1] cyclization approach to N-(hetero)aryl piperidines. J. Am. Chem. Soc. 142, 726–732 (2020).

    CAS  PubMed  Google Scholar 

  121. Shen, Z. et al. General light-mediated, highly diastereoselective piperidine epimerization: from most accessible to most stable stereoisomer. J. Am. Chem. Soc. 143, 126–131 (2020).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Natural Science Foundation of China (22122107), the Fundamental Research Funds for Central Universities (2042022kf1023) and Wuhan University for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. and H.S. contributed to the literature search and the preparation of figures. Y.L. and G.Y. wrote the article. All authors contributed to editing the manuscript prior to submission. G.Y. conceived and directed the project.

Corresponding author

Correspondence to Guoyin Yin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Jack Norton, Yanjun Wan and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Shi, H. & Yin, G. Synthetic techniques for thermodynamically disfavoured substituted six-membered rings. Nat Rev Chem 8, 535–550 (2024). https://doi.org/10.1038/s41570-024-00612-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-024-00612-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing