Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Editing of polymer backbones

Abstract

Polymers are at the epicentre of modern technological progress and the associated environmental pollution. Considerations of both polymer functionality and lifecycle are crucial in these contexts, and the polymer backbone — the core of a polymer — is at the root of these considerations. Just as the meaning of a sentence can be altered by editing its words, the function and sustainability of a polymer can also be transformed via the chemical modification of its backbone. Yet, polymer modification has primarily been focused on the polymer periphery. In this Review, we focus on the transformations of the polymer backbone by defining some concepts fundamental to this topic (for example, ‘polymer backbone’ and ‘backbone editing’) and by collecting and categorizing examples of backbone editing scattered throughout a century’s worth of chemical literature, and outline critical directions for further research. In so doing, we lay the foundation for the field of polymer backbone editing and hope to accelerate its development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A timeline of the major contributions to polymer backbone editing.
Fig. 2: Defining polymer backbones and backbone editing through graph representation.
Fig. 3: Key precedents of atom insertions into and deletion from polymer backbones.
Fig. 4: Cycloadditions, side chain cyclizations and multi-cyclization of polymer backbones.
Fig. 5: Chemically and thermally induced de-cyclizations of polymer backbones on multiple substrates.
Fig. 6: Force-induced de-cyclization of mechanophores embedded into polymer backbones.
Fig. 7: Rearrangements of polymer backbones.
Fig. 8: Combinations of elementary backbone edits.

Similar content being viewed by others

References

  1. Sun, H., Kabb, C. P., Sims, M. B. & Sumerlin, B. S. Architecture-transformable polymers: reshaping the future of stimuli-responsive polymers. Prog. Polym. Sci. 89, 61–75 (2019).

    Article  CAS  Google Scholar 

  2. Williamson, J. B., Lewis, S. E., Johnson, R. R., Manning, I. M. & Leibfarth, F. A. C–H functionalization of commodity polymers. Angew. Chem. Int. Ed. 58, 8654–8668 (2019).

    Article  CAS  Google Scholar 

  3. Chen, X. & Michinobu, T. Postpolymerization modification: a powerful tool for the synthesis and function tuning of stimuli‐responsive polymers. Macromol. Chem. Phys. 223, 2100370 (2022).

    Article  CAS  Google Scholar 

  4. Gauthier, M. A., Gibson, M. I. & Klok, H.-A. Synthesis of functional polymers by post-polymerization modification. Angew. Chem. Int. Ed. 48, 48–58 (2009).

    Article  CAS  Google Scholar 

  5. The IUPAC Compendium of Chemical Terminology: The Gold Book (International Union of Pure and Applied Chemistry, 2019).

  6. Jurczyk, J. et al. Single-atom logic for heterocycle editing. Nat. Synth. 1, 352–364 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schmidt, K. F. Über den imin‐rest. Ber. Dtsch. Chem. Ges. A/B 57, 704–706 (1924).

    Article  Google Scholar 

  8. Ravve, A. Study on modification of polymers with the aid of the Schmidt reaction. J. Polym. Sci. A1 Polym. Chem. 6, 2889–2906 (1968).

    Article  CAS  Google Scholar 

  9. Arseniyadis, S., Wagner, A. & Mioskowski, C. A straightforward preparation of amino-polystyrene resin from Merrifield resin. Tetrahedron Lett. 43, 9717–9719 (2002).

    Article  CAS  Google Scholar 

  10. Arseniyadis, S., Wagner, A. & Mioskowski, C. Resin-bound 4-phenyl-1,2-dihydroquinoline (DHQ): a new safety-catch linker for solid-phase organic synthesis (SPOS). Tetrahedron Lett. 45, 2251–2253 (2004).

    Article  CAS  Google Scholar 

  11. Cwikel, D. & Eisenberg, H. Poly‐p‐aminostyrene from polyvinylbenzoic acid by Schmidt reaction in pure sulphuric acid. Isr. J. Chem. 12, 35–46 (1974).

    Article  CAS  Google Scholar 

  12. Van Paesschen, G. Preparation of poly(p-aminostyrene) via the Schmidt rearrangement of poly(p-acetylstyrene). Makromol. Chem. 63, 123–128 (1963).

    Article  Google Scholar 

  13. Niume, K., Toda, F., Uno, K., Hasegawa, M. & Iwakura, Y. Syntheses of polyketones containing tricyclic fused rings and conversion to the polyamides in polyphosphoric acid. J. Polym. Sci. Polym. Chem. Ed. 20, 1965–1970 (1982).

    Article  CAS  Google Scholar 

  14. Michel, R. H. & Murphey, W. A. Intramolecular rearrangements of polyketones. J. Polym. Sci. 55, 741–751 (1961).

    Article  CAS  Google Scholar 

  15. Iwakura, Y., Uno, K. & Takiguchi, T. Syntheses of aromatic polyketones and aromatic polyamide. J. Polym. Sci. A1 Polym. Chem. 6, 3345–3355 (1968).

    Article  CAS  Google Scholar 

  16. Woodward, R. B. & Hoffmann, R. Stereochemistry of electrocyclic reactions. J. Am. Chem. Soc. 87, 395–397 (1965).

    Article  CAS  Google Scholar 

  17. Kosaka, N., Hiyama, T. & Nozaki, K. Baeyer-Villiger oxidation of an optically active 1,4-polyketone. Macromolecules 37, 4484–4487 (2004).

    Article  CAS  Google Scholar 

  18. Hickenboth, C. R. et al. Biasing reaction pathways with mechanical force. Nature 446, 423–427 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Potisek, S. L., Davis, D. A., Sottos, N. R., White, S. R. & Moore, J. S. Mechanophore-linked addition polymers. J. Am. Chem. Soc. 129, 13808–13809 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Ratushnyy, M. & Zhukhovitskiy, A. V. Polymer skeletal editing via anionic Brook rearrangements. J. Am. Chem. Soc. 143, 17931–17936 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Aravindu, K. et al. Poly(arylene vinylene) synthesis via a precursor step-growth polymerization route involving the Ramberg–Bäcklund reaction as a key post-chemical modification step. Macromolecules 51, 5852–5862 (2018).

    Article  CAS  Google Scholar 

  22. Bradbury, J. H. & Perera, M. C. S. Advances in the epoxidation of unsaturated polymers. Ind. Eng. Chem. Res. 27, 2196–2203 (1988).

    Article  CAS  Google Scholar 

  23. Pummer, R. & Burkhard, P. A. Uber kauschuk. Ber. Dtsch. Chem. Ges. 55, 3458–3472 (1922).

    Google Scholar 

  24. Wheelock, C. Epoxidation of liquid polybutadiene. Ind. Eng. Chem. 50, 299–304 (1958).

    Article  CAS  Google Scholar 

  25. Gahagan, M., Iraqi, A., Cupertino, D. C., Mackie, R. K. & Cole-Hamilton, D. J. A high activity molybdenum containing epoxidation catalyst and its use in regioselective epoxidation of polybutadiene. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39890001688 (1989).

    Article  Google Scholar 

  26. Zhang, Q.-W., Elemans, J. A. A. W., White, P. B. & Nolte, R. J. M. A manganese porphyrin–α-cyclodextrin conjugate as an artificial enzyme for the catalytic epoxidation of polybutadiene. Chem. Commun. 54, 5586–5589 (2018).

    Article  CAS  Google Scholar 

  27. Jarvie, A. W. P. Enzymatic epoxidation of polybutadiene. Chem. Commun. https://doi.org/10.1039/A707168J (1998).

    Article  Google Scholar 

  28. Thordarson, P., Bijsterveld, E. J. A., Rowan, A. E. & Nolte, R. J. M. Epoxidation of polybutadiene by a topologically linked catalyst. Nature 424, 915–918 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Urbano, J., Korthals, B., Díaz-Requejo, M. M., Pérez, P. J. & Mecking, S. Catalytic cyclopropanation of polybutadienes. J. Polym. Sci. A Polym. Chem. 48, 4439–4444 (2010).

    Article  CAS  Google Scholar 

  30. Lishanskii, I. S., Tsitokhtsev, V. A. & Vinogradova, N. D. About the reactions of carbenes with unsaturated polymers. Vysokomol. Soedin. 8, 186–187 (1966).

    Google Scholar 

  31. Siddiqui, S. & Cais, R. E. Addition of difluorocarbene to 1,4-polybutadienes. Synthesis and characterization of novel copolymers. Macromolecules 19, 595–603 (1986).

    Article  CAS  Google Scholar 

  32. Cais, R. E., Mirau, P. A. & Siddiqui, S. Two-dimensional N.M.R. studies of polybutadiene adducts with dihalocarbenes. Brit. Polym. J. 19, 189–195 (1987).

    Article  CAS  Google Scholar 

  33. Cais, R. E. & Siddiqui, S. Chemical modification of 1,4-polybutadienes by fluorochlorocarbene. Macromolecules 20, 1004–1012 (1987).

    Article  CAS  Google Scholar 

  34. Ng, H. & Guillet, J. E. Studies of the photocycloaddition of benzophenone to cis-polyisoprene. Macromolecules 10, 866–868 (1977).

    Article  CAS  Google Scholar 

  35. Cetin, M. et al. 1,3-Dipolar and Diels-Alder cycloaddition reactions on polyester backbones possessing internal electron-deficient alkyne moieties. Polym. Chem. 7, 7094–7100 (2016).

    Article  CAS  Google Scholar 

  36. Jones, J. R., Liotta, C. L., Collard, D. M. & Schiraldi, D. A. Cross-linking and modification of poly(ethylene terephthalate-co-2,6-anthracenedicarboxylate) by Diels–Alder reactions with maleimides. Macromolecules 32, 5786–5792 (1999).

    Article  CAS  Google Scholar 

  37. Patel, H. S. & Lad, B. D. Polyimides based on poly(2,5-furandiylmethylene). I. Makromol. Chem. 190, 2055–2061 (1989).

    Article  CAS  Google Scholar 

  38. Patel, H. S., Lad, B. D. & Vyas, H. S. Polyimides based on poly(2,5-furandiylmethylene). II. High. Perform. Polym. 2, 113–120 (1990).

    Article  CAS  Google Scholar 

  39. Laita, H., Boufi, S. & Gandini, A. The application of the Diels-Alder reaction to polymers bearing furan moieties. 1. Reactions with maleimides. Eur. Polym. J. 33, 1203–1211 (1997).

    Article  CAS  Google Scholar 

  40. Edelmann, D. & Ritter, H. Synthesis of telechelics with furanyl end-groups by radical polymerisation with azo-initiators and network formation with unsaturated polyesters via Diels-Alder additions. Makromol. Chem. 194, 1183–1195 (1993).

    Article  CAS  Google Scholar 

  41. Reinecke, M. & Ritter, H. Renewable Resources, 1. Branching and crosslinking of an unsaturated oligoester with furfurylamides and sorbic acid amides via Diels-Alder additions. Makromol. Chem. 194, 2385–2393 (1993).

    Article  CAS  Google Scholar 

  42. Vernon, B. L. & Havens, S. J. Process for crosslinking and extending conjugated diene-containing polymers. US patent 4661558A (1987).

  43. Jones, J. R., Liotta, C. L., Collard, D. M. & Schiraldi, D. A. Photochemical cross-linking of poly(ethylene terephthalate-co-2,6-anthracenedicarboxylate). Macromolecules 33, 1640–1645 (2000).

    Article  CAS  Google Scholar 

  44. You, J., Heo, J. S., Kim, H. O. & Kim, E. Direct photo-patterning on anthracene containing polymer for guiding stem cell adhesion. Biomater. Res. 20, 26 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mack, M. J. & Eisenbach, C. D. Photochromic effects of an anthracene derivative in polyurethane. Mol. Cryst. Liq. Cryst. 431, 397–402 (2005).

    Article  CAS  Google Scholar 

  46. Rameshbabu, K., Kim, Y., Kwon, T., Yoo, J. & Kim, E. Facile one-pot synthesis of a photo patternable anthracene polymer. Tetrahedron Lett. 48, 4755–4760 (2007).

    Article  CAS  Google Scholar 

  47. Sinigersky, V., Müllen, K., Klapper, M. & Schopov, I. Photostructuring and consecutive doping of an anthracene-containing polymer: a new approach towards conductive patterns. Adv. Mater. 12, 1058–1060 (2000).

    Article  CAS  Google Scholar 

  48. Kardelis, V., Denk, M. M. & Adronov, A. Click‐functionalization of a poly(tetrazine‐co‐fluorene)‐conjugated polymer with a series of trans‐cyclooctene derivatives. Angew. Chem. Int. Ed. 60, 2980–2986 (2021).

    Article  CAS  Google Scholar 

  49. Herrmann, W. O. & Haehnel, W. Über den polyvinylalkohol. Ber. Dtsch. Chem. Ges. 60, 1658–1663 (1927).

    Article  Google Scholar 

  50. Knapczyk, J. W. in Kirk-Othmer Encyclopedia of Chemical Technology 1–17 (John Wiley & Sons, 2000).

  51. Rostagno, M., Shen, S., Ghiviriga, I. & Miller, S. A. Sustainable polyvinyl acetals from bioaromatic aldehydes. Polym. Chem. 8, 5049–5059 (2017).

    Article  CAS  Google Scholar 

  52. Su, Y.-K., Coxwell, C. M., Shen, S. & Miller, S. A. Polyvinyl alcohol modification with sustainable ketones. Polym. Chem. 12, 4961–4973 (2021).

    Article  CAS  Google Scholar 

  53. Marvel, C. S. & Levesque, C. L. The structure of vinyl polymers: the polymer from methyl vinyl ketone. J. Am. Chem. Soc. 60, 280–284 (1938).

    Article  CAS  Google Scholar 

  54. Flory, P. J. Intramolecular reaction between neighboring substituents of vinyl polymers. J. Am. Chem. Soc. 61, 1518–1521 (1939).

    Article  CAS  Google Scholar 

  55. Marvel, C. S. & Denoon, C. E. The structure of vinyl polymers. II. Polyvinyl alcohol. J. Am. Chem. Soc. 60, 1045–1051 (1938).

    Article  CAS  Google Scholar 

  56. Marvel, C. S., Dec, J., Cooke, H. G. & Cowan, J. C. Polymers of the α-haloacrylic acids and their derivatives. J. Am. Chem. Soc. 62, 3495–3498 (1940).

    Article  CAS  Google Scholar 

  57. McNally, J. G. & Dyke, R. H. V. Resinous esters and process for preparing them. US patent 2306071A (1942).

  58. Kenyon, W. O., Jr, Murray, T. F. & Minsk, L. M. Deesterification of copolymers of acrylic esters and vinyl esters. US patent 2403004A (1946).

  59. Minsk, L. M. & Kenyon, W. O. The structure of ester-lactone polymers. II. Ester-lactones of poly-α-chloroacrylic acid. J. Am. Chem. Soc. 72, 2650–2654 (1950).

    Article  CAS  Google Scholar 

  60. Smets, G. & Flore, P. Polymer and group interactions. VII. Lactonization of polyethyl α-chloroacrylate. J. Polym. Sci. 35, 519–528 (1959).

    Article  CAS  Google Scholar 

  61. Crauwels, K. & Smets, G. Polymères de la méthacrylamide. Bull. Soc. Chim. Belg. 59, 182–192 (2010).

    Article  Google Scholar 

  62. Vrancken, M. & Smets, G. Polymers and group interactions. I. Synthesis of polyampholytes. J. Polym. Sci. 14, 521–534 (1954).

    Article  CAS  Google Scholar 

  63. Grant, D. H. & Grassie, N. The thermal decomposition of polymethacrylic acid. Polymer 1, 125–134 (1960).

    Article  CAS  Google Scholar 

  64. Ito, S., Wang, W., Nishimura, K. & Nozaki, K. Formal aryne/carbon monoxide copolymerization to form aromatic polyketones/polyketals. Macromolecules 48, 1959–1962 (2015).

    Article  CAS  Google Scholar 

  65. Ito, S., Takahashi, K. & Nozaki, K. Formal aryne polymerization: use of [2.2.1]oxabicyclic alkenes as aryne equivalents. J. Am. Chem. Soc. 136, 7547–7550 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. McGaugh, M. C. & Kottle, S. The thermal degradation of poly(acrylic acid). J. Polym. Sci. B Polym. Lett. 5, 817–820 (1967).

    Article  CAS  Google Scholar 

  67. Bates, C. M. et al. Polarity-switching top coats enable orientation of sub-10-nm block copolymer domains. Science 338, 775–779 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Coates, G. W. & Grubbs, R. H. Quantitative ring-closing metathesis of polyolefins. J. Am. Chem. Soc. 118, 229–230 (1996).

    Article  CAS  Google Scholar 

  69. Alkattan, M., Prunet, J. & Shaver, M. P. Functionalizable stereocontrolled cyclopolyethers by ring-closing metathesis as natural polymer mimics. Angew. Chem. Int. Ed. 57, 12835–12839 (2018).

    Article  CAS  Google Scholar 

  70. Li, X., Chen, S., Zhang, W.-D. & Hu, H.-G. Stapled helical peptides bearing different anchoring residues. Chem. Rev. 120, 10079–10144 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Gunn, R. B., Wieth, J. O. & Tosteson, D. C. Some effects of low pH on chloride exchange in human red blood cells. J. Gen. Physiol. 65, 731–749 (1975).

    Article  CAS  PubMed  Google Scholar 

  72. Hanlon, A. M., Lyon, C. K. & Berda, E. B. What is next in single-chain nanoparticles? Macromolecules 49, 2–14 (2016).

    Article  CAS  Google Scholar 

  73. Alqarni, M. A. M., Waldron, C., Yilmaz, G. & Becer, C. R. Synthetic routes to single chain polymer nanoparticles (SCNPs): current status and perspectives. Macromol. Rapid Commun. 42, 2100035 (2021).

    Article  CAS  Google Scholar 

  74. Van Veersen, G. J. Preparation of cyclized rubber from natural rubber latex. J. Polym. Sci. 6, 29–32 (1951).

    Article  Google Scholar 

  75. Patterson, D. J. & Koenig, J. L. A Fourier transform infrared and nuclear magnetic resonance study of cyclized natural rubber. Makromol. Chem. 188, 2325–2337 (1987).

    Article  CAS  Google Scholar 

  76. Riyajan, S., Liaw, D.-J., Tanaka, Y. & Sakdapipanich, J. T. Cationic cyclization of purified natural rubber in latex form with a trimethylsilyl triflate as a novel catalyst. J. Appl. Polym. Sci. 105, 664–672 (2007).

    Article  CAS  Google Scholar 

  77. Golub, M. A. & Heller, J. The reaction of polyisoprene with titanium tetrachloride. Can. J. Chem. 41, 937–953 (1963).

    Article  CAS  Google Scholar 

  78. Agnihotri, R. K., Falcon, D. & Fredericks, E. C. Cyclization of synthetic cis-1,4-polyisoprene. J. Polym. Sci. A1 Polym. Chem. 10, 1839–1850 (1972).

    Article  CAS  Google Scholar 

  79. Kaszás, G., Puskás, J. E. & Kennedy, J. P. New thermoplastic elastomers of rubbery polyisobutylene and glassy cyclopolyisoprene segments. J. Appl. Polym. Sci. 39, 119–144 (1990).

    Article  Google Scholar 

  80. Lal, J. Novel thermoplastic elastomers via selective modification of conjugated diene block copolymers. Polymer 39, 6183–6186 (1998).

    Article  CAS  Google Scholar 

  81. Abdel-Razik, E. Cyclization of butadiene rubber with Lewis acid/cocatalyst systems. Polymer 29, 1704–1708 (1988).

    Article  CAS  Google Scholar 

  82. Wang, C. In situ cyclization modification in polymerization of butadiene by rare earth coordination catalyst. Mater. Chem. Phys. 89, 116–121 (2005).

    Article  CAS  Google Scholar 

  83. Tanaka, Y., Sato, H. & González, I. G. Determination of cyclicity in cyclized polybutadiene by 1H-NMR. J. Polym. Sci. Polym. Chem. Ed. 17, 3027–3029 (1979).

    Article  CAS  Google Scholar 

  84. Priola, A., Passerini, N., Bruzzone, M. & Cesca, S. Cationic cyclization of cis-1,4-polybutadiene II. Physico-chemical characterization of the polymer. Angew. Makromol. Chem. 88, 21–35 (1980).

    Article  CAS  Google Scholar 

  85. Cai, Y., Lu, J., Jing, G., Yang, W. & Han, B. High-glass-transition-temperature hydrocarbon polymers produced through cationic cyclization of diene polymers with various microstructures. Macromolecules 50, 7498–7508 (2017).

    Article  CAS  Google Scholar 

  86. Cai, Y. et al. Extremely high glass transition temperature hydrocarbon polymers prepared through cationic cyclization of highly 3,4-regulated poly(phenyl-1,3-butadiene). Macromol. Rapid Commun. 39, 1800298 (2018).

    Article  Google Scholar 

  87. Wang, C., Huang, X. & Yang, J. Cationic cyclization of styrene–butadiene rubber. Eur. Polym. J. 37, 1895–1899 (2001).

    Article  CAS  Google Scholar 

  88. Yu, S., Li, L., Gu, J., Su, C. & Wang, J. Studies on photoresists derived from SI cyclized copolymers. J. Photopolym. Sci. Technol. 6, 7–14 (1993).

    Article  CAS  Google Scholar 

  89. Nakahara, A., Satoh, K. & Kamigaito, M. Cycloolefin copolymer analogues from styrene and isoprene: cationic cyclization of the random copolymers prepared by living anionic polymerization. Macromolecules 42, 620–625 (2009).

    Article  CAS  Google Scholar 

  90. Nes, W. D. Biosynthesis of cholesterol and other sterols. Chem. Rev. 111, 6423–6451 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nakahara, A., Satoh, K. & Kamigaito, M. Random copolymer of styrene and diene derivatives via anionic living polymerization followed by intramolecular Friedel–Crafts cyclization for high-performance thermoplastics. Polym. Chem. 3, 190–197 (2012).

    Article  CAS  Google Scholar 

  92. Ikai, T. et al. Triptycene-based ladder polymers with one-handed helical geometry. J. Am. Chem. Soc. 141, 4696–4703 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Shida, N., Nishimi, H., Asanuma, Y., Tomita, I. & Inagi, S. Synthesis of a conjugated polymer with ring-fused pyridinium units via a postpolymerization intramolecular cyclization reaction. Polym. J. 52, 1401–1406 (2020).

    Article  CAS  Google Scholar 

  94. Lucht, B. L. & Don Tilley, T. Zirconocene-coupling routes to conjugated polymers: soluble poly(arylenedienylene)s. Chem. Commun. https://doi.org/10.1039/a802538j (1998).

    Article  Google Scholar 

  95. Davis, D. A. et al. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459, 68–72 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. O’Neill, R. T. & Boulatov, R. The many flavours of mechanochemistry and its plausible conceptual underpinnings. Nat. Rev. Chem. 5, 148–167 (2021).

    Article  PubMed  Google Scholar 

  97. Colclough, T. New method of modifying natural rubber. Trans. Inst. Rubber Ind. 38, T11 (1962).

    CAS  Google Scholar 

  98. Fettes, E. M. Chemical Reactions of Polymers Vol. 19 (Interscience Publishers, 1964).

  99. Gunay, U. S., Demirel, E., Hizal, G., Tunca, U. & Durmaz, H. Ring-opening reactions of backbone epoxidized polyoxanorbornene. React. Funct. Polym. 94, 35–42 (2015).

    Article  CAS  Google Scholar 

  100. Swager, T. M. & Grubbs, R. H. The synthesis of low crystallinity polyacetylene from the precursor polymer polybenzvalene. Synth. Met. 28, D57–D62 (1989).

    Article  CAS  Google Scholar 

  101. Swager, T. M. & Grubbs, R. H. New morphologies of polyacetylene from the precursor polymer polybenzvalene. J. Am. Chem. Soc. 111, 4413–4422 (1989).

    Article  CAS  Google Scholar 

  102. Swager, T. M., Dougherty, D. A. & Grubbs, R. H. Strained rings as a source of unsaturation: polybenzvalene, a new soluble polyacetylene precursor. J. Am. Chem. Soc. 110, 2973–2974 (1988).

    Article  CAS  Google Scholar 

  103. Mao, S. S. H. & Tilley, T. D. New route to unsaturated organosilicon polymers and macrocycles based on zirconocene coupling of 1,4-MeC.tplbond.C(Me2Si)C6H4(SiMe2)C.tplbond.CMe. J. Am. Chem. Soc. 117, 5365–5366 (1995).

    Article  CAS  Google Scholar 

  104. Mao, S. S. H. & Tilley, T. D. A versatile, transition-metal mediated route to blue-light-emitting polymers with chemically tunable luminescent properties. Macromolecules 30, 5566–5569 (1997).

    Article  CAS  Google Scholar 

  105. Johnson, S. A. et al. Regioselective coupling of pentafluorophenyl substituted alkynes: Mechanistic insight into the zirconocene coupling of alkynes and a facile route to conjugated polymers bearing electron-withdrawing pentafluorophenyl substituents. J. Am. Chem. Soc. 125, 4199–4211 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Mao, S. S. H. & Tilley, T. D. Polymers with linked macrocyclic rings in the main chain. Zirconocene coupling of 1,8-cyclotetradecadiyne. Macromolecules 29, 6362–6364 (1996).

    Article  CAS  Google Scholar 

  107. Matsumura, Y., Fukuda, K., Inagi, S. & Tomita, I. Parallel synthesis of photoluminescent π-conjugated polymers by polymer reactions of an organotitanium polymer with a titanacyclopentadiene unit. Macromol. Rapid Commun. 36, 660–664 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Atami, K., Kino, T., Zhou, W.-M., Nishiyama, H. & Tomita, I. Synthesis of π-conjugated polymers possessing 1,3-butadiene-1,4-diyl units by reactions of regioregular organometallic polymer having titanacyclopentadiene moieties in the main chain. Synth. Met. 159, 949–951 (2009).

    Article  CAS  Google Scholar 

  109. Kino, T., Nishiyama, H. & Tomita, I. Synthesis of π-conjugated polymers via regioregular organometallic polymers 2. Transformation of titanacyclopentadiene- containing polymer into poly(p-phenylene) derivative. Appl. Organomet. Chem. 24, 558–562 (2010).

    Article  CAS  Google Scholar 

  110. Nishiyama, H. & Tomita, I. Synthesis of π-conjugated polymer possessing mercapto-substituted 1,3-butadiene-1,4-diyl units by reaction of regioregular organometallic polymer having titanacyclopentadiene moieties in the main chain. Macromol. Chem. Phys. 211, 2248–2253 (2010).

    Article  CAS  Google Scholar 

  111. Zheng, F. et al. Te–Li exchange reaction of tellurophene‐containing π‐conjugated polymer as potential synthetic tool for functional π‐conjugated polymers. Macromol. Rapid Commun. 40, 1900171 (2019).

    Article  CAS  Google Scholar 

  112. Sudo, A., Iitaka, Y. & Endo, T. Selective reduction of main-chain 2-azetidinone moieties into azetidines for polymer modification. J. Polym. Sci. A Polym. Chem. 40, 1912–1917 (2002).

    Article  CAS  Google Scholar 

  113. Galan, N. J. & Brantley, J. N. General access to allene-containing polymers using the skattebøl rearrangement. ACS Macro Lett. 9, 1662–1666 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. McFadden, M. E. & Robb, M. J. Force-dependent multicolor mechanochromism from a single mechanophore. J. Am. Chem. Soc. 141, 11388–11392 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Zhang, H. et al. Mechanochromism and mechanical-force-triggered cross-linking from a single reactive moiety incorporated into polymer chains. Angew. Chem. Int. Ed. 55, 3040–3044 (2016).

    Article  CAS  Google Scholar 

  116. Osler, S. K., McFadden, M. E. & Robb, M. J. Comparison of the reactivity of isomeric 2H‐ and 3H‐naphthopyran mechanophores. J. Polym. Sci. 59, 2537–2544 (2021).

    Article  CAS  Google Scholar 

  117. Versaw, B. A., McFadden, M. E., Husic, C. C. & Robb, M. J. Designing naphthopyran mechanophores with tunable mechanochromic behavior. Chem. Sci. 11, 4525–4530 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gossweiler, G. R., Kouznetsova, T. B. & Craig, S. L. Force-rate characterization of two spiropyran-based molecular force probes. J. Am. Chem. Soc. 137, 6148–6151 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Shannahan, L. S. et al. Onset of mechanochromic response in the high strain rate uniaxial compression of spiropyran embedded silicone elastomers. Macromol. Rapid Commun. 42, 2000449 (2021).

    Article  CAS  Google Scholar 

  120. Wu, D., Lenhardt, J. M., Black, A. L., Akhremitchev, B. B. & Craig, S. L. Molecular stress relief through a force-induced irreversible extension in polymer contour length. J. Am. Chem. Soc. 132, 15936–15938 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Kean, Z. S. & Craig, S. L. Mechanochemical remodeling of synthetic polymers. Polymer 53, 1035–1048 (2012).

    Article  CAS  Google Scholar 

  122. Lee, B., Niu, Z., Wang, J., Slebodnick, C. & Craig, S. L. Relative mechanical strengths of weak bonds in sonochemical polymer mechanochemistry. J. Am. Chem. Soc. 137, 10826–10832 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Wang, J., Kouznetsova, T. B. & Craig, S. L. Reactivity and mechanism of a mechanically activated anti-Woodward–Hoffmann–DePuy reaction. J. Am. Chem. Soc. 137, 11554–11557 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Wang, J., Kouznetsova, T. B., Niu, Z., Rheingold, A. L. & Craig, S. L. Accelerating a mechanically driven anti-Woodward–Hoffmann ring opening with a polymer lever arm effect. J. Org. Chem. 80, 11895–11898 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Wang, J. et al. Catch and release: Orbital symmetry guided reaction dynamics from a freed “tension trapped transition state”. J. Org. Chem. 80, 11773–11778 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Barbee, M. H. et al. Substituent effects and mechanism in a mechanochemical reaction. J. Am. Chem. Soc. 140, 12746–12750 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Wang, S., Panyukov, S., Rubinstein, M. & Craig, S. L. Quantitative adjustment to the molecular energy parameter in the Lake–Thomas theory of polymer fracture energy. Macromolecules 52, 2772–2777 (2019).

    Article  CAS  Google Scholar 

  128. Klukovich, H. M., Kouznetsova, T. B., Kean, Z. S., Lenhardt, J. M. & Craig, S. L. A backbone lever-arm effect enhances polymer mechanochemistry. Nat. Chem. 5, 110–114 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Kersey, F. R., Yount, W. C. & Craig, S. L. Single-molecule force spectroscopy of bimolecular reactions: system homology in the mechanical activation of ligand substitution reactions. J. Am. Chem. Soc. 128, 3886–3887 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Kryger, M. J., Munaretto, A. M. & Moore, J. S. Structure–mechanochemical activity relationships for cyclobutane mechanophores. J. Am. Chem. Soc. 133, 18992–18998 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Kean, Z. S., Niu, Z., Hewage, G. B., Rheingold, A. L. & Craig, S. L. Stress-responsive polymers containing cyclobutane core mechanophores: reactivity and mechanistic insights. J. Am. Chem. Soc. 135, 13598–13604 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Lin, Y., Kouznetsova, T. B. & Craig, S. L. Mechanically gated degradable polymers. J. Am. Chem. Soc. 142, 2105–2109 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Bowser, B. H., Ho, C.-H. & Craig, S. L. High mechanophore content, stress-relieving copolymers synthesized via RAFT polymerization. Macromolecules 52, 9032–9038 (2019).

    Article  CAS  Google Scholar 

  134. Lin, Y., Chang, C.-C. & Craig, S. L. Mechanical generation of isocyanate by mechanically induced retro [2 + 2] cycloaddition of a 1,2-diazetidinone mechanophore. Org. Chem. Front. 6, 1052–1057 (2019).

    Article  CAS  Google Scholar 

  135. Wang, J., Kouznetsova, T. B., Boulatov, R. & Craig, S. L. Mechanical gating of a mechanochemical reaction cascade. Nat. Commun. 7, 13433 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Larsen, M. B. & Boydston, A. J. “Flex-activated” mechanophores: using polymer mechanochemistry to direct bond bending activation. J. Am. Chem. Soc. 135, 8189–8192 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Larsen, M. B. & Boydston, A. J. Successive mechanochemical activation and small molecule release in an elastomeric material. J. Am. Chem. Soc. 136, 1276–1279 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Chen, Z. et al. Mechanochemical unzipping of insulating polyladderene to semiconducting polyacetylene. Science 357, 475–479 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Yang, J. et al. Bicyclohexene-peri-naphthalenes: scalable synthesis, diverse functionalization, efficient polymerization, and facile mechanoactivation of their polymers. J. Am. Chem. Soc. 142, 14619–14626 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Yang, J. et al. Benzoladderene mechanophores: synthesis, polymerization, and mechanochemical transformation. J. Am. Chem. Soc. 141, 6479–6483 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Hsu, T.-G. et al. A polymer with “locked” degradability: superior backbone stability and accessible degradability enabled by mechanophore installation. J. Am. Chem. Soc. 142, 2100–2104 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Izak-Nau, E., Campagna, D., Baumann, C. & Göstl, R. Polymer mechanochemistry-enabled pericyclic reactions. Polym. Chem. 11, 2274–2299 (2020).

    Article  CAS  Google Scholar 

  143. Gossweiler, G. R. et al. Mechanochemical activation of covalent bonds in polymers with full and repeatable macroscopic shape recovery. ACS Macro Lett. 3, 216–219 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Zhang, Y. et al. Distal conformational locks on ferrocene mechanophores guide reaction pathways for increased mechanochemical reactivity. Nat. Chem. 13, 56–62 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Tucker, M. J. et al. Tetrazine phototriggers: probes for peptide dynamics. Angew. Chem. Int. Ed. 49, 3612–3616 (2010).

    Article  CAS  Google Scholar 

  146. Brown, S. P. & Smith, A. B. Peptide/protein stapling and unstapling: Introduction of s-tetrazine, photochemical release, and regeneration of the peptide/protein. J. Am. Chem. Soc. 137, 4034–4037 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Agouridas, V. et al. Native chemical ligation and extended methods: mechanisms, catalysis, scope, and limitations. Chem. Rev. 119, 7328–7443 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Denissen, W., Winne, J. M. & Du Prez, F. E. Vitrimers: permanent organic networks with glass-like fluidity. Chem. Sci. 7, 30–38 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Guerre, M., Taplan, C., Winne, J. M. & Du Prez, F. E. Vitrimers: directing chemical reactivity to control material properties. Chem. Sci. 11, 4855–4870 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Dawson, P. E., Muir, T. W., Clark-Lewis, I. & Kent, S. B. H. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    Article  CAS  PubMed  Google Scholar 

  151. Boere, K. W. M., Soliman, B. G., Rijkers, D. T. S., Hennink, W. E. & Vermonden, T. Thermoresponsive injectable hydrogels cross-linked by native chemical ligation. Macromolecules 47, 2430–2438 (2014).

    Article  CAS  Google Scholar 

  152. Hu, B.-H., Su, J. & Messersmith, P. B. Hydrogels cross-linked by native chemical ligation. Biomacromolecules 10, 2194–2200 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Boere, K. W. M. et al. Thermogelling and chemoselectively cross-linked hydrogels with controlled mechanical properties and degradation behavior. Biomacromolecules 16, 2840–2851 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Najafi, M. et al. Native chemical ligation for cross-linking of flower-like micelles. Biomacromolecules 19, 3766–3775 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Suzuki, M., Makimura, K. & Matsuoka, S. Thiol-mediated controlled ring-opening polymerization of cysteine-derived β-thiolactone and unique features of product polythioester. Biomacromolecules 17, 1135–1141 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Fasman, G. D. Acyl N→O shift in poly-DL-serine. Science 131, 420–421 (1960).

    Article  CAS  PubMed  Google Scholar 

  157. Carpino, L. A., Krause, E., Sferdean, C. D., Bienert, M. & Beyermann, M. Dramatically enhanced N→O acyl migration during the trifluoroacetic acid-based deprotection step in solid phase peptide synthesis. Tetrahedron Lett. 46, 1361–1364 (2005).

    Article  CAS  Google Scholar 

  158. Tailhades, J. et al. From polyesters to polyamides via O-N acyl migration: an original multi-transfer reaction. Macromol. Rapid Commun. 32, 876–880 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Jebors, S. et al. Switchable polymer-grafted mesoporous silica’s: from polyesters to polyamides biosilica hybrid materials. Tetrahedron 69, 7670–7674 (2013).

    Article  CAS  Google Scholar 

  160. Koga, T., Mima, K., Matsumoto, T. & Higashi, N. Amino acid-derived polymer with changeable enzyme degradability based on pH-induced structural conversion from polyester to polypeptide. Chem. Lett. 44, 1720–1722 (2015).

    Article  CAS  Google Scholar 

  161. Koga, T., Aso, E. & Higashi, N. Novel self-assembling amino acid-derived block copolymer with changeable polymer backbone structure. Langmuir 32, 12378–12386 (2016).

    Article  CAS  PubMed  Google Scholar 

  162. Kalistratova, A. et al. A switchable stapled peptide. J. Pept. Sci. 22, 143–148 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Benner, N. L. et al. Oligo(serine ester) charge-altering releasable transporters: organocatalytic ring-opening polymerization and their use for in vitro and in vivo mRNA delivery. J. Am. Chem. Soc. 141, 8416–8421 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Montarnal, D., Capelot, M., Tournilhac, F. & Leibler, L. Silica-like malleable materials from permanent organic networks. Science 334, 965–968 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Fleming, I. Pericyclic Reactions (Oxford Univ. Press, 2015).

  166. Tantillo, D. J. & Hoffmann, R. Sigmatropic shiftamers: fluxionality in broken ladderane polymers. Angew. Chem. Int. Ed. 41, 1033–1036 (2002).

    Article  CAS  Google Scholar 

  167. Tantillo, D. J. & Hoffmann, R. Helicoid shiftamers. J. Am. Chem. Soc. 124, 6836–6837 (2002).

    Article  CAS  PubMed  Google Scholar 

  168. Tantillo, D. J. & Hoffmann, R. Snakes and ladders. The sigmatropic shiftamer concept. Acc. Chem. Res. 39, 477–486 (2006).

    Article  CAS  PubMed  Google Scholar 

  169. Tantillo, D. J. et al. Extended barbaralanes: sigmatropic shiftamers or σ-polyacenes? J. Am. Chem. Soc. 126, 4256–4263 (2004).

    Article  CAS  PubMed  Google Scholar 

  170. Tantillo, D. J. & Hoffmann, R. Hydrogen migration over organic tapes: [1,5] sigmatropic shiftamers. Eur. J. Org. Chem. 2004, 273–280 (2004).

    Article  Google Scholar 

  171. Sydlik, S. A. & Swager, T. M. Functional graphenic materials via a Johnson–Claisen rearrangement. Adv. Funct. Mater. 23, 1873–1882 (2013).

    Article  CAS  Google Scholar 

  172. Hwang, S.-H. & Choi, T.-L. Tandem diaza-Cope rearrangement polymerization: turning intramolecular reaction into powerful polymerization to give enantiopure materials for Zn2+ sensors. Chem. Sci. 12, 2404–2409 (2021).

    Article  CAS  Google Scholar 

  173. Fu, Z., Zhou, Q., Xiao, Y. & Wang, J. Polymerization with the Cu(I)-catalyzed Doyle–Kirmse reaction of bis(allyl sulfides) and bis(α-diazoesters). Polym. Chem. 13, 2123–2131 (2022).

    Article  CAS  Google Scholar 

  174. Ditzler, R. A. J. & Zhukhovitskiy, A. V. Sigmatropic rearrangements of polymer backbones: vinyl polymers from polyesters in one step. J. Am. Chem. Soc. 143, 20326–20331 (2021).

    Article  CAS  PubMed  Google Scholar 

  175. Huang, B. et al. Backbone-photodegradable polymers by incorporating acylsilane monomers via ring-opening metathesis polymerization. J. Am. Chem. Soc. 143, 17920–17925 (2021).

    Article  CAS  PubMed  Google Scholar 

  176. Tomita, I., Nishio, A. & Endo, T. Complete rearrangement of an organocobalt polymer: synthesis of a thermally stable polymer containing (cyclobutadiene)cobalt moieties on the main chain. Macromolecules 27, 7009–7010 (1994).

    Article  CAS  Google Scholar 

  177. Zhukhovitskiy, A. V., Ratushnyy, M. & Ditzler, R. A. J. Advancing the logic of polymer synthesis via skeletal rearrangements. Synlett 33, 1481–1485 (2022).

    Article  CAS  Google Scholar 

  178. Porter, M. R. The nitrosation of nylon. J. Polym. Sci. 33, 447–455 (1958).

    Article  CAS  Google Scholar 

  179. Tomita, I., Nishio, A. & Endo, T. Rearrangement of the main chain of an organocobalt polymer: synthesis of novel 2-pyridone-containing polymers by the reaction with isocyanates. Macromolecules 28, 3042–3047 (1995).

    Article  CAS  Google Scholar 

  180. Lee, J.-C., Tomita, I. & Endo, T. Rearrangement of the main chain of the organocobalt polymers. 3. Synthesis of novel poly(thiophene-diyl-alt-biphenyl- 4,4′-diyl)s by the reaction with sulfur. Macromolecules 31, 5916–5919 (1998).

    Article  CAS  Google Scholar 

  181. Lee, J.-C., Tomita, I. & Endo, T. Rearrangement of the main chain of the organocobalt polymers: 2. Synthesis of novel poly(pyridine-diyl-alt-biphenyl-4,4′-diyl) by the reaction with nitriles (1). Polym. Bull. 39, 415–422 (1997).

    Article  Google Scholar 

  182. Jiang, B. & Tilley, T. D. General, efficient route to thiophene-1-oxides and well-defined, mixed thiophene-thiophene-1-oxide oligomers. J. Am. Chem. Soc. 121, 9744–9745 (1999).

    Article  CAS  Google Scholar 

  183. Suh, M. C., Biwang, J. & Tilley, T. D. An efficient, modular synthetic route to oligomers based on zirconocene coupling: properties for phenylene–thiophene-1-oxide and phenylene–thiophene-1,1-dioxide chains. Angew. Chem. Int. Ed. 39, 2870–2873 (2000).

    Article  CAS  Google Scholar 

  184. Nishiyama, H., Kino, T. & Tomita, I. Transformation of regioregular organotitanium polymers into group 16 heterole-containing π-conjugated materials. Macromol. Rapid Commun. 33, 545–549 (2012).

    Article  CAS  PubMed  Google Scholar 

  185. Matsumura, Y. et al. Synthesis of π-conjugated polymers containing phosphole units in the main chain by reaction of an organometallic polymer having a titanacyclopentadiene unit. ACS Macro Lett. 4, 124–127 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. Matsumura, Y. et al. Synthesis of stannole‐containing π‐conjugated polymers by post‐element transformation of organotitanium polymer. Macromol. Rapid Commun. 40, 1800929 (2019).

    Article  Google Scholar 

  187. Matsumura, Y. et al. Arsole-containing π-conjugated polymer by the post-element-transformation technique. Angew. Chem. Int. Ed. 55, 15040–15043 (2016).

    Article  CAS  Google Scholar 

  188. Schultz, W. J., Etter, M. C., Pocius, A. V. & Smith, S. A new family of cation-binding compounds: threo-α,ω-poly(cyclooxalkane)diyl. J. Am. Chem. Soc. 102, 7981–7982 (1980).

    Article  CAS  Google Scholar 

  189. Ng, S.-C. & Gan, L.-H. Reaction of natural rubber latex with performic acid. Eur. Polym. J. 17, 1073–1077 (1981).

    Article  CAS  Google Scholar 

  190. Worch, J. C. et al. Stereochemical enhancement of polymer properties. Nat. Rev. Chem. 3, 514–535 (2019).

    Article  CAS  Google Scholar 

  191. McCullough, R. D. The chemistry of conducting polythiophenes. Adv. Mater. 10, 93–116 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Writing and processing of this manuscript was supported by the Department of Energy under the Early Career Research Program (DE-SC0022898). R.A.J.D. is supported by the National Science Foundation Graduate Research Fellowship under grant no. DGE-1650116.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data and discussing content, as well as to writing, editing and reviewing this manuscript.

Corresponding author

Correspondence to Aleksandr V. Zhukhovitskiy.

Ethics declarations

Competing interests

A.V.Z. and R.A.J.D. are co-inventors on a Patent Cooperation Treaty (PCT) patent and provisional US patent covering research discussed in this work, filed through the University of North Carolina at Chapel Hill (PCT application no. PCT/US22/49090 and US application no. 63/278,283). A.J.K., S.E.T. and M.R. declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ditzler, R.A.J., King, A.J., Towell, S.E. et al. Editing of polymer backbones. Nat Rev Chem 7, 600–615 (2023). https://doi.org/10.1038/s41570-023-00514-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00514-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing