Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interrupted reactions in chemical synthesis

Abstract

Interrupted reactions reroute established processes to new and often unanticipated end points. Of particular interest are the cases in which a known reactive intermediate takes on a new reaction pathway, either because this pathway is lower in energy or because the conventional pathway is no longer available. Through analysis of documented cases, we aim to dissect the known interrupted reactions and trace their mechanistic origins. As new chemical processes are being discovered at a seemingly ever-increasing pace, it is likely that new interrupted reactions will continue to emerge. Our hope is that the cases considered in this Review will help identify new classes of these fascinating transformations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interrupted Nazarov cyclization.
Fig. 2: Interrupted Ugi four-component reaction, Groebke–Blackburn–Bienaymé reaction, Schmidt reaction and hydroaminomethylation of alkenes.
Fig. 3: Interrupted Pummerer reaction.
Fig. 4: Interrupted Fischer indole synthesis, Pictet–Spengler reaction and Bischler–Napieralski reaction.
Fig. 5: Interrupted Povarov reaction and Meyer–Schuster rearrangement.
Fig. 6: Interrupted Baeyer–Villiger oxidation and metathesis reactions.
Fig. 7: Miscellaneous interrupted reactions.
Fig. 8: Miscellaneous interrupted heterocycle syntheses.

Similar content being viewed by others

References

  1. Yudin, A. K. Synthetic half-reactions. Chem. Sci. 11, 12423–12427 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nazarov, I. N. & Zaretskaya, I. I. Acetylene derivatives, XVII. Hydration of hydrocarbons of the divinylacetylene series. Izv. Akad. Nauk. SSSR Ser. Khim. 1941, 211–224 (1941).

    Google Scholar 

  3. Vinogradov, M. G., Turova, O. V. & Zlotin, S. G. Nazarov reaction: current trends and recent advances in the synthesis of natural compounds and their analogs. Org. Biomol. Chem. 15, 8245–8269 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Yadykov, A. V. & Shirinian, V. Z. Recent advances in the interrupted Nazarov reaction. Adv. Synth. Catal. 362, 702–723 (2020).

    Article  CAS  Google Scholar 

  5. Vorländer, D. & Schroedter, M. Einwirkung von schwefelsäure und essigsäureanhydrid auf dibenzalaceton. Ber. Dtsch. Chem. Ges. 36, 1490–1497 (1903).

    Article  Google Scholar 

  6. Bender, J. A., Blize, A. E., Browder, C. C., Giese, S. & West, F. G. Highly diastereoselective cycloisomerization of acyclic trienones. The interrupted Nazarov reaction. J. Org. Chem. 63, 2430–2431 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Giese, S., Kastrup, L., Stiens, D. & West, F. G. Intermolecular trapping of the Nazarov intermediate: domino electrocyclization/[3+2] cycloadditions with allylsilanes. Angew. Chem. Int. Ed. 39, 1970–1973 (2000).

    Article  CAS  Google Scholar 

  8. Wang, Y., Schill, B. D., Arif, A. M. & West, F. G. Formal intermolecular 4 + 4 approach to cyclooctanoids: 4 + 3 capture of the Nazarov oxyallyl intermediate with simple 1,3-dienes. Org. Lett. 5, 2747–2750 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Harmata, M., Huang, C., Roosehenas, P. & Schreiner, P. R. An interrupted [4+3] cycloaddition reaction: a hydride shift (ene reaction) intervenes. Angew. Chem. Int. Ed. 47, 8696–8699 (2008).

    Article  CAS  Google Scholar 

  10. Browder, C. C., Marmsäter, F. P. & West, F. G. Highly efficient trapping of the Nazarov intermediate with substituted arenes. Org. Lett. 3, 3033–3035 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Rieder, C. J., Fradette, R. J. & West, F. G. Heteroaromatic trapping of tricyclic 2-oxidocyclopentenyl cations: a surprisingly efficient example of intermolecular interrupted Nazarov reaction. Heterocycles 80, 1413–1427 (2009).

    Google Scholar 

  12. Rieder, C. J., Fradette, R. J. & West, F. G. Construction of aryl-substituted triquinanes through the interrupted Nazarov reaction. Chem. Commun.2008, 1572–1574 (2008).

    Article  CAS  Google Scholar 

  13. Shirinian, V. Z. et al. Triaryl-substituted divinyl ketones cyclization: Nazarov reaction versus Friedel–Crafts electrophilic substitution. Org. Lett. 18, 6260–6263 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Kwon, Y., Schatz, D. J. & West, F. G. 1,4-Diketones from cross-conjugated dienones: potassium permanganate-interrupted Nazarov reaction. Angew. Chem. Int. Ed. 54, 9940–9943 (2015).

    Article  CAS  Google Scholar 

  15. Dhoro, F. & Tius, M. A. Interrupted Nazarov cyclization on silica gel. J. Am. Chem. Soc. 127, 12472–12473 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Dhoro, F., Kristensen, T. E., Stockmann, V., Yap, G. P. A. & Tius, M. A. Asymmetric amine-intercepted Nazarov cyclization. J. Am. Chem. Soc. 129, 7256–7257 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, W. et al. Intercepted retro-Nazarov reaction: syntheses of amidino-rocaglate derivatives and their biological evaluation as eIF4A inhibitors. J. Am. Chem. Soc. 141, 12891–12900 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Song, D., Rostami, A. & West, F. G. Domino electrocyclization/azide-capture/Schmidt rearrangement of dienones:  one-step synthesis of dihydropyridones from simple building blocks. J. Am. Chem. Soc. 129, 12019–12022 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Rostami, A., Wang, Y., Arif, A. M., McDonald, R. & West, F. G. Intramolecular azide trapping of the Nazarov intermediate:  formation of peroxy-bridged indolizidinones via a deep-seated rearrangement and aerobic oxidation. Org. Lett. 9, 703–706 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schatz, D. J., Kwon, Y., Scully, T. W. & West, F. G. Interrupting the Nazarov cyclization with bromine. J. Org. Chem. 81, 12494–12498 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Marx, V. M. & Burnell, D. J. Nazarov cyclizations of an allenyl vinyl ketone with interception of the oxyallyl cation intermediate for the formation of carbon–carbon bonds. J. Am. Chem. Soc. 132, 1685–1689 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Riveira, M. J., Marsili, L. A. & Mischne, M. P. The iso-Nazarov reaction. Org. Biomol. Chem. 15, 9255–9274 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Marques, A.-S., Coeffard, V., Chataigner, I., Vincent, G. & Moreau, X. Iron-mediated domino interrupted iso-Nazarov/dearomative (3 + 2)-cycloaddition of electrophilic indoles. Org. Lett. 18, 5296–5299 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. William, R., Wang, S., Ding, F., Arviana, E. S. & Liu, X.-W. Interrupted imino-Nazarov cyclization of 1-aminopentadienyl cation and related cascade process. Angew. Chem. Int. Ed. 53, 10742–10746 (2014).

    Article  CAS  Google Scholar 

  25. Marques, A.-S. et al. A fused hexacyclic ring system: diastereoselective polycyclization of 2,4-dienals through an interrupted iso-Nazarov reaction. Angew. Chem. Int. Ed. 58, 9969–9973 (2019).

    Article  CAS  Google Scholar 

  26. Fuson, R. C. The principle of vinylogy. Chem. Rev. 16, 1–27 (1935).

    Article  CAS  Google Scholar 

  27. Miller, A. K. & Trauner, D. Total synthesis of (±)-photodeoxytridachione through a Lewis acid catalyzed cyclization. Angew. Chem. Int. Ed. 42, 549–552 (2003).

    Article  CAS  Google Scholar 

  28. Riveira, M. J. & Mischne, M. P. An interrupted vinylogous iso-Nazarov reaction: cycloisomerization of conjugated trienones to cyclopenta[b]furan derivatives. J. Org. Chem. 79, 8244–8254 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Ugi, I. The α-addition of immonium ions and anions to isonitriles accompanied by secondary reactions. Angew. Chem. Int. Ed. 1, 8–21 (1962).

    Article  Google Scholar 

  30. Dömling, A. & Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. 39, 3168–3210 (2000).

    Article  Google Scholar 

  31. Ganem, B. Strategies for innovation in multicomponent reaction design. Acc. Chem. Res. 42, 463–472 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. El Kaïm, L. & Grimaud, L. Beyond the Ugi reaction: less conventional interactions between isocyanides and iminium species. Tetrahedron 65, 2153–2171 (2009).

    Article  CAS  Google Scholar 

  33. El Kaïm, L., Grimaud, L. & Oble, J. Phenol Ugi–Smiles systems: strategies for the multicomponent N-arylation of primary amines with isocyanides, aldehydes, and phenols. Angew. Chem. Int. Ed. 44, 7961–7964 (2005).

    Article  CAS  Google Scholar 

  34. Giustiniano, M. et al. Interrupted Ugi and Passerini reactions: an underexplored treasure island. Synthesis 50, 3549–3570 (2018).

    Article  CAS  Google Scholar 

  35. Deyrup, J. A., Vestling, M. M., Hagan, W. V. & Yun, H. Y. Reactions of imines with t-butyl isocyanide. Tetrahedron 25, 1467–1478 (1969).

    Article  CAS  Google Scholar 

  36. Schneekloth, J. S., Kim, J. Jr. & Sorensen, E. J. An interrupted Ugi reaction enables the preparation of substituted indoxyls and aminoindoles. Tetrahedron 65, 3096–3101 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tron, G. C. Off the beaten track: the use of secondary amines in the Ugi reaction. Eur. J. Org. Chem. 2013, 1849–1859 (2013).

    Article  CAS  Google Scholar 

  38. Giovenzana, G. B., Tron, G. C., Di Paola, S., Menegotto, I. G. & Pirali, T. A mimicry of primary amines by bis-secondary diamines as components in the Ugi four-component reaction. Angew. Chem. Int. Ed. 45, 1099–1102 (2006).

    Article  CAS  Google Scholar 

  39. Ramazani, A. & Rezaei, A. Novel one-pot, four-component condensation reaction: an efficient approach for the synthesis of 2,5-disubstituted 1,3,4-oxadiazole derivatives by a Ugi-4CR/aza-Wittig sequence. Org. Lett. 12, 2852–2855 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Hili, R., Rai, V. & Yudin, A. K. Macrocyclization of linear peptides enabled by amphoteric molecules. J. Am. Chem. Soc. 132, 2889–2891 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Boltjes, A. & Dömling, A. The Groebke-Blackburn-Bienaymé reaction. Eur. J. Org. Chem. 2019, 7007–7049 (2019).

    Article  CAS  Google Scholar 

  42. Groebke, K., Weber, L. & Mehlin, F. Synthesis of imidazo[1,2-a] annulated pyridines, pyrazines and pyrimidines by a novel three-component condensation. Synlett 1998, 661–663 (1998).

    Article  Google Scholar 

  43. Salunke, D. B. et al. Structure–activity relationships in human toll-like receptor 8-active 2,3-diamino-furo[2,3-c]pyridines. J. Med. Chem. 55, 8137–8151 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wrobleski, A., Coombs, T. C., Huh, C. W., Li, S.-W. & Aubé, J. The Schmidt reaction. Org. React. 78, 1–320 (2012).

    CAS  Google Scholar 

  45. Schmidt, K. F. Über den imin-rest. Ber. Dtsch. Chem. Ges. 57, 704–706 (1924).

    Article  Google Scholar 

  46. Motiwala, H. F., Charaschanya, M., Day, V. W. & Aubé, J. Remodeling and enhancing Schmidt reaction pathways in hexafluoroisopropanol. J. Org. Chem. 81, 1593–1609 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Charaschanya, M., Li, K., Motiwala, H. F. & Aubé, J. An interrupted Schmidt reaction: C–C bond formation arising from nitrilium ion capture. Org. Lett. 20, 6354–6358 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Crozet, D., Urrutigoïty, M. & Kalck, P. Recent advances in amine synthesis by catalytic hydroaminomethylation of alkenes. ChemCatChem 3, 1102–1118 (2011).

    Article  CAS  Google Scholar 

  49. Chen, C. et al. Rhodium/Yanphos-catalyzed asymmetric interrupted intramolecular hydroaminomethylation of trans-1,2-disubstituted alkenes. J. Am. Chem. Soc. 138, 9017–9020 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Pummerer, R. Über phenyl-sulfoxyessigsäure. Ber. Dtsch. Chem. Ges. 42, 2282–2291 (1909).

    Article  CAS  Google Scholar 

  51. Padwa, A. & Kuethe, J. T. Additive and vinylogous Pummerer reactions of amido sulfoxides and their use in the preparation of nitrogen containing heterocycles. J. Org. Chem. 63, 4256–4268 (1998).

    Article  CAS  Google Scholar 

  52. Yorimitsu, H. Cascades of interrupted Pummerer reaction-sigmatropic rearrangement. Chem. Rec. 17, 1156–1167 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Omura, K. & Swern, D. Oxidation of alcohols by “activated” dimethyl sulfoxide. a preparative, steric and mechanistic study. Tetrahedron 34, 1651–1660 (1978).

    Article  CAS  Google Scholar 

  54. Corey, E. J. & Kim, C. U. New and highly effective method for the oxidation of primary and secondary alcohols to carbonyl compounds. J. Am. Chem. Soc. 94, 7586–7587 (1972).

    Article  CAS  Google Scholar 

  55. Parikh, J. & Doering, W. V. E. Sulfur trioxide in the oxidation of alcohols by dimethyl sulfoxide. J. Am. Chem. Soc. 89, 5505–5507 (1967).

    Article  CAS  Google Scholar 

  56. Tayu, M., Higuchi, K., Inaba, M. & Kawasaki, T. Sulfoxide-TFAA and nucleophile combination as new reagent for aliphatic C–H functionalization at indole 2α-position. Org. Biomol. Chem. 11, 496–502 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Nenajdenko, V. G., Vertelezkij, P. V., Gridnev, I. D., Shevchenko, N. E. & Balenkova, E. S. Reaction of dimethyl sulfide ditriflate with alkenes. Synthesis of sulfur derivatives of nortricyclane. Tetrahedron 53, 8173–8180 (1997).

    Article  CAS  Google Scholar 

  58. Luo, H., Hu, G. & Li, P. Sulfur-mediated allylic C–H arylation, epoxidation, and aziridination. J. Org. Chem. 84, 10569–10578 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Aukland, M. H. et al. An interrupted Pummerer/nickel-catalysed cross-coupling sequence. Angew. Chem. Int. Ed. 57, 9785–9789 (2018).

    Article  CAS  Google Scholar 

  60. Yoshida, S., Yorimitsu, H. & Oshima, K. 2-(2,2,2-Trifluoroethylidene)-1,3-dithiane monoxide as a trifluoromethylketene equivalent. Org. Lett. 11, 2185–2188 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Huang, X., Klimczyk, S. & Maulide, N. Charge-accelerated sulfonium [3,3]-sigmatropic rearrangements. Synthesis 44, 175–183 (2012).

    CAS  Google Scholar 

  62. Huang, X. & Maulide, N. Sulfoxide-mediated α-arylation of carbonyl compounds. J. Am. Chem. Soc. 133, 8510–8513 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Eberhart, A. J., Imbriglio, J. E. & Procter, D. J. Nucleophilic ortho allylation of aryl and heteroaryl sulfoxides. Org. Lett. 13, 5882–5885 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Eberhart, A. J. & Procter, D. J. Nucleophilic ortho-propargylation of aryl sulfoxides: an interrupted Pummerer/allenyl thio-Claisen rearrangement sequence. Angew. Chem. Int. Ed. 52, 4008–4011 (2013).

    Article  CAS  Google Scholar 

  65. Fernández-Salas, J. A., Eberhart, A. J. & Procter, D. J. Metal-free CH–CH-type cross-coupling of arenes and alkynes directed by a multifunctional sulfoxide group. J. Am. Chem. Soc. 138, 790–793 (2016).

    Article  PubMed  CAS  Google Scholar 

  66. Yanagi, T. et al. Metal-free approach to biaryls from phenols and aryl sulfoxides by temporarily sulfur-tethered regioselective C–H/C–H coupling. J. Am. Chem. Soc. 138, 14582–14585 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Shang, L. et al. Redox-neutral α-arylation of alkyl nitriles with aryl sulfoxides: a rapid electrophilic rearrangement. J. Am. Chem. Soc. 139, 4211–4217 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Sambiagio, C. et al. A comprehensive overview of directing groups applied in metal-catalysed C–H functionalisation chemistry. Chem. Soc. Rev. 47, 6603–6743 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shrives, H. J., Fernández-Salas, J. A., Hedtke, C., Pulis, A. P. & Procter, D. J. Regioselective synthesis of C3 alkylated and arylated benzothiophenes. Nat. Commun. 8, 14801 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. He, Z. et al. Synthesis of C2 substituted benzothiophenes via an interrupted Pummerer/[3,3]-sigmatropic/1,2-migration cascade of benzothiophene S-oxides. Angew. Chem. Int. Ed. 57, 5759–5764 (2018).

    Article  CAS  Google Scholar 

  71. He, Z., Pulis, A. P. & Procter, D. J. The interrupted Pummerer reaction in a sulfoxide-catalyzed oxidative coupling of 2-naphthols. Angew. Chem. Int. Ed. 58, 7813–7817 (2019).

    Article  CAS  Google Scholar 

  72. Fischer, E. & Hess, O. Synthese von indolderivaten. Ber. Dtsch. Chem. Ges. 17, 559–568 (1884).

    Article  Google Scholar 

  73. Robinson, B. The Fischer indole synthesis. Chem. Rev. 63, 373–401 (1963).

    Article  Google Scholar 

  74. Humphrey, G. R. & Kuethe, J. T. Practical methodologies for the synthesis of indoles. Chem. Rev. 106, 2875–2911 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Grandberg, I. I., Zuyanoa, T. I., Afonina, N. I. & Ivanova, T. A. New method of synthesizing important biogenic amines. Dokl. Akad. Nauk. SSSR 176, 583–585 (1967).

    CAS  PubMed  Google Scholar 

  76. Grandberg, I. I. & Tokmakov, G. Indoles. XLVIL. Synthesis of 2,3,3a,8a-tetrahydrofuro[2,3-b]indole derivatives. Chem. Heterocycl. Compd. 11, 176–179 (1975).

    Article  Google Scholar 

  77. Britten, A. Z., Bardsley, W. G. & Hill, C. M. Furano- and pyrano-indolines-model compounds for indole alkaloid studies. Tetrahedron 27, 5631–5639 (1971).

    Article  CAS  Google Scholar 

  78. Rosenmund, P. & Sadri, E. Beiträge zur chemie des indols, XII. Synthesen eserinahnlicher verbindungen, III; neue an N-1 und N-8 substituierte derivate des desoxyeserolins sowie eine neue synthese des eserthols. Liebigs Ann. Chem. 1979, 927–943 (1979).

    Article  Google Scholar 

  79. Boal, B. W., Schammel, A. W. & Garg, N. K. An interrupted Fischer indolization approach toward fused indoline-containing natural products. Org. Lett. 11, 3458–3461 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Mo, Y., Zhao, J., Chen, W. & Wang, Q. Recent advance of the application of interrupted Fischer indolization toward bioactive indoline alkaloids. Res. Chem. Intermed. 41, 5869–5877 (2015).

    Article  CAS  Google Scholar 

  81. Susick, R. B., Morrill, L. A., Picazo, E. & Garg, N. K. Pardon the interruption: a modification of Fischer’s venerable reaction for the synthesis of heterocycles and natural products. Synlett 28, 1–11 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Varga, S. et al. Total syntheses of (−)-minovincine and (−)-aspidofractinine through a sequence of cascade reactions. Angew. Chem. Int. Ed. 59, 13547–13551 (2020).

    Article  CAS  Google Scholar 

  83. Maligres, P. E. et al. Synthesis of the orally active spiroindoline-based growth hormone secretagogue, MK-677. Tetrahedron 53, 10983–10992 (1997).

    Article  CAS  Google Scholar 

  84. Moreno, J., Picazo, E., Morrill, L. A., Smith, J. M. & Garg, N. K. Enantioselective total syntheses of akuammiline alkaloids (+)-strictamine, (−)-2(S)-cathafoline, and (−)-aspidophylline A. J. Am. Chem. Soc. 138, 1162–1165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. De Graaff, C. et al. Asymmetric synthesis of tetracyclic pyrroloindolines and constrained tryptamines by a switchable cascade reaction. Angew. Chem. Int. Ed. 54, 14133–14136 (2015).

    Article  CAS  Google Scholar 

  86. Wang, H.-Y. & Anderson, L. L. Interrupted Fischer-indole intermediates via oxyarylation of alkenyl boronic acids. Org. Lett. 15, 3362–3365 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Pictet, A. & Spengler, T. Über die bildung von isochinolin-derivaten durch einwirkung von methylal auf phenyl-äthylamin, phenyl-alanin und tyrosin. Ber. Dtsch. Chem. Ges. 44, 2030–2036 (1911).

    Article  CAS  Google Scholar 

  88. Zheng, C. & You, S.-L. Exploring the chemistry of spiroindolenines by mechanistically-driven reaction development: asymmetric Pictet–Spengler-type reactions and beyond. Acc. Chem. Res. 53, 974–987 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Williams, J. R. & Unger, L. R. Biogenetically patterned synthesis of the spiro[indoline-3,4′-proline] system. J. Chem. Soc. D 1970, 1605–1606 (1970).

    Article  Google Scholar 

  90. Gabriel, P., Gregory, A. W. & Dixon, D. J. Iridium-catalyzed aza-spirocyclization of indole-tethered amides: an interrupted Pictet–Spengler reaction. Org. Lett. 21, 6658–6662 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Woodward, R. B. et al. The total synthesis of strychnine. J. Am. Chem. Soc. 76, 4749–4751 (1954).

    Article  CAS  Google Scholar 

  92. Harley-Mason, J. & Waterfield, W. R. The synthesis, rearrangement and certain reactions of 1-(3,4-dihydroxybenzyl)-1,2,3,4-tetrahydro-β-carboline and its 9-methyl analogue. Tetrahedron 19, 65–76 (1963).

    Article  CAS  Google Scholar 

  93. Nakagawa, M., Liu, J. J. & Hino, T. Total synthesis of (−)-eudistomin L and (−)-debromoeudistomin L. J. Am. Chem. Soc. 111, 2721–2722 (1989).

    Article  CAS  Google Scholar 

  94. Hili, R. & Yudin, A. K. Readily available unprotected amino aldehydes. J. Am. Chem. Soc. 128, 14772–14773 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Trzupek, J. D., Lee, D., Crowley, B. M., Marathias, V. M. & Danishefsky, S. J. Total synthesis of enantiopure phalarine via a stereospecific Pictet–Spengler reaction: traceless transfer of chirality from l-tryptophan. J. Am. Chem. Soc. 132, 8506–8512 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu, F. & Movassaghi, M. Electrophilic carbonyl activation: competing condensative cyclizations of tryptamine derivatives. Tetrahedron Lett. 56, 2995–3000 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Bischler, A. & Napieralski, B. Zur kenntniss einer neuen isochinolinsynthese. Ber. Dtsch. Chem. Ges. 26, 1903–1908 (1893).

    Article  Google Scholar 

  98. Medley, J. W. & Movassaghi, M. Synthesis of spirocyclic indolines by interruption of the Bischler–Napieralski reaction. Org. Lett. 15, 3614–3617 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Povarov, L. S. & Mikhailov, B. M. A new type of diene condensation reaction. Izv. Akad. Nauk. SSR Ser. Khim. 1963, 955–956 (1963).

    Google Scholar 

  100. Bello Forero, J. S., Jones, J. Jr. & da Silva, F. M. The Povarov reaction as a versatile strategy for the preparation of 1,2,3,4-tetrahydroquinoline derivatives: an overview. Curr. Org. Synth. 13, 157–175 (2016).

    Article  CAS  Google Scholar 

  101. Domingo, L. R., Aurell, M. J., Sáez, J. A. & Mekelleche, S. M. Understanding the mechanism of the Povarov reaction. A DFT study. RSC Adv. 4, 25268–25278 (2014).

    Article  CAS  Google Scholar 

  102. Fochi, M., Caruana, L. & Bernardi, L. Catalytic asymmetric aza-Diels–Alder reactions: the Povarov cycloaddition reaction. Synthesis 46, 135–157 (2014).

    Article  CAS  Google Scholar 

  103. Yadav, J. S., Reddy, B. V. S., Sekhar, K. C. & Geetha, V. Sc(OTf)3-catalyzed diastereoselective synthesis of 3,4-dihydro-4-amino-2H-1-benzopyrans. Tetrahedron Lett. 42, 4405–4407 (2001).

    Article  CAS  Google Scholar 

  104. Dong, S., Liu, X., Zhang, Y., Lin, L. & Feng, X. Asymmetric synthesis of 3,4-diaminochroman-2-ones promoted by guanidine and bisguanidium salt. Org. Lett. 13, 5060–5063 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Isambert, N., Cuz, M., Arévalo, M. J., Gómez, E. & Lavilla, R. Enol esters:  versatile substrates for Mannich-type multicomponent reactions. Org. Lett. 9, 4199–4202 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Cala, L., Mendoza, A., Fañanás, F. J. & Rodríguez, F. A catalytic multicomponent coupling reaction for the enantioselective synthesis of spiroacetals. Chem. Commun. 49, 2715–2717 (2013).

    Article  CAS  Google Scholar 

  107. Kobayashi, S., Ishitani, H. & Nagayama, S. Ln(OTf)3- or Sc(OTf)3-catalyzed three components coupling reactions between aldehydes, amines, and dienes or alkenes. Efficient syntheses of pyridine and quinoline derivatives. Chem. Lett. 24, 423–424 (1995).

    Article  Google Scholar 

  108. Preciado, S., Vicente-García, E., Llabrés, S., Luque, F. J. & Lavilla, R. Exploration of forbidden Povarov processes as a source of unexpected reactivity: a multicomponent Mannich–Ritter transformation. Angew. Chem. Int. Ed. 51, 6874–6877 (2012).

    Article  CAS  Google Scholar 

  109. Meyer, K. H. & Schuster, K. Umlagerung tertiärer äthinyl-carbinole in ungesättigte ketone. Ber. Dtsch. Chem. Ges. 55, 819–823 (1922).

    Article  Google Scholar 

  110. Liu, Z. et al. InCl3-catalyzed propargylation of indoles and phenols with propargylic acetates: application to the syntheses of benzofurans and naphthofurans. Synthesis 13, 1961–1969 (2007).

    Article  CAS  Google Scholar 

  111. Zhao, W. & Carreira, E. M. Facile one-pot synthesis of photochromic pyrans. Org. Lett. 5, 4153–4154 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Kaiser, D., Veiros, L. F. & Maulide, N. Redox-neutral arylations of vinyl cation intermediates. Adv. Synth. Catal. 359, 64–77 (2017).

    Article  CAS  Google Scholar 

  113. Tharra, P. & Baire, B. The Z-enoate assisted, Meyer–Schuster rearrangement cascade: unconventional synthesis of α-arylenone esters. Chem. Commun. 52, 12147–12150 (2016).

    Article  CAS  Google Scholar 

  114. Roy, D., Tharra, P. & Baire, B. Intercepted Meyer–Schuster rearrangements in organic synthesis. Asian J. Org. Chem. 7, 1015–1032 (2018).

    Article  CAS  Google Scholar 

  115. Belgacem, J., Kress, J. & Osborn, J. A. On the allylic rearrangements in metal oxo complexes: mechanistic and catalytic studies on MoO2 (allyloxo)2(CH3CN)2 and analogous complexes. J. Am. Chem. Soc. 114, 1501–1502 (1992).

    Article  CAS  Google Scholar 

  116. Trost, B. M. & Oi, S. Atom economy:  aldol-type products by vanadium-catalyzed additions of propargyl alcohols and aldehydes. J. Am. Chem. Soc. 123, 1230–1231 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Trost, B. M. & Chung, C. K. Vanadium-catalyzed addition of propargyl alcohols and imines. J. Am. Chem. Soc. 128, 10358–10359 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Baeyer, A. & Villiger, V. Einwirkung des caro’schen reagens auf ketone. Ber. Dtsch. Chem. Ges. 32, 3625–3633 (1899).

    Article  Google Scholar 

  119. Ten Brink, G.-J., Arends, I. W. C. E. & Sheldon, R. A. The Baeyer–Villiger reaction: new developments toward greener procedures. Chem. Rev. 104, 4105–4124 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Yu, X. et al. Oxidative rearrangement of malondialdehyde: substrate scope and mechanistic insights. RSC Adv. 4, 53397–53401 (2014).

    Article  CAS  Google Scholar 

  121. Vil’, V. A. et al. Interrupted Baeyer–Villiger rearrangement: building a stereoelectronic trap for the Criegee intermediate. Angew. Chem. Int. Ed. 57, 3372–3376 (2018).

    Article  CAS  Google Scholar 

  122. Erhardt, S. et al. Model studies of β-scission ring-opening reactions of cyclohexyloxy radicals: application to thermal rearrangements of dispiro-1,2,4-trioxanes. Org. Lett. 9, 5569–5572 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Ravi, M. et al. Synthesis of 1,2,4-trioxepanes and 1,2,4-trioxanes via H2O2-mediated reaction of tertiary carbinols. Synlett 24, 173–176 (2013).

    CAS  Google Scholar 

  124. Bloodworth, A. J. & Shah, A. Synthesis of 1,2,4-trioxanes via intramolecular oxymercuriation. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39910000947 (1991).

    Article  Google Scholar 

  125. Booldworth, A. J. & Tallant, N. A. 1,2,4-Trioxane versus 1,2-dioxolane formation in the mercury(II) acetate-mediated cyclisation of hemiperoxyacetals derived from allylic hydroperoxides. J. Chem. Soc. Chem. Commun. 1992, 428–429 (1992).

    Article  Google Scholar 

  126. Schweitzer-Chaput, B., Demaerel, J., Engler, H. & Klussmann, M. Acid-catalyzed oxidative radical addition of ketones to olefins. Angew. Chem. Int. Ed. 53, 8737–8740 (2014).

    Article  CAS  Google Scholar 

  127. Schweitzer-Chaput, B., Kurtén, T. & Klussmann, M. Acid-mediated formation of radicals or Baeyer–Villiger oxidation from Criegee adducts. Angew. Chem. Int. Ed. 54, 11848–11851 (2015).

    Article  CAS  Google Scholar 

  128. Schweitzer-Chaput, B., Boess, E. & Klussmann, M. Acid-catalyzed activation of peroxyketals: tunable radical initiation at ambient temperature and below. Org. Lett. 18, 4944–4947 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Wang, D.-S., Chen, Q.-A., Lu, S.-M. & Zhou, Y.-G. Asymmetric hydrogenation of heteroarenes and arenes. Chem. Rev. 112, 2557–2590 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Glorius, F., Spielkamp, N., Holle, S., Goddard, R. & Lehmann, C. W. Efficient asymmetric hydrogenation of pyridines. Angew. Chem. Int. Ed. 43, 2850–2852 (2004).

    Article  CAS  Google Scholar 

  131. Grozavu, A. et al. The reductive C3 functionalization of pyridinium and quinolinium salts through iridium-catalysed interrupted transfer hydrogenation. Nat. Chem. 11, 242–247 (2019).

    Article  CAS  PubMed  Google Scholar 

  132. Hepburn, H. B. & Donohoe, T. J. Reductive hydroxymethylation of 4-heteroarylpyridines. Chem. Eur. J. 26, 1963–1967 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Marinic, B., Hepburn, H. B., Grozavu, A., Dow, M. & Donohoe, T. J. Single point activation of pyridines enables reductive hydroxymethylation. Chem. Sci. 12, 742–746 (2021).

    Article  CAS  Google Scholar 

  134. Shen, D. et al. Hydrogen-borrowing and interrupted-hydrogen-borrowing reactions of ketones and methanol catalyzed by iridium. Angew. Chem. Int. Ed. 54, 1642–1645 (2015).

    Article  CAS  Google Scholar 

  135. Grozavu, A., Hepburn, H. B., Bailey, E. P., Lindsay-Scott, P. J. & Donohoe, T. J. Rhodium catalysed C-3/5 methylation of pyridines using temporary dearomatisation. Chem. Sci. 11, 8595–8599 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wagener, T., Lückemeier, L., Daniliuc, C. G. & Glorius, F. Interrupted pyridine hydrogenation: asymmetric synthesis of δ-lactams. Angew. Chem. Int. Ed. 60, 6425–6429 (2021).

    Article  CAS  Google Scholar 

  137. Ravindar, L. et al. Carbonyl-olefin metathesis: a key review. Org. Chem. Front. 5, 1381–1391 (2018).

    Article  CAS  Google Scholar 

  138. Ludwig, J. R. et al. Interrupted carbonyl-olefin metathesis via oxygen atom transfer. Science 136, 1363–1369 (2018).

    Article  CAS  Google Scholar 

  139. McFarlin, A. T., Watson, R. B., Zehnder, T. E. & Schindler, C. S. Interrupted carbonyl-alkyne metathesis. Adv. Synth. Catal. 362, 365–369 (2020).

    Article  CAS  Google Scholar 

  140. Wei, Y. & Shi, M. Recent advances in organocatalytic asymmetric Morita–Baylis–Hillman/aza-Morita–Baylis–Hillman reactions. Chem. Rev. 113, 6659–6690 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Gu, J. et al. Interrupted Morita–Baylis–Hillman-type reaction of α-substituted activated olefins. Org. Lett. 20, 2088–2091 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. Aroyan, C. E., Dermenci, A. & Miller, S. J. The Rauhut–Currier reaction: a history and its synthetic application. Tetrahedron 65, 4069–4084 (2009).

    Article  CAS  Google Scholar 

  143. McDougal, N. T. & Schaus, S. E. Highly diastereoselective synthesis of bicyclo[3.2.1]octenones through phosphine-mediated condensations of 1,4-dien-3-ones. Angew. Chem. Int. Ed. 45, 3117–3119 (2006).

    Article  CAS  Google Scholar 

  144. Tambar, U. K. & Stoltz, B. M. The direct acyl-alkylation of arynes. J. Am. Chem. Soc. 127, 5340–5341 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Mohanan, K., Coquerel, Y. & Rodriguez, J. Transition-metal-free α-arylation of β-keto amides via an interrupted insertion reaction of arynes. Org. Lett. 14, 4686–4689 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Poplata, S., Tröster, A., Zou, Y.-Q. & Bach, T. Recent advances in the synthesis of cyclobutanes by olefin [2 + 2] photocycloaddition reactions. Chem. Rev. 116, 9748–9815 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Popescu, M. V., Mekereeya, A., Alegre-Requena, J. V., Paton, R. S. & Smith, M. D. Visible-light-mediated heterocycle functionalization via geometrically interrupted [2+2] cycloaddition. Angew. Chem. Int. Ed. 59, 23020–23024 (2020).

    Article  CAS  Google Scholar 

  148. Mori, K., Sueoka, S. & Akiyama, T. Expeditious construction of a carbobicyclic skeleton via sp3-C–H functionalization: hydride shift from an aliphatic tertiary position in an internal redox process. J. Am. Chem. Soc. 133, 2424–2426 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Mentel, M. & Breinbauer, R. The Witkop-Winterfeldt-oxidation of indoles. Curr. Org. Chem. 11, 159–176 (2007).

    Article  CAS  Google Scholar 

  150. Lu, X. et al. Assembly of C3a-peroxylated pyrroloindolines via interrupted Witkop oxidation. Org. Lett. 20, 7937–7941 (2018).

    Article  CAS  PubMed  Google Scholar 

  151. Mills, A. D., Nazer, M. Z., Haddadin, M. J. & Kurth, M. J. N,N-bond-forming heterocyclization:  synthesis of 3-alkoxy-2H-indazoles. J. Org. Chem. 71, 2687–2689 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Zhu, J. S. et al. Diverting reactive intermediates toward unusual chemistry: unexpected anthranil products from Davis–Beirut reaction. J. Org. Chem. 82, 10875–10882 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Dimroth, O. Ueber eine synthese von derivaten des 1.2.3-triazols. Ber. Dtsch. Chem. Ges. 35, 1029–1038 (1902).

    Article  CAS  Google Scholar 

  154. El Ashry, E. S. H., Nadeem, S., Shah, M. R. & El Kilany, Y. Recent advances in the Dimroth rearrangement: a valuable tool for the synthesis of heterocycles. Adv. Heterocycl. Chem. 101, 161–228 (2010).

    Article  CAS  Google Scholar 

  155. Zhou, Z.-W. et al. A concise construction of 12H-benzo[4,5]thiazolo[2,3-b]quinazolin-12-ones via an unusual TBHP/Na2CO3 promoted cascade oxidative cyclization and interrupted Dimroth rearrangement. Chem. Commun. 53, 1056–1059 (2017).

    Article  CAS  Google Scholar 

  156. Majetich, G. & Wheless, K. Remote intramolecular free radical functionalizations: an update. Tetrahedron 51, 7095–7129 (1995).

    Article  CAS  Google Scholar 

  157. Short, M. A., Blackburn, J. M. & Roizen, J. L. Sulfamate esters guide selective radical-mediated chlorination of aliphatic C–H bonds. Angew. Chem. Int. Ed. 57, 296–299 (2018).

    Article  CAS  Google Scholar 

  158. Sathyamoorthi, S., Banerjee, S., Du Bois, J., Burns, N. Z. & Zare, R. N. Site-selective bromination of sp3 C–H bonds. Chem. Sci. 9, 100–104 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Duhamel, T., Martínez, M. D., Sideri, I. K. & Muñiz, K. 1,3-Diamine formation from an interrupted Hofmann–Löffler reaction: iodine catalyst turnover through Ritter-type amination. ACS Catal. 9, 7741–7745 (2019).

    Article  CAS  Google Scholar 

  160. Kumar, G., Pradhan, S. & Chatterjee, I. N-centered radical directed remote C–H bond functionalization via hydrogen atom transfer. Chem. Asian J. 15, 651–672 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Nakamura, I., Yamagishi, U., Song, D., Konta, S. & Yamamoto, Y. Gold- and indium-catalyzed synthesis of 3- and 6-sulfonylindoles from ortho-alkynyl-N-sulfonylanilines. Angew. Chem. Int. Ed. 46, 2284–2287 (2007).

    Article  CAS  Google Scholar 

  162. Teo, W. T., Rao, W., Koh, M. J. & Chang, P. W. H. Gold-catalyzed domino aminocyclization/1,3-sulfonyl migration of N-substituted N-sulfonyl-aminobut-3-yn-2-ols to 1-substituted 3-sulfonyl-1H-pyrroles. J. Org. Chem. 78, 7508–7517 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Wu, F., Chen, L., Wang, Y. & Zhu, S. Gold-catalyzed generation of azafulvenium from an enyne sulfonamide: rapid access to fully substituted pyrroles. Org. Chem. Front. 6, 480–485 (2019).

    Article  CAS  Google Scholar 

  164. Astoin, J., Demerseman, P., Riveron, A. & Royer, R. Recherches sur le benzofuranne. LX. Orientation de la dégradation alcaline des aroyl-3 éthyl-2 benzofurannes, selon la nature de leur groupe aroyle. J. Heterocycl. Chem. 14, 867–869 (1977).

    Article  CAS  Google Scholar 

  165. Srinivas, K., Sharma, R. & Ramana, C. V. Interrupting base-mediated benzofuran ring transformation with Michael acceptors. J. Org. Chem. 82, 9816–9823 (2017).

    Article  CAS  PubMed  Google Scholar 

  166. Kondrat’eva, G. Y. Diene condensation of oxazole homologs with maliec acid and its anhydride. Khim. Nauka Prom. 2, 666 (1957).

    Google Scholar 

  167. Wenkert, D. et al. N-methylated 5-alkenyloxazolium salt transformations. Org. Lett. 3, 2301–2303 (2001).

    Article  CAS  PubMed  Google Scholar 

  168. Qadoumi, Z., Senior, J., Bergeron-Brlek, M. & Britton, R. Direct access to iminosugars through an interrupted Kondrat’eva reaction. Synlett 24, 2427–2430 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Natural Sciences and Engineering Research Council of Canada (NSERC) is acknowledged for its financial support. C.-H.T. would like to thank the Connaught Fund (University of Toronto) for funding.

Author information

Authors and Affiliations

Authors

Contributions

V.T., C.-H.T. and A.T. researched data and designed the figures. All authors contributed to the writing and editing of this Review.

Corresponding author

Correspondence to Andrei K. Yudin.

Additional information

Dedication

Dedicated to Professor K. Barry Sharpless on the occasion of his 80th birthday.

Competing interests

The authors declare no competing interests.

Peer review information

Nature Reviews Chemistry thanks F. West and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trudel, V., Tien, CH., Trofimova, A. et al. Interrupted reactions in chemical synthesis. Nat Rev Chem 5, 604–623 (2021). https://doi.org/10.1038/s41570-021-00304-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-021-00304-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing