Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Iron and manganese oxo complexes, oxo wall and beyond

Abstract

High-valent metal–oxo species with multiply-bonded M–O groups have been proposed as key intermediates in many biological and abiological catalytic oxidation reactions. These intermediates are implicated as active oxidants in alkane hydroxylation, olefin epoxidation and other oxidation reactions. For example, [FeivO(porphyrinato•−)]+ cofactors bearing π-radical porphyrinato•− ligands oxidize organic substrates in cytochrome P450 enzymes, which are common to many life forms. Likewise, high-valent Mn–oxo species are active for H2O oxidation in photosystem II. The chemistry of these native reactive species has inspired chemists to prepare highly oxidized transition-metal complexes as functional mimics. Although many synthetic Fe–O and Mn–O complexes now exist, the analogous oxo complexes of the late transition metals (groups 9–11) are rare. Indeed, late-transition-metal–oxo complexes of tetragonal (fourfold) symmetry should be electronically unstable, a rule commonly referred to as the ‘oxo wall’. A few late metal–oxos have been prepared by targeting other symmetries or unusual spin states. These complexes have been studied using spectroscopic and theoretical methods. This Review describes mononuclear non-haem Fe–O and Mn–O species, the nature of the oxo wall and recent advances in the preparation of oxo complexes of Co, Ni and Cu beyond the oxo wall.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nature has inspired the synthesis of high-valent metal–oxo complexes.
Fig. 2: Coordination geometry, d-electron counts and spin state govern M–O bond order.
Fig. 3: Molecular and electronic structures and reactivities of Fe–O complexes.
Fig. 4: Molecular and electronic structures and reactivities of Mn–O complexes.
Fig. 5: Structures of Co–O complexes.
Fig. 6: Structures of Ni and Cu complexes.

Similar content being viewed by others

References

  1. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    PubMed  Google Scholar 

  2. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    CAS  PubMed  Google Scholar 

  3. Gray, H. B. & Winkler, J. R. Living with oxygen. Acc. Chem. Res. 51, 1850–1857 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Borovik, A. S. Role of metal–oxo complexes in the cleavage of C–H bonds. Chem. Soc. Rev. 40, 1870–1874 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gunay, A. & Theopold, K. H. C–H bond activation by metal–oxo compounds. Chem. Rev. 110, 1060–1081 (2010).

    CAS  PubMed  Google Scholar 

  6. Chen, Z. & Yin, G. The reactivity of the active metal oxo and hydroxo intermediates and their implications in oxidations. Chem. Soc. Rev. 44, 1083–1100 (2015).

    CAS  PubMed  Google Scholar 

  7. Betley, T. A., Wu, Q., Van Voorhis, T. & Nocera, D. G. Electronic design criteria for O–O bond formation via metal–oxo complexes. Inorg. Chem. 47, 1849–1861 (2008).

    CAS  PubMed  Google Scholar 

  8. McEvoy, J. P. & Brudvig, G. W. Water-splitting chemistry of photosystem II. Chem. Rev. 106, 4455–4483 (2006).

    CAS  PubMed  Google Scholar 

  9. Nam, W. Dioxygen activation by metalloenzymes and models. Acc. Chem. Res. 40, 465 (2007).

    CAS  Google Scholar 

  10. Bollinger, J. M. & Krebs, C. Enzymatic C–H activation by metal–superoxo intermediates. Curr. Opin. Chem. Biol. 11, 151–158 (2007).

    CAS  PubMed  Google Scholar 

  11. Hohenberger, J., Ray, K. & Meyer, K. The biology and chemistry of high-valent iron–oxo and iron–nitrido complexes. Nat. Commun. 3, 720 (2012).

    PubMed  Google Scholar 

  12. Engelmann, X., Monte-Pérez, I. & Ray, K. Oxidation reactions with bioinspired mononuclear non-heme metal–oxo complexes. Angew. Chem. Int. Ed. 55, 7632–7649 (2016).

    CAS  Google Scholar 

  13. Ray, K., Pfaff, F. F., Wang, B. & Nam, W. Status of reactive non-heme metal–oxygen intermediates in chemical and enzymatic reactions. J. Am. Chem. Soc. 136, 13942–13958 (2014).

    CAS  PubMed  Google Scholar 

  14. Guo, M., Corona, T., Ray, K. & Nam, W. Heme and nonheme high-valent iron and manganese oxo cores in biological and abiological oxidation reactions. ACS Cent. Sci. 5, 13–28 (2019).

    CAS  PubMed  Google Scholar 

  15. Armstrong, F. A. Why did Nature choose manganese to make oxygen? Philos. Trans. R. Soc. B Biol. Sci. 363, 1263–1270 (2008).

    CAS  Google Scholar 

  16. Cox, N., Pantazis, D. A., Neese, F. & Lubitz, W. Biological water oxidation. Acc. Chem. Res. 46, 1588–1596 (2013).

    CAS  PubMed  Google Scholar 

  17. Pantazis, D. A. et al. Structure of the oxygen-evolving complex of photosystem II: information on the S2 state through quantum chemical calculation of its magnetic properties. Phys. Chem. Chem. Phys. 11, 6788–6798 (2009).

    CAS  PubMed  Google Scholar 

  18. Cox, N. et al. Photosynthesis. Electronic structure of the oxygen-evolving complex in photosystem II prior to O–O bond formation. Science 345, 804–808 (2014).

    CAS  PubMed  Google Scholar 

  19. Kundu, S., Schwalbe, M. & Ray, K. Metal–oxo-mediated O–O bond formation reactions in chemistry and biology. Bioinorg. React. Mech. 8, 41–57 (2012).

    CAS  Google Scholar 

  20. Yocum, C. F. The calcium and chloride requirements of the O2 evolving complex. Coord. Chem. Rev. 252, 296–305 (2008).

    CAS  Google Scholar 

  21. Siegbahn, P. E. M. Theoretical studies of O–O bond formation in photosystem II. Inorg. Chem. 47, 1779–1786 (2008).

    CAS  PubMed  Google Scholar 

  22. Siegbahn, P. E. M. Mechanism and energy diagram for O–O bond formation in the oxygen-evolving complex in photosystem II. Philos. Trans. R. Soc. B Biol. Sci. 363, 1221–1228 (2008).

    CAS  Google Scholar 

  23. Suga, M. et al. Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature 543, 131–135 (2017).

    CAS  PubMed  Google Scholar 

  24. Suga, M. et al. An oxyl/oxo mechanism for oxygen–oxygen coupling in PSII revealed by an x-ray free-electron laser. Science 366, 334–338 (2019).

    CAS  PubMed  Google Scholar 

  25. Nam, W., Lee, Y.-M. & Fukuzumi, S. Tuning reactivity and mechanism in oxidation reactions by mononuclear nonheme iron(iv)–oxo complexes. Acc. Chem. Res. 47, 1146–1154 (2014).

    CAS  PubMed  Google Scholar 

  26. Poulos, T. L. Heme enzyme structure and function. Chem. Rev. 114, 3919–3962 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang, X. & Groves, J. T. Oxygen activation and radical transformations in heme proteins and metalloporphyrins. Chem. Rev. 118, 2491–2553 (2018).

    CAS  PubMed  Google Scholar 

  28. Groves, J. T. & McClusky, G. A. Aliphatic hydroxylation via oxygen rebound. Oxygen transfer catalyzed by iron. J. Am. Chem. Soc. 98, 859–861 (1976).

    CAS  Google Scholar 

  29. Riggs-Gelasco, P. J. et al. EXAFS spectroscopic evidence for an Fe=O unit in the Fe(iv) intermediate observed during oxygen activation by taurine:α-ketoglutarate dioxygenase. J. Am. Chem. Soc. 126, 8108–8109 (2004).

    CAS  PubMed  Google Scholar 

  30. Banerjee, R., Proshlyakov, Y., Lipscomb, J. D. & Proshlyakov, D. A. Structure of the key species in the enzymatic oxidation of methane to methanol. Nature 518, 431–434 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Castillo, R. G. et al. High-energy-resolution fluorescence-detected X-ray absorption of the Q intermediate of soluble methane monooxygenase. J. Am. Chem. Soc. 139, 18024–18033 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Solomon, E. I. et al. Copper active sites in biology. Chem. Rev. 114, 3659–3853 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Solomon, E. I. Dioxygen binding, activation, and reduction to H2O by Cu enzymes. Inorg. Chem. 55, 6364–6375 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Quist, D. A., Diaz, D. E., Liu, J. J. & Karlin, K. D. Activation of dioxygen by copper metalloproteins and insights from model complexes. J. Biol. Inorg. Chem. 22, 253–288 (2017).

    CAS  PubMed  Google Scholar 

  35. Keown, W., Gary, J. B. & Stack, T. D. P. High-valent copper in biomimetic and biological oxidations. J. Biol. Inorg. Chem. 22, 289–305 (2017).

    CAS  PubMed  Google Scholar 

  36. Kal, S., Xu, S. & Que, L. Jr Bio-inspired nonheme iron oxidation catalysis: involvement of oxoiron(v) oxidants in cleaving strong C–H bonds. Angew. Chem. Int. Ed. 59, 7332–7349 (2020).

    CAS  Google Scholar 

  37. Elwell, C. E. et al. Copper–oxygen complexes revisited: structures, spectroscopy, and reactivity. Chem. Rev. 117, 2059–2107 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Nam, W., Lee, Y. M. & Fukuzumi, S. Hydrogen atom transfer reactions of mononuclear nonheme metal–oxygen intermediates. Acc. Chem. Res. 51, 2014–2022 (2018).

    CAS  PubMed  Google Scholar 

  39. Costas, M. Selective C–H oxidation catalyzed by metalloporphyrins. Coord. Chem. Rev. 255, 2912–2932 (2011).

    CAS  Google Scholar 

  40. Hay-Motherwell, R. S., Wilkinson, G., Hussain-Bates, B. & Hursthouse, M. B. Synthesis and X-ray crystal structure of oxotrimesityliridium(v). Polyhedron 12, 2009–2012 (1993).

    CAS  Google Scholar 

  41. Poverenov, E. et al. Evidence for a terminal Pt(iv)–oxo complex exhibiting diverse reactivity. Nature 455, 1093–1096 (2008).

    CAS  Google Scholar 

  42. Ballhausen, C. J. & Gray, H. B. The electronic structure of the vanadyl ion. Inorg. Chem. 1, 111–122 (1962). The oxo wall concept was introduced in this paper.

    CAS  Google Scholar 

  43. Winkler, J. R. & Gray, H. B. Electronic structures of oxo-metal ions. Struct. Bond. 142, 17–28 (2012).

    CAS  Google Scholar 

  44. Gray, H. B. Elements of life at the oxo wall. Chem. Int. 41, 16–19 (2019).

    Google Scholar 

  45. Wang, B. et al. Synthesis and reactivity of a mononuclear non-haem cobalt(iv)–oxo complex. Nat. Commun. 8, 14839 (2017). This paper described the first thorough spectroscopic characterization of a Co(iv)–oxo complex.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pfaff, F. F. et al. An oxocobalt(iv) complex stabilized by Lewis acid interactions with scandium(iii) ions. Angew. Chem. Int. Ed. 50, 1711–1715 (2011).

    CAS  Google Scholar 

  47. Scepaniak, J. J. et al. Structural and spectroscopic characterization of an electrophilic iron nitrido complex. J. Am. Chem. Soc. 130, 10515–10517 (2008).

    CAS  PubMed  Google Scholar 

  48. Groysman, S., Villagrán, D. & Nocera, D. G. Pseudotetrahedral d 0, d 1, and d 2 metal–oxo cores within a tris(alkoxide) platform. Inorg. Chem. 49, 10759–10761 (2010).

    CAS  PubMed  Google Scholar 

  49. Yamaguchi, K., Takahara, Y. & Fueno, T. in Applied Quantum Chemistry (eds Smith, V. H., Schaefer, H. F. & Morokuma, K.) 155–184 (Springer, 1986).

  50. Ray, K., Heims, F. & Pfaff, F. F. Terminal oxo and imido transition-metal complexes of groups 9–11. Eur. J. Inorg. Chem. 2013, 3784–3807 (2013).

    CAS  Google Scholar 

  51. Decker, A. & Solomon, E. I. Dioxygen activation by copper, heme and non-heme iron enzymes: comparison of electronic structures and reactivities. Curr. Opin. Chem. Biol. 9, 152–163 (2005).

    CAS  PubMed  Google Scholar 

  52. Grapperhaus, C. A., Mienert, B., Bill, E., Weyhermüller, T. & Wieghardt, K. Mononuclear (nitrido)iron(v) and (oxo)iron(iv) complexes via photolysis of [(cyclam-acetato)Feiii(N3)]+ and ozonolysis of [(cyclam-acetato)Feiii(O3SCF3)]+ in water/acetone mixtures. Inorg. Chem. 39, 5306–5317 (2000).

    CAS  PubMed  Google Scholar 

  53. Rohde, J.-U. et al. Crystallographic and spectroscopic characterization of a nonheme Fe(iv)=O complex. Science 299, 1037–1039 (2003). The first crystal structure of a synthetic non-haem iron(iv)–oxo complex was reported with the thorough spectroscopic characterization.

    CAS  PubMed  Google Scholar 

  54. Krebs, C., Fujimori, D. G., Walsh, C. T. & Bollinger, J. M. Jr Non-heme Fe(iv)–oxo intermediates. Acc. Chem. Res. 40, 484–492 (2007).

    CAS  PubMed  Google Scholar 

  55. England, J. et al. A synthetic high-spin oxoiron(iv) complex: generation, spectroscopic characterization, and reactivity. Angew. Chem. Int. Ed. 48, 3622–3626 (2009). A high-spin (S=2) non-haem iron(iv)–oxo complex with a trigonal bipyramidal geometry was synthesized and characterized spectroscopically for the first time.

    CAS  Google Scholar 

  56. England, J. et al. A more reactive trigonal-bipyramidal high-spin oxoiron(iv) complex with a cis-labile site. J. Am. Chem. Soc. 133, 11880–11883 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Biswas, A. N. et al. Modeling TauD-J: a high-spin nonheme oxoiron(iv) complex with high reactivity toward C–H bonds. J. Am. Chem. Soc. 137, 2428–2431 (2015).

    CAS  PubMed  Google Scholar 

  58. Lacy, D. C. et al. Formation, structure, and EPR detection of a high spin Feiv–oxo species derived from either an Feiii–oxo or Feiii–OH complex. J. Am. Chem. Soc. 132, 12188–12190 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bigi, J. P. et al. A high-spin iron(iv)–oxo complex supported by a trigonal nonheme pyrrolide platform. J. Am. Chem. Soc. 134, 1536–1542 (2012).

    CAS  PubMed  Google Scholar 

  60. Lee, Y.-M. et al. Dioxygen activation by a non-heme iron(ii) complex: formation of an iron(iv)–oxo complex via C–H activation by a putative iron(iii)–superoxo species. J. Am. Chem. Soc. 132, 10668–10670 (2010).

    CAS  PubMed  Google Scholar 

  61. Li, F., England, J. & Que, L. Near-stoichiometric conversion of H2O2 to Feiv=O at a nonheme iron(ii) center. Insights into the O–O bond cleavage step. J. Am. Chem. Soc. 132, 2134–2135 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Engelmann, X. et al. Trapping of a highly reactive oxoiron(iv) complex in the catalytic epoxidation of olefins by hydrogen peroxide. Angew. Chem. Int. Ed. 58, 4012–4016 (2019).

    CAS  Google Scholar 

  63. Gordon, J. B. et al. Activation of dioxygen by a mononuclear nonheme iron complex: sequential peroxo, oxo, and hydroxo intermediates. J. Am. Chem. Soc. 141, 17533–17547 (2019).

    CAS  PubMed  Google Scholar 

  64. Kass, D. et al. Stoichiometric formation of an oxoiron(iv) complex by a soluble methane monooxygenase type activation of O2 at an iron(ii)-cyclam center. J. Am. Chem. Soc. 142, 5924–5928 (2020).

    CAS  PubMed  Google Scholar 

  65. Decker, A., Rohde, J.-U., Que, L. & Solomon, E. I. Spectroscopic and quantum chemical characterization of the electronic structure and bonding in a non-heme Feiv=O complex. J. Am. Chem. Soc. 126, 5378–5379 (2004).

    CAS  PubMed  Google Scholar 

  66. Srnec, M., Wong, S. D., England, J., Que, L. & Solomon, E. I. π-Frontier molecular orbitals in S=2 ferryl species and elucidation of their contributions to reactivity. Proc. Natl Acad. Sci. USA 109, 14326–14331 (2012).

    CAS  PubMed  Google Scholar 

  67. Shaik, S., Chen, H. & Janardanan, D. Exchange-enhanced reactivity in bond activation by metal–oxo enzymes and synthetic reagents. Nat. Chem. 3, 19–27 (2011).

    CAS  PubMed  Google Scholar 

  68. Wong, S. D. et al. Nuclear resonance vibrational spectroscopy on the Feiv=O S=2 non-heme site in TMG3tren: experimentally calibrated insights into reactivity. Angew. Chem. Int. Ed. 50, 3215–3218 (2011).

    CAS  Google Scholar 

  69. Hirao, H., Kumar, D., Que, L. & Shaik, S. Two-state reactivity in alkane hydroxylation by non-heme iron–oxo complexes. J. Am. Chem. Soc. 128, 8590–8606 (2006).

    CAS  PubMed  Google Scholar 

  70. Louwerse, M. J. & Jan Baerends, E. Oxidative properties of FeO2+: electronic structure and solvation effects. Phys. Chem. Chem. Phys. 9, 156–166 (2007).

    CAS  PubMed  Google Scholar 

  71. Hirao, H., Que, L., Nam, W. & Shaik, S. A two-state reactivity rationale for counterintuitive axial ligand effects on the C–H activation reactivity of nonheme Feiv=O oxidants. Chem. Eur. J. 14, 1740–1756 (2008).

    CAS  PubMed  Google Scholar 

  72. Janardanan, D., Wang, Y., Schyman, P., Que, L. & Shaik, S. The fundamental role of exchange-enhanced reactivity in C–H activation by S = 2 oxo iron(iv) complexes. Angew. Chem. Int. Ed. 49, 3342–3345 (2010).

    CAS  Google Scholar 

  73. Seo, M. S. et al. A mononuclear nonheme iron(iv)–oxo complex which is more reactive than cytochrome P450 model compound I. Chem. Sci. 2, 1039–1045 (2011).

    CAS  Google Scholar 

  74. Monte Pérez, I. et al. A highly reactive oxoiron(iv) complex supported by a bioinspired N3O macrocyclic ligand. Angew. Chem. Int. Ed. 56, 14384–14388 (2017).

    Google Scholar 

  75. Jackson, T. A. et al. Axial ligand effects on the geometric and electronic structures of nonheme oxoiron(iv) complexes. J. Am. Chem. Soc. 130, 12394–12407 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sastri, C. V. et al. Axial ligand tuning of a nonheme iron(iv)–oxo unit for hydrogen atom abstraction. Proc. Natl Acad. Sci. USA 104, 19181–19186 (2007).

    CAS  PubMed  Google Scholar 

  77. England, J. et al. An ultra-stable oxoiron(iv) complex and its blue conjugate base. Chem. Sci. 5, 1204–1215 (2014).

    CAS  PubMed  Google Scholar 

  78. Mayer, J. M. Hydrogen atom abstraction by metal–oxo complexes: understanding the analogy with organic radical reactions. Acc. Chem. Res. 31, 441–450 (1998).

    CAS  Google Scholar 

  79. Cook, G. K. & Mayer, J. M. C–H bond activation by metal oxo species: chromyl chloride oxidations of cyclooctane, isobutane, and toluene. J. Am. Chem. Soc. 117, 7139–7156 (1995).

    CAS  Google Scholar 

  80. Gardner, K. A., Kuehnert, L. L. & Mayer, J. M. Hydrogen atom abstraction by permanganate: oxidations of arylalkanes in organic solvents. Inorg. Chem. 36, 2069–2078 (1997).

    CAS  PubMed  Google Scholar 

  81. Park, J., Lee, Y.-M., Nam, W. & Fukuzumi, S. Brønsted acid-promoted C–H bond cleavage via electron transfer from toluene derivatives to a protonated nonheme iron(iv)–oxo complex with no kinetic isotope effect. J. Am. Chem. Soc. 135, 5052–5061 (2013).

    CAS  PubMed  Google Scholar 

  82. Nishida, Y., Morimoto, Y., Lee, Y.-M., Nam, W. & Fukuzumi, S. Effects of proton acceptors on formation of a non-heme iron(iv)–oxo complex via proton-coupled electron transfer. Inorg. Chem. 52, 3094–3101 (2013).

    CAS  PubMed  Google Scholar 

  83. Park, J., Morimoto, Y., Lee, Y.-M., Nam, W. & Fukuzumi, S. Proton-promoted oxygen atom transfer vs proton-coupled electron transfer of a non-heme iron(iv)–oxo complex. J. Am. Chem. Soc. 134, 3903–3911 (2012).

    CAS  PubMed  Google Scholar 

  84. Morimoto, Y. et al. Mechanistic borderline of one-step hydrogen atom transfer versus stepwise Sc3+-coupled electron transfer from benzyl alcohol derivatives to a non-heme iron(iv)–oxo complex. Inorg. Chem. 51, 10025–10036 (2012).

    CAS  PubMed  Google Scholar 

  85. Park, J. et al. Scandium ion-enhanced oxidative dimerization and N-demethylation of N,N-dimethylanilines by a non-heme iron(iv)–oxo complex. Inorg. Chem. 50, 11612–11622 (2011).

    CAS  PubMed  Google Scholar 

  86. Park, J., Morimoto, Y., Lee, Y.-M., Nam, W. & Fukuzumi, S. Metal ion effect on the switch of mechanism from direct oxygen transfer to metal ion-coupled electron transfer in the sulfoxidation of thioanisoles by a non-heme iron(iv)–oxo complex. J. Am. Chem. Soc. 133, 5236–5239 (2011).

    CAS  PubMed  Google Scholar 

  87. Morimoto, Y. et al. Metal ion-coupled electron transfer of a nonheme oxoiron(iv) complex: remarkable enhancement of electron-transfer rates by Sc3+. J. Am. Chem. Soc. 133, 403–405 (2011).

    CAS  PubMed  Google Scholar 

  88. Fukuzumi, S. et al. Crystal structure of a metal ion-bound oxoiron(iv) complex and implications for biological electron transfer. Nat. Chem. 2, 756–759 (2010).

    CAS  PubMed  Google Scholar 

  89. Codolà, Z. et al. Evidence for an oxygen evolving iron–oxo–cerium intermediate in iron-catalysed water oxidation. Nat. Commun. 6, 5865 (2015).

    PubMed  PubMed Central  Google Scholar 

  90. Kundu, S. et al. O–O bond formation mediated by a hexanuclear iron complex supported on a stannoxane core. Chem. Eur. J. 18, 2787–2791 (2012).

    CAS  PubMed  Google Scholar 

  91. Cussó, O., Ribas, X. & Costas, M. Biologically inspired non-heme iron-catalysts for asymmetric epoxidation; design principles and perspectives. Chem. Commun. 51, 14285–14298 (2015).

    Google Scholar 

  92. Kovaleva, E. G. & Lipscomb, J. D. Versatility of biological non-heme Fe(ii) centers in oxygen activation reactions. Nat. Chem. Biol. 4, 186–193 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Solomon, E. I., Goudarzi, S. & Sutherlin, K. D. O2 activation by non-heme iron enzymes. Biochemistry 55, 6363–6374 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Costas, M., Mehn, M. P., Jensen, M. P. & Que, L. J. Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates. Chem. Rev. 104, 939–986 (2004).

    CAS  PubMed  Google Scholar 

  95. Que, L. & Tolman, W. B. Biologically inspired oxidation catalysis. Nature 455, 333–340 (2008).

    CAS  PubMed  Google Scholar 

  96. Lyakin, O. Y., Zima, A. M., Samsonenko, D. G., Bryliakov, K. P. & Talsi, E. P. EPR spectroscopic detection of the elusive Fev=O intermediates in selective catalytic oxofunctionalizations of hydrocarbons mediated by biomimetic ferric complexes. ACS Catal. 5, 2702–2707 (2015).

    CAS  Google Scholar 

  97. Makhlynets, O. V. et al. H2O2 activation with biomimetic non-haem iron complexes and AcOH: connecting the g=2.7 EPR signal with a visible chromophore. Chem. Commun. 50, 645–648 (2014).

    CAS  Google Scholar 

  98. Lyakin, O. Y., Bryliakov, K. P. & Talsi, E. P. EPR, 1H and 2H NMR, and reactivity studies of the iron–oxygen intermediates in bioinspired catalyst systems. Inorg. Chem. 50, 5526–5538 (2011).

    CAS  PubMed  Google Scholar 

  99. Hong, Y. H. et al. Photodriven oxidation of water by plastoquinone analogs with a nonheme iron catalyst. J. Am. Chem. Soc. 141, 6748–6754 (2019).

    CAS  PubMed  Google Scholar 

  100. de Oliveira, F. T. et al. Chemical and spectroscopic evidence for an Fev–oxo complex. Science 315, 835–838 (2007). This study reports the first spectroscopically well characterized mononuclear non-haem iron(v)–oxo complex, demonstrating that iron(v)–oxo species can be synthesized in non-haem iron models.

    Google Scholar 

  101. Ghosh, M. et al. Formation of a room temperature stable Fev(O) complex: reactivity toward unactivated C–H bonds. J. Am. Chem. Soc. 136, 9524–9527 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Van Heuvelen, K. M. et al. One-electron oxidation of an oxoiron(iv) complex to form an [O=Fev=NR]+ center. Proc. Natl Acad. Sci. USA 109, 11933–11938 (2012).

    PubMed  Google Scholar 

  103. Serrano-Plana, J. et al. Trapping a highly reactive nonheme iron intermediate that oxygenates strong C–H bonds with stereoretention. J. Am. Chem. Soc. 137, 15833–15842 (2015).

    CAS  PubMed  Google Scholar 

  104. Herren, M. & Guedel, H. U. Ferrate(vi), a novel near-infrared luminophore. Inorg. Chem. 31, 3683–3684 (1992).

    CAS  Google Scholar 

  105. MacBeth, C. E. et al. O2 activation by nonheme iron complexes: a monomeric Fe(iii)–oxo complex derived from O2. Science 289, 938–941 (2000). The structural characterization of an iron(iii) complex with a terminal oxo ligand, which was synthesized by activating dioxygen, was reported for the first time.

    CAS  PubMed  Google Scholar 

  106. Matson, E. M., Park, Y. J. & Fout, A. R. Facile nitrite reduction in a non-heme iron system: formation of an iron(iii)–oxo. J. Am. Chem. Soc. 136, 17398–17401 (2014).

    CAS  PubMed  Google Scholar 

  107. Andris, E. et al. Trapping iron(iii)–oxo species at the boundary of the “oxo wall”: insights into the nature of the Fe(iii)–O bond. J. Am. Chem. Soc. 140, 14391–14400 (2018).

    CAS  PubMed  Google Scholar 

  108. Geng, C., Ye, S. & Neese, F. Does a higher metal oxidation state necessarily imply higher reactivity toward H-atom transfer? A computational study of C–H bond oxidation by high-valent iron-oxo and -nitrido complexes. Dalton Trans. 43, 6079–6086 (2014).

    CAS  PubMed  Google Scholar 

  109. Usharani, D., Lacy, D. C., Borovik, A. S. & Shaik, S. Dichotomous hydrogen atom transfer vs proton-coupled electron transfer during activation of X–H bonds (X=C, N, O) by nonheme iron–oxo complexes of variable basicity. J. Am. Chem. Soc. 135, 17090–17104 (2013).

    CAS  PubMed  Google Scholar 

  110. Guo, M. et al. Dioxygen activation and O–O bond formation reactions by manganese corroles. J. Am. Chem. Soc. 139, 15858–15867 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Young, K. J., Brennan, B. J., Tagore, R. & Brudvig, G. W. Photosynthetic water oxidation: insights from manganese model chemistry. Acc. Chem. Res. 48, 567–574 (2015).

    CAS  PubMed  Google Scholar 

  112. Gao, Y., Åkermark, T., Liu, J., Sun, L. & Åkermark, B. Nucleophilic attack of hydroxide on a Mnv oxo complex: a model of the O–O bond formation in the oxygen evolving complex of photosystem II. J. Am. Chem. Soc. 131, 8726–8727 (2009).

    CAS  PubMed  Google Scholar 

  113. Kim, S. H. et al. Reversible O–O bond cleavage and formation between Mn(iv)–peroxo and Mn(v)–oxo corroles. J. Am. Chem. Soc. 132, 14030–14032 (2010).

    CAS  PubMed  Google Scholar 

  114. Bryliakov, K. P. Catalytic asymmetric oxygenations with the environmentally benign oxidants H2O2 and O2. Chem. Rev. 117, 11406–11459 (2017).

    CAS  PubMed  Google Scholar 

  115. Bryliakov, K. P. & Talsi, E. P. Active sites and mechanisms of bioinspired oxidation with H2O2, catalyzed by non-heme Fe and related Mn complexes. Coord. Chem. Rev. 276, 73–96 (2014).

    CAS  Google Scholar 

  116. Saisaha, P., de Boer, J. W. & Browne, W. R. Mechanisms in manganese catalysed oxidation of alkenes with H2O2. Chem. Soc. Rev. 42, 2059–2074 (2013).

    CAS  PubMed  Google Scholar 

  117. Wang, B., Miao, C., Wang, S., Xia, C. & Sun, W. Manganese catalysts with C 1-symmetric N4 ligand for enantioselective epoxidation of olefins. Chem. Eur. J. 18, 6750–6753 (2012).

    CAS  PubMed  Google Scholar 

  118. Talsi, E. P. & Bryliakov, K. P. Chemo- and stereoselective C–H oxidations and epoxidations/cis-dihydroxylations with H2O2, catalyzed by non-heme iron and manganese complexes. Coord. Chem. Rev. 256, 1418–1434 (2012).

    CAS  Google Scholar 

  119. Ottenbacher, R. V., Bryliakov, K. P. & Talsi, E. P. Non-heme manganese complexes catalyzed asymmetric epoxidation of olefins by peracetic acid and hydrogen peroxide. Adv. Synth. Catal. 353, 885–889 (2011).

    CAS  Google Scholar 

  120. Du, J. et al. Mechanistic insights into the enantioselective epoxidation of olefins by bioinspired manganese complexes: role of carboxylic acid and nature of active oxidant. ACS Catal. 8, 4528–4538 (2018).

    CAS  Google Scholar 

  121. Chen, J. et al. Tuning the reactivity of mononuclear nonheme manganese(iv)–oxo complexes by triflic acid. Chem. Sci. 6, 3624–3632 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Leto, D. F., Ingram, R., Day, V. W. & Jackson, T. A. Spectroscopic properties and reactivity of a mononuclear oxomanganese(iv) complex. Chem. Commun. 49, 5378–5380 (2013).

    CAS  Google Scholar 

  123. Wu, X. et al. A highly reactive mononuclear non-heme manganese(iv)–oxo complex that can activate the strong C–H bonds of alkanes. J. Am. Chem. Soc. 133, 20088–20091 (2011). This paper reports the synthesis and characterization of a highly reactive non-haem manganese(iv)–oxo complex and the oxygen non-rebound mechanism in C–H bond activation reactions.

    CAS  PubMed  Google Scholar 

  124. Yoon, H., Morimoto, Y., Lee, Y.-M., Nam, W. & Fukuzumi, S. Electron-transfer properties of a nonheme manganese(iv)–oxo complex acting as a stronger one-electron oxidant than the iron(iv)–oxo analogue. Chem. Commun. 48, 11187–11189 (2012).

    CAS  Google Scholar 

  125. Wang, Y., Shi, S., Wang, H., Zhu, D. & Yin, G. Kinetics of hydrogen abstraction by active metal hydroxo and oxo intermediates: revealing their unexpected similarities in the transition state. Chem. Commun. 48, 7832–7834 (2012).

    CAS  Google Scholar 

  126. Barman, P. et al. Influence of ligand architecture on oxidation reactions by high-valent nonheme manganese oxo complexes using water as a source of oxygen. Angew. Chem. Int. Ed. 54, 2095–2099 (2015).

    CAS  Google Scholar 

  127. Lacy, D. C., Park, Y. J., Ziller, J. W., Yano, J. & Borovik, A. S. Assembly and properties of heterobimetallic Coii/iii/Caii complexes with aquo and hydroxo ligands. J. Am. Chem. Soc. 134, 17526–17535 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Nguyen, A. I., Hadt, R. G., Solomon, E. I. & Tilley, T. D. Efficient C–H bond activations via O2 cleavage by a dianionic cobalt(ii) complex. Chem. Sci. 5, 2874–2878 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Li, N., Lu, W., Pei, K., Yao, Y. & Chen, W. Formation of high-valent cobalt–oxo phthalocyanine species in a cellulose matrix for eliminating organic pollutants. Appl. Catal. B Environ. 163, 105–112 (2015).

    CAS  Google Scholar 

  130. Hong, S. et al. Spectroscopic capture and reactivity of a low-spin cobalt(iv)–oxo complex stabilized by binding redox-inactive metal ions. Angew. Chem. Int. Ed. 53, 10403–10407 (2014).

    CAS  Google Scholar 

  131. Hong, S. et al. A manganese(v)–oxo complex: synthesis by dioxygen activation and enhancement of its oxidizing power by binding scandium ion. J. Am. Chem. Soc. 138, 8523–8532 (2016).

    CAS  PubMed  Google Scholar 

  132. Das, D., Pattanayak, S., Singh, K. K., Garai, B. & Sen Gupta, S. Electrocatalytic water oxidation by a molecular cobalt complex through a high valent cobalt oxo intermediate. Chem. Commun. 52, 11787–11790 (2016).

    CAS  Google Scholar 

  133. Collins, T. J., Powell, R. D., Slebodnick, C. & Uffelman, E. S. Stable highly oxidizing cobalt complexes of macrocyclic ligands. J. Am. Chem. Soc. 113, 8419–8425 (1991).

    CAS  Google Scholar 

  134. Popescu, D.-L. et al. High-valent first-row transition-metal complexes of tetraamido (4N) and diamidodialkoxido or diamidophenolato (2N/2O) ligands: synthesis, structure, and magnetochemistry. Coord. Chem. Rev. 252, 2050–2071 (2008).

    CAS  Google Scholar 

  135. Liu, Y. & Lau, T.-C. Activation of metal oxo and nitrido complexes by Lewis acids. J. Am. Chem. Soc. 141, 3755–3766 (2019).

    CAS  PubMed  Google Scholar 

  136. Swart, M. A change in the oxidation state of iron: scandium is not innocent. Chem. Commun. 49, 6650–6652 (2013).

    CAS  Google Scholar 

  137. Prakash, J. et al. Spectroscopic identification of an Feiii center, not Feiv, in the crystalline Sc–O–Fe adduct derived from [Feiv(O)(TMC)]2+. J. Am. Chem. Soc. 137, 3478–3481 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Goetz, M. K., Hill, E. A., Filatov, A. S. & Anderson, J. S. Isolation of a terminal Co(iii)–oxo complex. J. Am. Chem. Soc. 140, 13176–13180 (2018).

    CAS  PubMed  Google Scholar 

  139. McMillion, N. D. et al. Imidazole for pyridine substitution leads to enhanced activity under milder conditions in cobalt water oxidation electrocatalysis. Inorg. Chem. 58, 1391–1397 (2019).

    CAS  PubMed  Google Scholar 

  140. Goetz, M. K. & Anderson, J. S. Experimental evidence for pK a-driven asynchronicity in C–H activation by a terminal Co(iii)–oxo complex. J. Am. Chem. Soc. 141, 4051–4062 (2019).

    CAS  PubMed  Google Scholar 

  141. Andris, E. et al. M–O bonding beyond the oxo wall: spectroscopy and reactivity of cobalt(iii)–oxyl and cobalt(iii)–oxo complexes. Angew. Chem. Int. Ed. 58, 9619–9624 (2019). In this study, high-valent Co–O complexes were generated in the gas phase and characterized using spectroscopy and quantum-chemical calculations.

    CAS  Google Scholar 

  142. Koola, J. D. & Kochi, J. K. Nickel catalysis of olefin epoxidation. Inorg. Chem. 26, 908–916 (1987).

    CAS  Google Scholar 

  143. Kinneary, J. F., Albert, J. S. & Burrows, C. J. Mechanistic studies of alkene epoxidation catalyzed by nickel(ii) cyclam complexes. Oxygen-18 labeling and substituent effects. J. Am. Chem. Soc. 110, 6124–6129 (1988).

    CAS  PubMed  Google Scholar 

  144. Nagataki, T., Tachi, Y. & Itoh, S. Niii(TPA) as an efficient catalyst for alkane hydroxylation with m-CPBA. Chem. Commun. 38, 4016–4018 (2006).

    Google Scholar 

  145. Nagataki, T., Ishii, K., Tachi, Y. & Itoh, S. Ligand effects on Niii-catalysed alkane-hydroxylation with m-CPBA. Dalton Trans. 11, 1120–1128 (2007).

    Google Scholar 

  146. Schröder, D. & Schwarz, H. C–H and C–C bond activation by bare transition-metal oxide cations in the gas phase. Angew. Chem. Int. Ed. 34, 1973–1995 (1995).

    Google Scholar 

  147. Roithová, J. & Schröder, D. Selective activation of alkanes by gas-phase metal ions. Chem. Rev. 110, 1170–1211 (2010).

    PubMed  Google Scholar 

  148. Božović, A. et al. Conversion of methane to methanol: nickel, palladium, and platinum (d 9) cations as catalysts for the oxidation of methane by ozone at room temperature. Chem. Eur. J. 16, 11605–11610 (2010).

    PubMed  Google Scholar 

  149. Shiota, Y. & Yoshizawa, K. Methane-to-methanol conversion by first-row transition-metal oxide ions: ScO+, TiO+, VO+, CrO+, MnO+, FeO+, CoO+, NiO+, and CuO+. J. Am. Chem. Soc. 122, 12317–12326 (2000).

    CAS  Google Scholar 

  150. Pfaff, F. F., Heims, F., Kundu, S., Mebs, S. & Ray, K. Spectroscopic capture and reactivity of S = 1/2 nickel(iii)–oxygen intermediates in the reaction of a Niii-salt with mCPBA. Chem. Commun. 48, 3730–3732 (2012). This paper reports the stabilization and first spectroscopic characterization of a Ni–O species.

    CAS  Google Scholar 

  151. Corona, T. et al. Reactivity of a nickel(ii) bis(amidate) complex with meta-chloroperbenzoic acid: formation of a potent oxidizing species. Chem. Eur. J. 21, 15029–15038 (2015).

    CAS  PubMed  Google Scholar 

  152. Bok, K. H. et al. Synthesis, characterization, and catalytic activities of a nickel(ii) monoamido-tetradentate complex: evidence for Niiii–oxo and Niiv–oxo species. Chem. Eur. J. 23, 3117–3125 (2017).

    CAS  PubMed  Google Scholar 

  153. Cowley, R. E., Tian, L. & Solomon, E. I. Mechanism of O2 activation and substrate hydroxylation in noncoupled binuclear copper monooxygenases. Proc. Natl Acad. Sci. USA 113, 12035–12040 (2016).

    CAS  PubMed  Google Scholar 

  154. Gherman, B. F., Heppner, D. E., Tolman, W. B. & Cramer, C. J. Models for dioxygen activation by the CuB site of dopamine β-monooxygenase and peptidylglycine α-hydroxylating monooxygenase. J. Biol. Inorg. Chem. 11, 197–205 (2006).

    CAS  PubMed  Google Scholar 

  155. Klinman, J. P. The copper-enzyme family of dopamine β-monooxygenase and peptidylglycine α-hydroxylating monooxygenase: resolving the chemical pathway for substrate hydroxylation. J. Biol. Chem. 281, 3013–3016 (2006).

    CAS  PubMed  Google Scholar 

  156. Crespo, A., Martí, M. A., Roitberg, A. E., Amzel, L. M. & Estrin, D. A. The catalytic mechanism of peptidylglycine α-hydroxylating monooxygenase investigated by computer simulation. J. Am. Chem. Soc. 128, 12817–12828 (2006).

    CAS  PubMed  Google Scholar 

  157. Chen, P. & Solomon, E. I. Oxygen activation by the noncoupled binuclear copper site in peptidylglycine α-hydroxylating monooxygenase. Reaction mechanism and role of the noncoupled nature of the active site. J. Am. Chem. Soc. 126, 4991–5000 (2004).

    CAS  PubMed  Google Scholar 

  158. Tsybizova, A. & Roithová, J. Copper-catalyzed reactions: research in the gas phase. Mass Spectrom. Rev. 35, 85–110 (2016).

    CAS  PubMed  Google Scholar 

  159. Schröder, D., Holthausen, M. C. & Schwarz, H. Radical-like activation of alkanes by the ligated copper oxide cation (phenanthroline)CuO+. J. Phys. Chem. B 108, 14407–14416 (2004).

    Google Scholar 

  160. Dietl, N., van der Linde, C., Schlangen, M., Beyer, M. K. & Schwarz, H. Diatomic [CuO]+ and its role in the spin-selective hydrogen- and oxygen-atom transfers in the thermal activation of methane. Angew. Chem. Int. Ed. 50, 4966–4969 (2011).

    CAS  Google Scholar 

  161. Shaffer, C. J., Schröder, D., Gütz, C. & Lützen, A. Intramolecular C–H bond activation through a flexible ester linkage. Angew. Chem. Int. Ed. 51, 8097–8100 (2012).

    CAS  Google Scholar 

  162. Yassaghi, G., Andris, E. & Roithová, J. Reactivity of copper(iii)–oxo complexes in the gas phase. ChemPhysChem 18, 2217–2224 (2017).

    CAS  PubMed  Google Scholar 

  163. Srnec, M., Navrátil, R., Andris, E., Jašík, J. & Roithová, J. Experimentally calibrated analysis of the electronic structure of CuO+: implications for reactivity. Angew. Chem. Int. Ed. 57, 17053–17057 (2018).

    CAS  Google Scholar 

  164. Hong, S., Huber, S. M., Gagliardi, L., Cramer, C. C. & Tolman, W. B. Copper(i)–α-ketocarboxylate complexes: characterization and O2 reactions that yield copper–oxygen intermediates capable of hydroxylating arenes. J. Am. Chem. Soc. 129, 14190–14192 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Halfen, J. A. et al. Reversible cleavage and formation of the dioxygen O–O bond within a dicopper complex. Science 271, 1397–1400 (1996).

    CAS  PubMed  Google Scholar 

  166. Donoghue, P. J. et al. Rapid C–H bond activation by a monocopper(iii)–hydroxide complex. J. Am. Chem. Soc. 133, 17602–17605 (2011). This study presents a spectroscopically characterized and highly reactive Cu(iii)–OH complex, a close relative of the yet elusive Cu–O species.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Rijs, N. J., Weiske, T., Schlangen, M. & Schwarz, H. On divorcing isomers, dissecting reactivity, and resolving mechanisms of propane C–H and aryl C–X (X = halogen) bond activations mediated by a ligated copper(iii) oxo complex. Chem. Phys. Lett. 608, 408–424 (2014).

    CAS  Google Scholar 

  168. Cho, K.-B. et al. Evidence for an alternative to the oxygen rebound mechanism in C–H bond activation by non-heme FeivO complexes. J. Am. Chem. Soc. 134, 20222–20225 (2012). The C–H-bond activation by synthetic non-haem iron(iv)–oxo complexes has been shown to occur by a non-oxygen-rebound mechanism.

    CAS  PubMed  Google Scholar 

  169. Bougher, C. J., Liu, S., Hicks, S. D. & Abu-Omar, M. M. Valence tautomerization of high-valent manganese(v)–oxo corrole induced by protonation of the oxo ligand. J. Am. Chem. Soc. 137, 14481–14487 (2015).

    CAS  PubMed  Google Scholar 

  170. Leto, D. F. & Jackson, T. A. Mn K-edge X-ray absorption studies of oxo- and hydroxo-manganese(iv) complexes: experimental and theoretical insights into pre-edge properties. Inorg. Chem. 53, 6179–6194 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Denler, M. C. et al. Mniv–oxo complex of a bis(benzimidazolyl)-containing N5 ligand reveals different reactivity trends for Mniv–oxo than Feiv–oxo species. Dalton Trans. 48, 5007–5021 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Sawant, S. C. et al. Water as an oxygen source: synthesis, characterization, and reactivity studies of a mononuclear nonheme manganese(iv) oxo complex. Angew. Chem. Int. Ed. 49, 8190–8194 (2010).

    CAS  Google Scholar 

  173. Wang, D. et al. Nonheme oxoiron(iv) complexes of pentadentate N5 ligands: spectroscopy, electrochemistry, and oxidative reactivity. Chem. Sci. 4, 282–291 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Lee, Y.-M. et al. Water as an oxygen source in the generation of mononuclear nonheme iron(iv) oxo complexes. Angew. Chem. Int. Ed. 48, 1803–1806 (2009).

    CAS  Google Scholar 

  175. Bukowski, M. R. et al. Biochemistry: a thiolate-ligated nonheme oxoiron(iv) complex relevant to cytochrome P450. Science 310, 1000–1002 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the contributions of their collaborators and co-workers in the cited references. W.N. acknowledges the financial support from the NRF of Korea through CRI (NRF-2012R1A3A2048842). N.L. acknowledges support from the National Science Foundation (NSF, CHE-1900380). K.R. is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy — EXC 2008 — 390540038 — UniSysCat and the Heisenberg professorship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to Kallol Ray, Nicolai Lehnert or Wonwoo Nam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larson, V.A., Battistella, B., Ray, K. et al. Iron and manganese oxo complexes, oxo wall and beyond. Nat Rev Chem 4, 404–419 (2020). https://doi.org/10.1038/s41570-020-0197-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-020-0197-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing