Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Encoding information into polymers

Abstract

Defined-sequence polymers have great potential as durable and high-density data-storage media. DNA already fulfils this role in nature, using the sequence of its four nucleobases to store genetic information. Synthetic DNA can be used to store binary codes, and it is both more durable and can store information at a much higher density than conventional silicon-based storage systems. Other defined-sequence synthetic polymers have properties that make them even more suitable for data storage, at least in principle, assuming that complete control over their composition, that is, their monomer sequence, can be achieved. This Review addresses the current status of data storage in DNA, proteins and synthetic polymers, with the objective to overcome the problems of current data storage technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Data storage in DNA.
Fig. 2: The DNA editing methods gBlock and overlap extension PCR.
Fig. 3: DNA computing.
Fig. 4: Different strategies for the synthesis of information-containing macromolecules.
Fig. 5: Reading of synthetic polymers.
Fig. 6: Catalytic writing.

Similar content being viewed by others

References

  1. Woods, C. (ed.) Visible Language: Inventions of Writing in the Ancient Middle East and Beyond (Oriental Institute of the University of Chicago, 2010).

  2. Gantz, J. & Reinsel, D. The digital universe in 2020: big data, bigger digital shadows, and biggest growth in the far east. Anal. Futur. 2007, 1–16 (2012).

    Google Scholar 

  3. Cisco Systems, Inc. The zettabyte era: trends and analysis. cisco https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.pdf (2017).

  4. Extance, A. How DNA could store all the world’s data. Nature 537, 22–24 (2016).

    CAS  PubMed  Google Scholar 

  5. Zhirnov, V., Zadegan, R. M., Sandhu, G. S., Church, G. M. & Hughes, W. L. Nucleic acid memory. Nat. Mater. 15, 366–370 (2016).

    CAS  PubMed  Google Scholar 

  6. Lunt, B. M. How long is long-term data storage? Arch. Conf. 2011, 29–33 (2011).

    Google Scholar 

  7. Shrivastava, S. & Badlani, R. Data storage in DNA. Int. J. Electr. Energy 2, 119–124 (2014).

    Google Scholar 

  8. Kumar, S. & Vijayaraghavan, R. Solid state drive (SSD) FAQ. Dell https://www.dell.com/downloads/global/products/pvaul/en/solid-state-drive-faq-us.pdf (2011).

  9. Greengard, S. Cracking the code on DNA storage. Commun. ACM 60, 16–18 (2017).

    Google Scholar 

  10. Greenberg, A., Hamilton, J., Maltz, D. A. & Patel, P. The cost of a cloud: research problems in data center networks. SIGCOMM Comput. Commun. Rev. 39, 68–73 (2009).

    Google Scholar 

  11. Bawden, T. Global warming: data centres to consume three times as much energy in next decade, experts warn. https://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html Independent (2016).

  12. Ritter, S. DNA to the rescue for data storage. Chem. Eng. News Arch. 93, 40–41 (2015).

    Google Scholar 

  13. Stikeman, A. Polymer memory. Technol. Rev. 105, 31 (2002).

    Google Scholar 

  14. Colquhoun, H. & Lutz, J.-F. Information-containing macromolecules. Nat. Chem. 6, 455–456 (2014).

    CAS  PubMed  Google Scholar 

  15. Ogihara, M. & Ray, A. DNA computing on a chip. Nature 403, 143 (2000).

    CAS  PubMed  Google Scholar 

  16. Kosuri, S. & Church, G. M. Large-scale de novo DNA synthesis: technologies and applications. Nat. Methods 11, 499–507 (2014).

    CAS  PubMed  Google Scholar 

  17. Shendure, J. et al. DNA sequencing at 40: past, present and future. Nature 550, 345–353 (2017).

    CAS  PubMed  Google Scholar 

  18. Sanger, F. & Coulson, A. R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 94, 441–448 (1975).

    CAS  PubMed  Google Scholar 

  19. Maxam, A. M. & Gilbert, W. A new method for sequencing DNA. Proc. Natl Acad. Sci. USA 74, 560–564 (1977).

    CAS  PubMed  Google Scholar 

  20. Mullis, K. B. & Faloona, F. A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155, 335–350 (1987).

    CAS  PubMed  Google Scholar 

  21. Kelly, T. J. & Smith, H. O. A restriction enzyme from Hemophilus influenzae. II. Base sequence of the recognition site. J. Mol. Biol. 51, 393–409 (1970).

    CAS  PubMed  Google Scholar 

  22. Smith, H. O. & Welcox, K. W. A. Restriction enzyme from Hemophilus influenzae. I. Purification and general properties. J. Mol. Biol. 51, 379–391 (1970).

    CAS  PubMed  Google Scholar 

  23. Little, J. W., Zimmerman, S. B., Oshinsky, C. K. & Gellert, M. Enzymatic joining of DNA strands, II. An enzyme-adenylate intermediate in the dpn-dependent DNA ligase reaction. Proc. Natl Acad. Sci. USA 58, 2004–2011 (1967).

    CAS  PubMed  Google Scholar 

  24. Zimmerman, S. B., Little, J. W., Oshinsky, C. K. & Gellert, M. Enzymatic joining of DNA strands: a novel reaction of diphosphopyridine nucleotide. Proc. Natl Acad. Sci. USA 57, 1841–1848 (1967).

    CAS  PubMed  Google Scholar 

  25. O’ Driscoll, A. & Sleator, R. D. Synthetic DNA: the next generation of big data storage. Bioengineered 4, 123–125 (2013).

    PubMed  PubMed Central  Google Scholar 

  26. Glanz, J. Power, pollution and the internet. NYTimes https://www.nytimes.com/2012/09/23/technology/data-centers-waste-vast-amounts-of-energy-belying-industry-image.html?emc=eta1&_r=0 (2012).

  27. De Silva, P. Y. & Ganegoda, G. U. New trends of digital data storage in DNA. Biomed. Res. Int. 2016, 14 (2016).

    Google Scholar 

  28. Adleman, L. M. Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994).

    CAS  PubMed  Google Scholar 

  29. Shilov, A. Western digital launches ultrastar DC HC530 14 TB PMR with TDMR HDD. AnandTech https://www.anandtech.com/show/12665/western-digital-launches-ultrastar-dc-hc530-14-tb-pmr-with-tdmr-hdd (2018).

  30. Mallary, M., Torabi, A. & Benakli, M. One terabit per square inch perpendicular recording conceptual design. IEEE Trans. Magn. 38, 1719–1724 (2002).

    Google Scholar 

  31. Milenkovic, O., Gabrys, R., Kiah, H. M. & Yazdi, S. M. H. T. Exabytes in a test tube: the case for DNA data storage. IEEE Spectrum https://spectrum.ieee.org/semiconductors/devices/exabytes-in-a-test-tube-the-case-for-dna-data-storage (2018).

  32. Castillo, M. From hard drives to flash drives to DNA drives. Am. J. Neuroradiol. 35, 1–2 (2014).

    CAS  PubMed  Google Scholar 

  33. Carlson, R. The changing economics of DNA synthesis. Nat. Biotechnol. 27, 1091 (2009).

    CAS  PubMed  Google Scholar 

  34. Erlich, Y. & Zielinski, D. DNA Fountain enables a robust and efficient storage architecture. Science 355, 950–954 (2017).

    CAS  PubMed  Google Scholar 

  35. Bornholt, J. et al. A DNA-based archival storage system. ACM SIGOPS Oper. Syst. Rev. 50, 637 (2016).

    Google Scholar 

  36. Niedringhaus, T. P., Milanova, D., Kerby, M. B., Snyder, M. P. & Barron, A. E. Landscape of next-generation sequencing technologies. Anal. Chem. 83, 4327–4341 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shannon, C. E. A. Mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    Google Scholar 

  38. Cox, J. P. Long-term data storage in DNA. Trends Biotechnol. 19, 247–250 (2001).

    CAS  PubMed  Google Scholar 

  39. Bancroft, C., Bowler, T., Bloom, B. & Clelland, C. T. Long-term storage of information in DNA. Science 293, 1763–1765 (2001).

    CAS  PubMed  Google Scholar 

  40. Bogard, C. M., Rouchka, E. C. & Arazi, B. DNA media storage. Prog. Nat. Sci. 18, 603–609 (2008).

    CAS  Google Scholar 

  41. Carrillo, H. & Lipman, D. The multiple sequence alignment problem in biology. SIAM J. Appl. Math. 48, 1073–1082 (1988).

    Google Scholar 

  42. Simpson, R. E. in Introductory Electronics for Scientists and Engineers (Addison-Wesley, 1987).

  43. Reed, I. & Solomon, G. Polynomial codes over certain finite fields. J. Soc. Ind. Appl. Math. 8, 300–304 (1960).

    Google Scholar 

  44. Moon, T. K. in Error Correction Coding: Mathematical Methods and Algorithms (Wiley-Interscience, 2005).

  45. Blawat, M. et al. Forward error correction for DNA data storage. Procedia Comput. Sci. 80, 1011–1022 (2016).

    Google Scholar 

  46. Doig, A. J. Improving the efficiency of the genetic code by varying the codon length—the perfect genetic code. J. Theor. Biol. 188, 355–360 (1997).

    CAS  PubMed  Google Scholar 

  47. Huffman, D. A. A. Method for the construction of minimum-redundancy codes. Proc. IRE 40, 1098–1101 (1952).

    Google Scholar 

  48. Ailenberg, M. & Rotstein, O. An improved Huffman coding method for archiving text, images, and music characters in DNA. Biotechniques 47, 747–754 (2009).

    CAS  PubMed  Google Scholar 

  49. Smith, G. C., Fiddes, C. C., Hawkins, J. P. & Cox, J. P. L. Some possible codes for encrypting data in DNA. Biotechnol. Lett. 25, 1125–1130 (2003).

    CAS  PubMed  Google Scholar 

  50. Goldman, N. et al. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature 494, 77–80 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Church, G. M., Gao, Y. & Kosuri, S. Next-generation digital information storage in DNA. Science 337, 1628–1628 (2012).

    CAS  PubMed  Google Scholar 

  52. Golomb, S. W. in Mathematical Problems in the Biological Sciences (Proceedings of Symposia in Applied Mathematics) Vol. 14 87–100 (American Mathematical Soc., 1962).

  53. Davis, J. Microvenus. Art J. 55, 70–74 (1996).

    Google Scholar 

  54. Clelland, C. T., Risca, V. & Bancroft, C. Hiding messages in DNA microdots. Nature 399, 533–534 (1999).

    CAS  PubMed  Google Scholar 

  55. Bourdenx, M. DNA as the next digital information storage support. Mov. Disord. 28, 583 (2013).

    PubMed  Google Scholar 

  56. MacKay, D. J. C. Fountain codes. IEE Proc.-Commun. 152, 1062–1068 (2005).

    Google Scholar 

  57. Micheloni, R. Solid-State Drive (SSD): a nonvolatile storage system. Proc. IEEE 105, 583–588 (2017).

    Google Scholar 

  58. Friedland, A. E. et al. Synthetic gene networks that count. Science 324, 1199–1202 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bonnet, J., Subsoontorn, P. & Endy, D. Rewritable digital data storage in live cells via engineered control of recombination directionality. Proc. Natl Acad. Sci. USA 109, 8884–8889 (2012).

    CAS  PubMed  Google Scholar 

  60. Mayer, C., McInroy, G. R., Murat, P., Van Delft, P. & Balasubramanian, S. An epigenetics-inspired DNA-based data storage system. Angew. Chem. Int. Ed. 55, 11144–11148 (2016).

    CAS  Google Scholar 

  61. Goldberg, A. D., Allis, C. D. & Bernstein, E. Epigenetics: a landscape takes shape. Cell 128, 635–638 (2007).

    CAS  PubMed  Google Scholar 

  62. Shapiro, R., Servis, R. E. & Welcher, M. Reactions of uracil and cytosine derivatives with sodium bisulfite. J. Am. Chem. Soc. 92, 422–424 (1970).

    CAS  Google Scholar 

  63. Wang, R. Y.-H., Gehrke, C. W. & Ehrlich, M. Comparison of bisulfite modification of 5-methyldeoxycytidine and deoxycytidine residues. Nucleic Acids Res. 8, 4777–4790 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Tabatabaei Yazdi, S. M. H., Yuan, Y., Ma, J., Zhao, H. & Milenkovic, O. A. Rewritable, random-access DNA-based storage system. Sci. Rep. 5, 14138 (2015).

    CAS  PubMed Central  Google Scholar 

  65. Bryksin, A. V. & Matsumura, I. Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids. Biotechniques 48, 463–465 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Arita, M. in Aspects of Molecular Computing (eds Jonoska, N., Pa˘un, G. & Rozenberg, G.) 23–35 (Springer Berlin Heidelberg, 2003).

  67. Anchordoquy, T. J. & Molina, M. C. Preservation of DNA. Cell Preserv. Technol. 5, 180–188 (2007).

    CAS  Google Scholar 

  68. Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J. & Setlow, P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64, 548–572 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Yachie, N., Sekiyama, K., Sugahara, J., Ohashi, Y. & Tomita, M. Alignment-based approach for durable data storage into living organisms. Biotechnol. Prog. 23, 501–505 (2007).

    CAS  PubMed  Google Scholar 

  70. Limbachiya, D. & Gupta, M. K. Natural Data Storage: a review on sending information from now to then via nature. Preprint at arXiv http://arxiv.org/abs/1505.04890 (2015).

  71. Shipman, S. L., Nivala, J., Macklis, J. D. & Church, G. M. CRISPR–Cas encoding of a digital movie into the genomes of a population of living bacteria. Nature 547, 345 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Heaven, D. Video stored in live bacterial genome using CRISPR gene editing. New Scientist https://www.newscientist.com/article/2140576-video-stored-in-live-bacterial-genome-using-crispr-gene-editing/ (2017).

  73. Grass, R. N., Heckel, R., Puddu, M., Paunescu, D. & Stark, W. J. Robust chemical preservation of digital information on DNA in silica with error-correcting codes. Angew. Chemie - Int. Ed. 54, 2552–2555 (2015).

    CAS  Google Scholar 

  74. Parker, J. Computing with DNA. EMBO Rep. 4, 7–10 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Scudellari, M. Inner Workings: DNA for data storage and computing. Proc. Natl Acad. Sci. USA 112, 15771–15772 (2015).

    CAS  PubMed  Google Scholar 

  76. Cormen, T. H., Leiserson, C. E. & Rivest, R. L. Introduction to Algorithms (The MIT Press, 1990).

  77. Braich, R. S., Chelyapov, N., Johnson, C., Rothemund, P. W. K. & Adleman, L. Solution of a 20-variable 3-SAT problem on a DNA computer. Science 296, 499–502 (2002).

    CAS  PubMed  Google Scholar 

  78. Benenson, Y. et al. Programmable and autonomous computing machine made of biomolecules. Nature 414, 430–434 (2001).

    CAS  PubMed  Google Scholar 

  79. Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z. & Shapiro, E. DNA molecule provides a computing machine with both data and fuel. Proc. Natl Acad. Sci. USA 100, 2191–2196 (2003).

    CAS  PubMed  Google Scholar 

  80. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    CAS  PubMed  Google Scholar 

  81. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    CAS  PubMed  Google Scholar 

  82. Bonnet, J., Yin, P., Ortiz, M. E., Subsoontorn, P. & Endy, D. Amplifying genetic logic gates. Science 340, 599–603 (2013).

    CAS  PubMed  Google Scholar 

  83. Daniel, R., Rubens, J. R., Sarpeshkar, R. & Lu, T. K. Synthetic analog computation in living cells. Nature 497, 619–623 (2013).

    CAS  PubMed  Google Scholar 

  84. Farzadfard, F. & Lu, T. K. Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. Science 346, 1256272 (2014).

    PubMed  PubMed Central  Google Scholar 

  85. Ratner, T., Piran, R., Jonoska, N. & Keinan, E. Biologically relevant molecular transducer with increased computing power and iterative abilities. Chem. Biol. 20, 726–733 (2013).

    CAS  PubMed  Google Scholar 

  86. Varghese, S., Elemans, J. A. A. W., Rowan, A. E. & Nolte, R. J. M. Molecular computing: paths to chemical Turing machines. Chem. Sci. 6, 6050–6058 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hirshberg, Y. Reversible formation and eradication of colors by irradiation at low temperatures. A photochemical memory model. J. Am. Chem. Soc. 78, 2304–2312 (1956).

    CAS  Google Scholar 

  88. Adam, V. et al. Data storage based on photochromic and photoconvertible fluorescent proteins. J. Biotechnol. 149, 289–298 (2010).

    CAS  PubMed  Google Scholar 

  89. Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H. & Miyawaki, A. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc. Natl Acad. Sci. USA 99, 12651–12656 (2002).

    CAS  PubMed  Google Scholar 

  90. Ando, R., Mizuno, H. & Miyawaki, A. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306, 1370–1373 (2004).

    CAS  PubMed  Google Scholar 

  91. Adam, V. et al. Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations. Proc. Natl Acad. Sci. USA 105, 18343–18348 (2008).

    CAS  PubMed  Google Scholar 

  92. Mandzhikov, V. F., Murin, V. A. & Barachevskii, V. A. Nonlinear coloration of photochromic spiropyran solutions. Sov. J. Quantum Electron. 3, 128–129 (1973).

    Google Scholar 

  93. Birge, R. R. Protein-based computers. Sci. Am. 272, 90–95 (1995).

    CAS  Google Scholar 

  94. Renugopalakrishnan, V. et al. Retroengineering bacteriorhodopsins: design of smart proteins by bionanotechnology. Int. J. Quantum Chem. 95, 627–631 (2003).

    CAS  Google Scholar 

  95. Renugopalakrishnan, R., Khizroev, K., Anand, A., Pingzuo, P. & Lindvold, L. Future memory storage technology: protein-based memory devices may facilitate surpassing Moore’s law. IEEE Trans. Magn. 43, 773–775 (2007).

    CAS  Google Scholar 

  96. Oesterhelt, D., Brauchle, C. & Hampp, N. Bacteriorhodopsin: a biological material for information processing. Q. Rev. Biophys. 24, 425–478 (1991).

    CAS  PubMed  Google Scholar 

  97. Dawkins, R. The Blind Watchmaker (Longman, 1986).

  98. Orgel, L. E. Molecular replication. Nature 358, 203–209 (1992).

    CAS  PubMed  Google Scholar 

  99. Sievers, D. & von Kiedrowski, G. Self-replication of complementary nucleotide-based oligomers. Nature 369, 221–224 (1994).

    CAS  PubMed  Google Scholar 

  100. Brudno, Y. & Liu, D. R. Recent progress toward the templated synthesis and directed evolution of sequence-defined synthetic polymers. Chem. Biol. 16, 265–276 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lutz, J.-F., Ouchi, M., Liu, D. R. & Sawamoto, M. Sequence-controlled polymers. Science 341, 1238149 (2013).

    PubMed  Google Scholar 

  102. Piccirilli, J. A., Benner, S. A., Krauch, T., Moroney, S. E. & Benner, S. A. Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature 343, 33–37 (1990).

    CAS  PubMed  Google Scholar 

  103. Kool, E. T. Replacing the nucleobases in DNA with designer molecules. Acc. Chem. Res. 35, 936–943 (2002).

    CAS  PubMed  Google Scholar 

  104. Lewandowski, B. et al. Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339, 189–193 (2013).

    CAS  PubMed  Google Scholar 

  105. Niu, J., Hili, R. & Liu, D. R. Enzyme-free translation of DNA into sequence-defined synthetic polymers structurally unrelated to nucleic acids. Nat. Chem. 5, 282–292 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Houshyar, S. et al. The scope for synthesis of macro-RAFT agents by sequential insertion of single monomer units. Polym. Chem. 3, 1879–1889 (2012).

    CAS  Google Scholar 

  107. Tong, X., Guo, B. & Huang, Y. Toward the synthesis of sequence-controlled vinyl copolymers. Chem. Commun. 47, 1455–1457 (2011).

    CAS  Google Scholar 

  108. Minoda, M., Sawamoto, M. & Higashimura, T. Sequence-regulated oligomers and polymers by living cationic polymerization. 2. Principle of sequence regulation and synthesis of sequence-regulated oligomers of functional vinyl ethers and styrene derivatives. Macromolecules 23, 4889–4895 (1990).

    CAS  Google Scholar 

  109. Brooks, P. P. et al. Monomer sequencing in living anionic polymerization using kinetic control. Macromol. Symp. 323, 42–50 (2013).

    CAS  Google Scholar 

  110. Rzaev, Z. M. O. Complex-radical alternating copolymerization. Prog. Polym. Sci. 25, 163–217 (2000).

    CAS  Google Scholar 

  111. Pfeifer, S. & Lutz, J.-F. A. Facile procedure for controlling monomer sequence distribution in radical chain polymerizations. J. Am. Chem. Soc. 129, 9542–9543 (2007).

    CAS  PubMed  Google Scholar 

  112. Lutz, J.-F., Schmidt, B. V. K. J. & Pfeifer, S. Tailored polymer microstructures prepared by atom transfer radical copolymerization of styrene and N-substituted maleimides. Macromol. Rapid Commun. 32, 127–135 (2011).

    CAS  PubMed  Google Scholar 

  113. Chan-Seng, D., Zamfir, M. & Lutz, J.-F. Polymer-chain encoding: Synthesis of highly complex monomer sequence patterns by using automated protocols. Angew. Chemie - Int. Ed. 51, 12254–12257 (2012).

    CAS  Google Scholar 

  114. Moatsou, D., Hansell, C. F. & O’Reilly, R. K. Precision polymers: a kinetic approach for functional poly(norbornenes). Chem. Sci. 5, 2246–2250 (2014).

    CAS  Google Scholar 

  115. Gody, G., Zetterlund, P. B., Perrier, S. & Harrisson, S. The limits of precision monomer placement in chain growth polymerization. Nat. Commun. 7, 10514 (2016).

    PubMed  PubMed Central  Google Scholar 

  116. Gody, G., Maschmeyer, T., Zetterlund, P. B. & Perrier, S. Rapid and quantitative one-pot synthesis of sequence-controlled polymers by radical polymerization. Nat. Commun. 4, 2505 (2013).

    PubMed  Google Scholar 

  117. Engelis, N. G. et al. Sequence-controlled methacrylic multiblock copolymers via sulfur-free RAFT emulsion polymerization. Nat. Chem. 9, 171–178 (2017).

    CAS  PubMed  Google Scholar 

  118. Ten Brummelhuis, N. Controlling monomer-sequence using supramolecular templates. Polym. Chem. 6, 654–667 (2015).

    Google Scholar 

  119. Minoda, M., Sawamoto, M. & Higashimura, T. Sequence-regulated oligomers and polymers by living cationic polymerization. III. Synthesis and reactions of sequence-regulated oligomers with a polymerizable group. J. Polym. Sci. Part A Polym. Chem. 31, 2789–2797 (1993).

    CAS  Google Scholar 

  120. Berthet, M.-A., Zarafshani, Z., Pfeifer, S. & Lutz, J.-F. Facile synthesis of functional periodic copolymers: a step toward polymer-based molecular arrays. Macromolecules 43, 44–50 (2010).

    CAS  Google Scholar 

  121. Tsarevsky, N. V., Sumerlin, B. S. & Matyjaszewski, K. Step-growth “click” coupling of telechelic polymers prepared by atom transfer radical polymerization. Macromolecules 38, 3558–3561 (2005).

    CAS  Google Scholar 

  122. Lutz, J.-F., Lehn, J.-M., Meijer, E. W. & Matyjaszewski, K. From precision polymers to complex materials and systems. Nat. Rev. Mater. 1, 16024 (2016).

    CAS  Google Scholar 

  123. Badi, N. & Lutz, J.-F. Sequence control in polymer synthesis. Chem. Soc. Rev. 38, 3383–3390 (2009).

    CAS  PubMed  Google Scholar 

  124. Pfeifer, S., Zarafshani, Z., Badi, N. & Lutz, J.-F. Liquid-phase synthesis of block copolymers containing sequence-ordered segments. J. Am. Chem. Soc. 131, 9195–9197 (2009).

    CAS  PubMed  Google Scholar 

  125. Lutz, J.-F. Coding macromolecules: inputting information in polymers using monomer-based alphabets. Macromolecules 48, 4759–4767 (2015).

    CAS  Google Scholar 

  126. Gunay, U. et al. Chemoselective synthesis of uniform sequence-coded polyurethanes and their use as molecular tags. Chem 1, 114–126 (2016).

    CAS  Google Scholar 

  127. Beaucage, S. L. & Caruthers, M. H. Deoxynucleoside phosphoramidites—a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 22, 1859–1862 (1981).

    CAS  Google Scholar 

  128. Beaucage, S. L. & Iyer, R. P. Advances in the synthesis of oligonucleotides by the phosphoramidite approach. Tetrahedron 48, 2223–2311 (1992).

    CAS  Google Scholar 

  129. Al Ouahabi, A., Charles, L. & Lutz, J.-F. Synthesis of non-natural sequence-encoded polymers using phosphoramidite chemistry. J. Am. Chem. Soc. 137, 5629–5635 (2015).

    CAS  PubMed  Google Scholar 

  130. Cavallo, G., Al Ouahabi, A., Oswald, L., Charles, L. & Lutz, J.-F. Orthogonal synthesis of “easy-to-read” information-containing polymers using phosphoramidite and radical coupling steps. J. Am. Chem. Soc. 138, 9417–9420 (2016).

    CAS  PubMed  Google Scholar 

  131. Al Ouahabi, A., Kotera, M., Charles, L. & Lutz, J.-F. Synthesis of monodisperse sequence-coded polymers with chain lengths above DP100. ACS Macro Lett. 4, 1077–1080 (2015).

    CAS  Google Scholar 

  132. Trinh, T. T., Oswald, L., Chan-Seng, D. & Lutz, J. F. Synthesis of molecularly encoded oligomers using a chemoselective ‘AB+CD’ iterative approach. Macromol. Rapid Commun. 35, 141–145 (2014).

    CAS  PubMed  Google Scholar 

  133. Trinh, T. T., Oswald, L., Chan-Seng, D., Charles, L. & Lutz, J.-F. Preparation of information-containing macromolecules by ligation of dyad-encoded oligomers. Chem. – A Eur. J. 21, 11961–11965 (2015).

    CAS  Google Scholar 

  134. Roy, R. K. et al. Design and synthesis of digitally encoded polymers that can be decoded and erased. Nat. Commun. 6, 7237 (2015).

    PubMed  PubMed Central  Google Scholar 

  135. Zydziak, N. et al. Coding and decoding libraries of sequence-defined functional copolymers synthesized via photoligation. Nat. Commun. 7, 13672 (2016).

    PubMed  PubMed Central  Google Scholar 

  136. Mutlu, H. & Lutz, J.-F. Reading polymers: sequencing of natural and synthetic macromolecules. Angew. Chem. Int. Ed. 53, 13010–13019 (2014).

    CAS  Google Scholar 

  137. Gruendling, T., Weidner, S., Falkenhagen, J. & Barner-Kowollik, C. Mass spectrometry in polymer chemistry: a state-of-the-art up-date. Polym. Chem. 1, 599–617 (2010).

    CAS  Google Scholar 

  138. Altuntas¸, E. & Schubert, U. S. “Polymeromics”: mass spectrometry based strategies in polymer science toward complete sequencing approaches: a review. Anal. Chim. Acta 808, 56–69 (2014).

    PubMed  Google Scholar 

  139. Charles, L. et al. MS/MS-assisted design of sequence-controlled synthetic polymers for improved reading of encoded information. J. Am. Soc. Mass Spectrom. 28, 1149–1159 (2017).

    CAS  PubMed  Google Scholar 

  140. Charles, L., Laure, C., Lutz, J.-F. & Roy, R. K. MS/MS sequencing of digitally encoded poly(alkoxyamine amide)s. Macromolecules 48, 4319–4328 (2015).

    CAS  Google Scholar 

  141. Amalian, J.-A. et al. Controlling the structure of sequence-defined poly(phosphodiester)s for optimal MS/MS reading of digital information. J. Mass Spectrom. 52, 788–798 (2017).

    CAS  PubMed  Google Scholar 

  142. Al Ouahabi, A., Amalian, J.-A., Charles, L. & Lutz, J.-F. Mass spectrometry sequencing of long digital polymers facilitated by programmed inter-byte fragmentation. Nat. Commun. 8, 967 (2017).

    PubMed  PubMed Central  Google Scholar 

  143. Nesvadba, P. N-alkoxyamines: synthesis, properties, and applications in polymer chemistry, organic synthesis, and materials science. Chimia (Aarau) 60, 832–840 (2006).

    CAS  Google Scholar 

  144. Amalian, J.-A., Trinh, T. T., Lutz, J.-F. & Charles, L. MS/MS digital readout: analysis of binary information encoded in the monomer sequences of poly(triazole amide)s. Anal. Chem. 88, 3715–3722 (2016).

    CAS  PubMed  Google Scholar 

  145. König, N. F., Al Ouahabi, A., Poyer, S., Charles, L. & Lutz, J.-F. A. Simple post-polymerization modification method for controlling side-chain information in digital polymers. Angew. Chemie - Int. Ed. 56, 7297–7301 (2017).

    Google Scholar 

  146. Burel, A., Carapito, C., Lutz, J.-F. & Charles, L. MS-DECODER: milliseconds sequencing of coded polymers. Macromolecules 50, 8290–8296 (2017).

    CAS  Google Scholar 

  147. Tonelli, A. E. A. Case for characterizing polymers with the Kerr effect. Macromolecules 42, 3830–3840 (2009).

    CAS  Google Scholar 

  148. Hardrict, S. N. et al. Characterizing polymer macrostructures by identifying and locating microstructures along their chains with the Kerr effect. J. Polym. Sci. Part B Polym. Phys. 51, 735–741 (2013).

    CAS  Google Scholar 

  149. Colquhoun, H. M. & Zhu, Z. Recognition of polyimide sequence information by a molecular tweezer. Angew. Chem. Int. Ed. 43, 5040–5045 (2004).

    CAS  Google Scholar 

  150. Colquhoun, H. M., Zhu, Z., Cardin, C. J., Gan, Y. & Drew, M. G. B. Sterically controlled recognition of macromolecular sequence information by molecular tweezers. J. Am. Chem. Soc. 129, 16163–16174 (2007).

    CAS  PubMed  Google Scholar 

  151. Zhu, Z., Cardin, C. J., Gan, Y. & Colquhoun, H. M. Sequence-selective assembly of tweezer molecules on linear templates enables frameshift-reading of sequence information. Nat. Chem. 2, 653–660 (2010).

    PubMed  Google Scholar 

  152. Meller, A., Nivon, L., Brandin, E., Golovchenko, J. & Branton, D. Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl Acad. Sci. USA 97, 1079–1084 (2000).

    CAS  PubMed  Google Scholar 

  153. Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).

    CAS  PubMed  Google Scholar 

  154. Wanunu, M., Sutin, J., McNally, B., Chow, A. & Meller, A. DNA translocation governed by interactions with solid-state nanopores. Biophys. J. 95, 4716–4725 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Wanunu, M. & Meller, A. Chemically modified solid-state nanopores. Nano Lett. 7, 1580–1585 (2007).

    CAS  PubMed  Google Scholar 

  156. Bezrukov, S. M., Vodyanoy, I., Brutyan, R. A. & Kasianowicz, J. J. Dynamics and free energy of polymers partitioning into a nanoscale pore. Macromolecules 29, 8517–8522 (1996).

    CAS  Google Scholar 

  157. Reiner, J. E., Kasianowicz, J. J., Nablo, B. J. & Robertson, J. W. F. Theory for polymer analysis using nanopore-based single-molecule mass spectrometry. Proc. Natl Acad. Sci. USA 107, 12080–12085 (2010).

    CAS  PubMed  Google Scholar 

  158. Movileanu, L. & Bayley, H. Partitioning of a polymer into a nanoscopic protein pore obeys a simple scaling law. Proc. Natl Acad. Sci. USA 98, 10137–10141 (2001).

    CAS  PubMed  Google Scholar 

  159. Gibrat, G. et al. Polyelectrolyte entry and transport through an asymmetric α-hemolysin channel. J. Phys. Chem. B 112, 14687–14691 (2008).

    CAS  PubMed  Google Scholar 

  160. Boukhet, M. et al. Translocation of precision polymers through biological nanopores. Macromol. Rapid Commun. 38, 1700680 (2017).

    Google Scholar 

  161. Sakaue, T. & Brochard-Wyart, F. Nanopore-based characterization of branched polymers. ACS Macro Lett. 3, 194–197 (2014).

    CAS  Google Scholar 

  162. Mirigian, S., Wang, Y. & Muthukumar, M. Translocation of a heterogeneous polymer. J. Chem. Phys. 137, 64904 (2012).

    Google Scholar 

  163. Skene, W. G. & Lehn, J.-M. P. Dynamers: polyacylhydrazone reversible covalent polymers, component exchange, and constitutional diversity. Proc. Natl Acad. Sci. USA 101, 8270–8275 (2004).

    CAS  PubMed  Google Scholar 

  164. Bunyapaiboonsri, T. et al. Dynamic deconvolution of a pre-equilibrated dynamic combinatorial library of acetylcholinesterase inhibitors. ChemBioChem 2, 438–444 (2001).

    CAS  PubMed  Google Scholar 

  165. Nguyen & Ivan Huc, R. Optimizing the reversibility of hydrazone formation for dynamic combinatorial chemistry. Chem. Commun. 942–943 (2003).

  166. Clark, D. P. & Pazdernik, N. J. in Biotechnology 97–130 (Academic Cell, 2016).

  167. van Dongen, S. F. M., Elemans, J. A. A. W., Rowan, A. E. & Nolte, R. J. M. Processive catalysis. Angew. Chem. Int. Ed. 53, 11420–11428 (2014).

    Google Scholar 

  168. van Dongen, S. F. M. et al. A clamp-like biohybrid catalyst for DNA oxidation. Nat. Chem. 5, 945 (2013).

    PubMed  Google Scholar 

  169. Prins, L. J. & Scrimin, P. Processive catalysis: thread and cut. Nat. Chem. 5, 899–900 (2013).

    CAS  PubMed  Google Scholar 

  170. Thordarson, P., Bijsterveld, E. J. A., Rowan, A. E. & Nolte, R. J. M. Epoxidation of polybutadiene by a topologically linked catalyst. Nature 424, 915–918 (2003).

    CAS  PubMed  Google Scholar 

  171. Elemans, J. A. A. W., Bijsterveld, E. J. A., Rowan, A. E. & Nolte, R. J. M. Manganese porphyrin hosts as epoxidation catalysts – activity and stability control by axial ligand effects. Eur. J. Org. Chem. 2007, 751–757 (2007).

    Google Scholar 

  172. Carr, P. A. & Church, G. M. Genome engineering. Nat. Biotechnol. 27, 1151–1162 (2009).

    CAS  PubMed  Google Scholar 

  173. Feher, T., Burland, V. & Posfai, G. In the fast lane: large-scale bacterial genome engineering. J. Biotechnol. 160, 72–79 (2012).

    CAS  PubMed  Google Scholar 

  174. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. in Introduction to Algorithms 3rd edn (The MIT Press, 2009).

Download references

Acknowledgements

R.J.M.N. acknowledges support from the European Research Council (ERC Advanced Grant ENCOPOL-74092) and from the Dutch National Science Organization NWO (Gravitation program 024.001.035).

Reviewer information

Nature Reviews Chemistry thanks S. Harrisson and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of manuscript research, writing and revision.

Corresponding author

Correspondence to Roeland J. M. Nolte.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Rotaxane

A mechanically interlocked molecular architecture in which a macrocycle is kinetically trapped on a thread by the presence of two large ‘stoppers’.

Monodisperse polymers

Polymers composed of uniform molecules with the same structure and mass. Naturally occurring polymers are frequently monodisperse, while synthetic polymers are usually not.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rutten, M.G.T.A., Vaandrager, F.W., Elemans, J.A.A.W. et al. Encoding information into polymers. Nat Rev Chem 2, 365–381 (2018). https://doi.org/10.1038/s41570-018-0051-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-018-0051-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing