Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Soil and water pollution and cardiovascular disease

Abstract

Healthy, uncontaminated soils and clean water support all life on Earth and are essential for human health. Chemical pollution of soil, water, air and food is a major environmental threat, leading to an estimated 9 million premature deaths worldwide. The Global Burden of Disease study estimated that pollution was responsible for 5.5 million deaths related to cardiovascular disease (CVD) in 2019. Robust evidence has linked multiple pollutants, including heavy metals, pesticides, dioxins and toxic synthetic chemicals, with increased risk of CVD, and some reports suggest an association between microplastic and nanoplastic particles and CVD. Pollutants in soil diminish its capacity to produce food, leading to crop impurities, malnutrition and disease, and they can seep into rivers, worsening water pollution. Deforestation, wildfires and climate change exacerbate pollution by triggering soil erosion and releasing sequestered pollutants into the air and water. Despite their varied chemical makeup, pollutants induce CVD through common pathophysiological mechanisms involving oxidative stress and inflammation. In this Review, we provide an overview of the relationship between soil and water pollution and human health and pathology, and discuss the prevalence of soil and water pollutants and how they contribute to adverse health effects, focusing on CVD.

Key points

  • Illnesses related to chemical pollution of the soil, water and air are responsible for an estimated 9 million premature deaths annually, which equates to 16% of all global deaths; half of these deaths are of cardiovascular origin.

  • Degradation of the soil threatens the health of at least 3.2 billion people (40% of the global population), whereas >2 billion people live in water-stressed countries (25% of the global population).

  • Eco-disruptive causes of soil and water pollution include deforestation, climate change, airborne dust, over-fertilization and unhealthy city designs.

  • Pollution by heavy metals, pesticides, and microplastics and nanoplastics causes cardiovascular damage by interacting with protein-bound thiols, inducing oxidative stress and inflammation, and impairing circadian rhythms.

  • Exposure to chemicals (such as heavy metals, solvents, dioxins and pesticides) at workplaces, through consumer products or indirectly via environmental contamination contributes to endothelial dysfunction and cardiovascular disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Deaths associated with chemical pollution and distribution and sources of soil pollution.
Fig. 2: Regional distribution of chemical soil and water pollution.
Fig. 3: Cellular mechanisms of cardiovascular damage mediated by exposure to metals or metalloids and pesticides23.
Fig. 4: Main effects of soil contaminants on organ systems.
Fig. 5: Association between metals, pesticides and cardiovascular and cardiometabolic outcomes.
Fig. 6: The routes of entry and cardiotoxic effects of MNPs.
Fig. 7: Annual mortality related to stroke and ischaemic heart disease from dust exposure.

Similar content being viewed by others

References

  1. Fuller, R. et al. Pollution and health: a progress update. Lancet Planet Health 6, e535–e547 (2022).

    Article  PubMed  Google Scholar 

  2. Landrigan, P. J. et al. The Lancet Commission on Pollution and Health. Lancet 391, 462–512 (2018).

    Article  PubMed  Google Scholar 

  3. Munzel, T., Hahad, O., Daiber, A. & Landrigan, P. J. Soil and water pollution and human health: what should cardiologists worry about? Cardiovasc. Res. 119, 440–449 (2023).

    Article  PubMed  Google Scholar 

  4. GBD 2015 DALYs and HALE Collaborators Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1603–1658 (2016).

    Article  Google Scholar 

  5. Institute for Health Metrics and Evaluation. Global health data exchange tool. Global Health Data Exchange http://ghdx.healthdata.org/gbd-results-tool (2023).

  6. Lelieveld, J. et al. Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur. Heart J. 40, 1590–1596 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lelieveld, J. et al. Air pollution deaths attributable to fossil fuels: observational and modelling study. BMJ 383, e077784 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  8. World Health Organization. The public health impact of chemicals: knowns and unknowns – data addendum for 2019. WHO https://www.who.int/publications/i/item/WHO-HEP-ECH-EHD-21.01 (2021).

  9. World Health Organization. Global action plan for the prevention and control of non-communicable diseases 2013–2020. WHO https://www.who.int/publications/i/item/9789241506236 (2013).

  10. United Nations Environment Program. Global assessment of soil pollution. UNEP https://www.unep.org/resources/report/global-assessment-soil-pollution (2021).

  11. United Nations Environment Program. Soil pollution a risk to our health and food security. UNEP https://www.unep.org/news-and-stories/story/soil-pollution-risk-our-health-and-food-security (2020).

  12. Mielke, H. W. & Reagan, P. L. Soil is an important pathway of human lead exposure. Environ. Health Perspect. 106, 217–229 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. European Envrionment Agency. Water Pollution and Health. EEA https://www.eea.europa.eu/publications/zero-pollution/health/water-pollution (2022).

  14. United Nations. Water. summary progress update 2021: SDG 6 – Water and sanitation for all. UN-Water http://www.unwater.org/sites/default/files/app/uploads/2021/12/SDG-6-Summary-Progress-Update-2021_Version-July-2021a.pdf (2021).

  15. Global Allliance on Health and Pollution. Pollution and health metrics. GAHP https://gahp.net/wp-content/uploads/2019/12/PollutionandHealthMetrics-final-12_18_2019.pdf (2019).

  16. World Health Organization. The public health impact of chemicals: knowns and unknowns. WHO http://www.who.int/publications/i/item/WHO-FWC-PHE-EPE-16.01-eng (2016).

  17. World Health Organization. Food safety. WHO http://www.who.int/news-room/fact-sheets/detail/food-safety (2022).

  18. European Commission. The European Human Biomonitoring Initiative. HBM4EU https://www.hbm4eu.eu/ (2016).

  19. Centers for Disease Control and Prevention. National biomonitoring program. CDC https://www.cdc.gov/biomonitoring/index.html (2018).

  20. Persson, L. et al. Outside the safe operating space of the planetary boundary for novel entities. Environ. Sci. Technol. 56, 1510–1521 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. United Nations Environment Program. Global chemicals outlook II – from legacies to innovative solutions: Implementing the 2030 Agenda for Sustainable Development (Part I). UNEP https://www.unep.org/topics/chemicals-and-pollution-action/chemicals-management/global-chemicals-outlook (2019).

  22. Maertens, A., Golden, E. & Hartung, T. Avoiding regrettable substitutions: green toxicology for sustainable chemistry. ACS Sustain. Chem. Eng. 9, 7749–7758 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peters, A., Nawrot, T. S. & Baccarelli, A. A. Hallmarks of environmental insults. Cell 184, 1455–1468 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. La Merrill, M. A. et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat. Rev. Endocrinol. 16, 45–57 (2020).

    Article  PubMed  Google Scholar 

  25. Cosselman, K. E., Navas-Acien, A. & Kaufman, J. D. Environmental factors in cardiovascular disease. Nat. Rev. Cardiol. 12, 627–642 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, Z., Lu, Y., Zhong, K., Wang, C. & Xu, X. The associations between endocrine disrupting chemicals and markers of inflammation and immune responses: a systematic review and meta-analysis. Ecotoxicol. Environ. Saf. 234, 113382 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Chen, J. C. et al. Associations of per- and polyfluoroalkyl substances, polychlorinated biphenyls, organochlorine pesticides, and polybrominated diphenyl ethers with oxidative stress markers: a systematic review and meta-analysis. Environ. Res. 239, 117308 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Daiber, A. et al. Targeting vascular (endothelial) dysfunction. Br. J. Pharmacol. 174, 1591–1619 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Wenzel, P., Kossmann, S., Munzel, T. & Daiber, A. Redox regulation of cardiovascular inflammation – immunomodulatory function of mitochondrial and Nox-derived reactive oxygen and nitrogen species. Free Radic. Biol. Med. 109, 48–60 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Vogel, C. F. A., Van Winkle, L. S., Esser, C. & Haarmann-Stemmann, T. The aryl hydrocarbon receptor as a target of environmental stressors – implications for pollution mediated stress and inflammatory responses. Redox Biol. 34, 101530 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Martinez-Pinna, J. et al. Endocrine disruptors in plastics alter β-cell physiology and increase the risk of diabetes mellitus. Am. J. Physiol. Endocrinol. Metab. 324, E488–E505 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sule, R. O., Condon, L. & Gomes, A. V. A common feature of pesticides: oxidative stress – the role of oxidative stress in pesticide-induced toxicity. Oxid. Med. Cell Longev. 2022, 5563759 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rasin, P. & Sreekanth, A. Cadmium exposure and cardiovascular diseases. Chem. Res. Toxicol. 36, 1441–1443 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Singh, N., Kumar, A., Gupta, V. K. & Sharma, B. Biochemical and molecular bases of lead-induced toxicity in mammalian systems and possible mitigations. Chem. Res. Toxicol. 31, 1009–1021 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Hu, H., Chen, Y., Jing, L., Zhai, C. & Shen, L. The link between ferroptosis and cardiovascular diseases: a novel target for treatment. Front. Cardiovasc. Med. 8, 710963 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Farina, M., Aschner, M. & Rocha, J. B. Oxidative stress in MeHg-induced neurotoxicity. Toxicol. Appl. Pharmacol. 256, 405–417 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kempuraj, D. et al. Mercury induces inflammatory mediator release from human mast cells. J. Neuroinflammation 7, 20 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ellinsworth, D. C. Arsenic, reactive oxygen, and endothelial dysfunction. J. Pharmacol. Exp. Ther. 353, 458–464 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Jomova, K. & Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology 283, 65–87 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Gaetke, L. M. & Chow, C. K. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189, 147–163 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Kang, Y. J. Copper and homocysteine in cardiovascular diseases. Pharmacol. Ther. 129, 321–331 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Yang, S. et al. Copper homeostasis and cuproptosis in atherosclerosis: metabolism, mechanisms and potential therapeutic strategies. Cell Death Discov. 10, 25 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dai, H., Wang, L., Li, L., Huang, Z. & Ye, L. Metallothionein 1: a new spotlight on inflammatory diseases. Front. Immunol. 12, 739918 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Paniagua, L., Diaz-Cueto, L., Huerta-Reyes, M. & Arechavaleta-Velasco, F. Cadmium exposure induces interleukin-6 production via ROS-dependent activation of the ERK1/2 but independent of JNK signaling pathway in human placental JEG-3 trophoblast cells. Reprod. Toxicol. 89, 28–34 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Zheng, X., Zhang, K., Zhao, Y. & Fent, K. Environmental chemicals affect circadian rhythms: an underexplored effect influencing health and fitness in animals and humans. Environ. Int. 149, 106159 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Li, H. et al. Influence of mental stress and environmental toxins on circadian clocks: implications for redox regulation of the heart and cardioprotection. Br. J. Pharmacol. 177, 5393–5412 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lim, F. L., Currie, R. A., Orphanides, G. & Moggs, J. G. Emerging evidence for the interrelationship of xenobiotic exposure and circadian rhythms: a review. Xenobiotica 36, 1140–1151 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Parmalee, N. L. & Aschner, M. Metals and circadian rhythms. Adv. Neurotoxicol. 1, 119–130 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lafuente, A. The hypothalamic-pituitary-gonadal axis is target of cadmium toxicity. An update of recent studies and potential therapeutic approaches. Food Chem. Toxicol. 59, 395–404 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Agency for Toxic Substances and Disease Registry. Interaction profile for: benzene, toluene, ethylbenzene, and xylenes (BTEX) (US Department of Health and Human Services, 2004). https://www.atsdr.cdc.gov/interactionprofiles/ip-btex/ip05.pdf.

  51. Drwal, E., Rak, A. & Gregoraszczuk, E. L. Review: Polycyclic aromatic hydrocarbons (PAHs) – action on placental function and health risks in future life of newborns. Toxicology 411, 133–142 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Institute for Health and Consumer Protection. Summary risk assessment report: Phenol. EUR 22522 EN/1 (Publications Office of the European Union, 2006). https://echa.europa.eu/documents/10162/3e04f30d-9953-4824-ba04-defa32a130fa.

  53. Galbraith, D., Gross, S. A. & Paustenbach, D. Benzene and human health: a historical review and appraisal of associations with various diseases. Crit. Rev. Toxicol. 40, 1–46 (2010).

    Article  PubMed  Google Scholar 

  54. Wang, Y. L., Lee, Y. H., Chiu, I. J., Lin, Y. F. & Chiu, H. W. Potent impact of plastic nanomaterials and micromaterials on the food chain and human health. Int. J. Mol. Sci. 21, 1727 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jamieson, A. J., Malkocs, T., Piertney, S. B., Fujii, T. & Zhang, Z. Bioaccumulation of persistent organic pollutants in the deepest ocean fauna. Nat. Ecol. Evol. 1, 51 (2017).

    Article  PubMed  Google Scholar 

  56. Landrigan, P. J. & Goldman, L. R. Children’s vulnerability to toxic chemicals: a challenge and opportunity to strengthen health and environmental policy. Health Aff. 30, 842–850 (2011).

    Article  Google Scholar 

  57. Lind, L. & Lind, P. M. Can persistent organic pollutants and plastic-associated chemicals cause cardiovascular disease? J. Intern. Med. 271, 537–553 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Dunder, L. et al. Plasma levels of per- and polyfluoroalkyl substances (PFAS) and cardiovascular disease – results from two independent population-based cohorts and a meta-analysis. Environ. Int. 181, 108250 (2023).

    Article  CAS  PubMed  Google Scholar 

  59. Honda-Kohmo, K., Hutcheson, R., Innes, K. E. & Conway, B. N. Perfluoroalkyl substances are inversely associated with coronary heart disease in adults with diabetes. J. Diabetes Complications 33, 407–412 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chowdhury, R. et al. Environmental toxic metal contaminants and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 362, k3310 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Meneguzzi, A., Fava, C., Castelli, M. & Minuz, P. Exposure to perfluoroalkyl chemicals and cardiovascular disease: experimental and epidemiological evidence. Front. Endocrinol. 12, 706352 (2021).

    Article  Google Scholar 

  62. Zhao, L. et al. The associations between organophosphate pesticides (OPs) and respiratory disease, diabetes mellitus, and cardiovascular disease: a review and meta-analysis of observational studies. Toxics 11, 741 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fawell, J. & Nieuwenhuijsen, M. J. Contaminants in drinking water. Br. Med. Bull. 68, 199–208 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Jarup, L. Hazards of heavy metal contamination. Br. Med. Bull. 68, 167–182 (2003).

    Article  PubMed  Google Scholar 

  65. Chowdhury, R. et al. Reducing NCDs globally: the under-recognised role of environmental risk factors. Lancet 392, 212 (2018).

    Article  PubMed  Google Scholar 

  66. National Research Council. Toxicological Effects of Methylmercury (National Academy Press, 2000). https://nap.nationalacademies.org/catalog/9899/toxicological-effects-of-methylmercury.

  67. Lancereaux, E. Nephrite et arthrite saturnine: coincidences de ces affections; parallele avec la nephrite et l’arthrite gouttesses. Trans. Int. Med. Congr. 2, 193–202 (1881).

    Google Scholar 

  68. Schwartz, J. Lead, blood pressure, and cardiovascular disease in men. Arch. Environ. Health 50, 31–37 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Navas-Acien, A., Guallar, E., Silbergeld, E. K. & Rothenberg, S. J. Lead exposure and cardiovascular disease – a systematic review. Environ. Health Perspect. 115, 472–482 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Schober, S. E., Mirel, L. B., Graubard, B. I., Brody, D. J. & Flegal, K. M. Blood lead levels and death from all causes, cardiovascular disease, and cancer: results from the NHANES III mortality study. Environ. Health Perspect. 114, 1538–1541 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lanphear, B. P., Rauch, S., Auinger, P., Allen, R. W. & Hornung, R. W. Low-level lead exposure and mortality in US adults: a population-based cohort study. Lancet Public Health 3, e177–e184 (2018).

    Article  PubMed  Google Scholar 

  72. Larsen, B. & Sanchez-Triana, E. Global health burden and cost of lead exposure in children and adults: a health impact and economic modelling analysis. Lancet Planet Health 7, e831–e840 (2023).

    Article  PubMed  Google Scholar 

  73. Zhu, K. et al. Associations of exposure to lead and cadmium with risk of all-cause and cardiovascular disease mortality among patients with type 2 diabetes. Environ. Sci. Pollut. Res. Int. 29, 76805–76815 (2022).

    Article  CAS  PubMed  Google Scholar 

  74. Xing, X. et al. Association of selenium and cadmium with heart failure and mortality based on the National Health and Nutrition Examination Survey. J. Hum. Nutr. Diet. 36, 1496–1506 (2023).

    Article  PubMed  Google Scholar 

  75. Tellez-Plaza, M., Jones, M. R., Dominguez-Lucas, A., Guallar, E. & Navas-Acien, A. Cadmium exposure and clinical cardiovascular disease: a systematic review. Curr. Atheroscler. Rep. 15, 356 (2013).

    Article  PubMed  Google Scholar 

  76. Duan, W. et al. Levels of a mixture of heavy metals in blood and urine and all-cause, cardiovascular disease and cancer mortality: a population-based cohort study. Environ. Pollut. 263, 114630 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Lim, K. M. et al. Low-level mercury can enhance procoagulant activity of erythrocytes: a new contributing factor for mercury-related thrombotic disease. Environ. Health Perspect. 118, 928–935 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Morin, Y. & Daniel, P. Quebec beer-drinkers’ cardiomyopathy: etiological considerations. Can. Med. Assoc. J. 97, 926–928 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Perez, A. L. & Tang, W. H. Contribution of environmental toxins in the pathogenesis of idiopathic cardiomyopathies. Curr. Treat. Options Cardiovasc. Med. 17, 381 (2015).

    Article  PubMed  Google Scholar 

  80. Stea, F., Bianchi, F., Cori, L. & Sicari, R. Cardiovascular effects of arsenic: clinical and epidemiological findings. Environ. Sci. Pollut. Res. Int. 21, 244–251 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Moon, K., Guallar, E. & Navas-Acien, A. Arsenic exposure and cardiovascular disease: an updated systematic review. Curr. Atheroscler. Rep. 14, 542–555 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tseng, W. P. Black foot disease in Taiwan: a 30-year follow-up study. Angiology 40, 547–558 (1989).

    Article  CAS  PubMed  Google Scholar 

  83. Kinsman, G. D., Howard, A. N., Stone, D. L. & Mullins, P. A. Studies in copper status and atherosclerosis. Biochem. Soc. Trans. 18, 1186–1188 (1990).

    Article  CAS  PubMed  Google Scholar 

  84. United Nations Environment Programme. The Stockholm Convention on Persistent Organic Pollutants, http://chm.pops.int/TheConvention/Overview/TextoftheConvention/tabid/2232/Default.aspx (2019).

  85. Agency for Toxic Substances and Disease Registry. Toxicological profile for chlorinated dibenzo-p-dioxins (CDDs) (ATSDR, 1998).

  86. Consonni, D. et al. Mortality in a population exposed to dioxin after the Seveso, Italy, accident in 1976: 25 years of follow-up. Am. J. Epidemiol. 167, 847–858 (2008).

    Article  PubMed  Google Scholar 

  87. Lee, D. H. et al. A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and Examination Survey 1999-2002. Diabetes Care 29, 1638–1644 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Lim, J. S., Lee, D. H. & Jacobs, D. R. Jr Association of brominated flame retardants with diabetes and metabolic syndrome in the U.S. population, 2003-2004. Diabetes Care 31, 1802–1807 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lang, I. A. et al. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA 300, 1303–1310 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Moon, S. et al. Effects of bisphenol A on cardiovascular disease: an epidemiological study using National Health and Nutrition Examination Survey 2003-2016 and meta-analysis. Sci. Total Environ. 763, 142941 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Wang, R. et al. The bisphenol F and bisphenol S and cardiovascular disease: results from NHANES 2013–2016. Environ. Sci. Eur. 34, 4 (2022).

    Article  CAS  Google Scholar 

  92. Chen, Z., He, J. & Shi, W. Association between urinary environmental phenols and the prevalence of cardiovascular diseases in US adults. Environ. Sci. Pollut. Res. Int. 29, 42947–42954 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Moreno-Gómez-Toledano, R. Relationship between emergent BPA-substitutes and renal and cardiovascular diseases in adult population. Environ. Pollut. 313, 120106 (2022).

    Article  PubMed  Google Scholar 

  94. Lu, Y., Chen, S., Jin, H., Tang, L. & Xia, M. Associations of bisphenol F and S, as substitutes for bisphenol A, with cardiovascular disease in American adults. J. Appl. Toxicol. 43, 500–507 (2023).

    Article  CAS  PubMed  Google Scholar 

  95. Bar-Meir, E. et al. Guidelines for treating cardiac manifestations of organophosphates poisoning with special emphasis on long QT and Torsades De Pointes. Crit. Rev. Toxicol. 37, 279–285 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Humblet, O., Birnbaum, L., Rimm, E., Mittleman, M. A. & Hauser, R. Dioxins and cardiovascular disease mortality. Environ. Health Perspect. 116, 1443–1448 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gustavsson, P. & Hogstedt, C. A cohort study of Swedish capacitor manufacturing workers exposed to polychlorinated biphenyls (PCBs). Am. J. Ind. Med. 32, 234–239 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. OECD. Global plastics outlook. OECDiLibrary http://www.oecd-ilibrary.org/environment/global-plastics-outlook_aa1edf33-en (2022).

  99. European Environment Agency. Microplastics from textiles: towards a circular economy for textiles in Europe. EEA http://www.eea.europa.eu/publications/microplastics-from-textiles-towards-a (2022).

  100. Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: a review. Environ. Pollut. 178, 483–492 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Yong, C. Q. Y., Valiyaveettil, S. & Tang, B. L. Toxicity of microplastics and nanoplastics in mammalian systems. Int. J. Environ. Res. Public Health 17, 1509 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Oh, N. & Park, J. H. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomed. 9, 51–63 (2014).

    Google Scholar 

  103. Zhang, S., Gao, H. & Bao, G. Physical principles of nanoparticle cellular endocytosis. ACS Nano 9, 8655–8671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gong, T., Liu, L., Jiang, W. & Zhou, R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol. 20, 95–112 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Jeong, J. & Choi, J. Adverse outcome pathways potentially related to hazard identification of microplastics based on toxicity mechanisms. Chemosphere 231, 249–255 (2019).

    Article  CAS  PubMed  Google Scholar 

  106. Horstmann, H., Ng, C. P., Tang, B. L. & Hong, W. Ultrastructural characterization of endoplasmic reticulum–Golgi transport containers (EGTC). J. Cell Sci. 115, 4263–4273 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Treyer, A., Pujato, M., Pechuan, X. & Musch, A. Iterative sorting of apical and basolateral cargo in Madin-Darby canine kidney cells. Mol. Biol. Cell 27, 2259–2271 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lim, S. L. et al. Targeted metabolomics reveals differential biological effects of nanoplastics and nanoZnO in human lung cells. Nanotoxicology 13, 1117–1132 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Cordani, M. & Somoza, A. Targeting autophagy using metallic nanoparticles: a promising strategy for cancer treatment. Cell Mol. Life Sci. 76, 1215–1242 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Besseling, E., Wang, B., Lurling, M. & Koelmans, A. A. Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ. Sci. Technol. 48, 12336–12343 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu, Z. et al. Age-dependent survival, stress defense, and AMPK in Daphnia pulex after short-term exposure to a polystyrene nanoplastic. Aquat. Toxicol. 204, 1–8 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Greven, A. C. et al. Polycarbonate and polystyrene nanoplastic particles act as stressors to the innate immune system of fathead minnow (Pimephales promelas). Environ. Toxicol. Chem. 35, 3093–3100 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Foley, C. J., Feiner, Z. S., Malinich, T. D. & Hook, T. O. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. Sci. Total Environ. 631-632, 550–559 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Bucci, K., Tulio, M. & Rochman, C. M. What is known and unknown about the effects of plastic pollution: a meta-analysis and systematic review. Ecol. Appl. 30, e02044 (2019).

    Article  Google Scholar 

  115. De-la-Torre, G. E. Microplastics: an emerging threat to food security and human health. J. Food Sci. Technol. 57, 1601–1608 (2020).

    Article  PubMed  Google Scholar 

  116. Shiwakoti, S. et al. Effects of polystyrene nanoplastics on endothelium senescence and its underlying mechanism. Environ. Int. 164, 107248 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Zhao, J. et al. Polystyrene bead ingestion promotes adiposity and cardiometabolic disease in mice. Ecotoxicol. Environ. Saf. 232, 113239 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wei, J. et al. The impact of polystyrene microplastics on cardiomyocytes pyroptosis through NLRP3/caspase-1 signaling pathway and oxidative stress in Wistar rats. Environ. Toxicol. 36, 935–944 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Li, Z. et al. Polystyrene microplastics cause cardiac fibrosis by activating Wnt/β-catenin signaling pathway and promoting cardiomyocyte apoptosis in rats. Environ. Pollut. 265, 115025 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Wang, X. et al. Nanoplastic-induced vascular endothelial injury and coagulation dysfunction in mice. Sci. Total Environ. 865, 161271 (2023).

    Article  CAS  PubMed  Google Scholar 

  121. Zhu, X. et al. Micro- and nanoplastics: a new cardiovascular risk factor? Environ. Int. 171, 107662 (2023).

    Article  CAS  PubMed  Google Scholar 

  122. Ali, N. et al. The potential impacts of micro-and-nano plastics on various organ systems in humans. EBioMedicine 99, 104901 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Marfella, R. et al. Microplastics and nanoplastics in atheromas and cardiovascular events. N. Engl. J. Med. 390, 900–910 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Beuchle, R., Achard, F., Bourgoin, C., Vancutsem, C. Deforestation and forest degradation in the Amazon – updated status and trends for the year 2021 (Publications Office of the European Union, 2022).

  125. Veldkamp, E., Schmidt, M., Powers, J. S. & Corre, M. D. Deforestation and reforestation impacts on soils in the tropics. Nat. Rev. Earth Environ. 1, 590–605 (2020).

    Article  Google Scholar 

  126. United Nations. The global forest goals report 2021. UN https://www.un.org/esa/forests/wp-content/uploads/2021/08/Global-Forest-Goals-Report-2021.pdf (2021).

  127. Johnston, F. H. et al. Estimated global mortality attributable to smoke from landscape fires. Environ. Health Perspect. 120, 695–701 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Artiola, J. F., Walworth, J. L., Musil, S. A. & Crimmins, M. A. in Environmental and Pollution Science 3rd edn (eds Brusseau, M. L., Pepper, I. L. & Gerba, C. P.) 219–235 (Academic Press, 2019).

  129. US Environmental Protection Agency. Air quality and climate change research. EPA http://www.epa.gov/air-research/air-quality-and-climate-change-research#:~:Text=Emissions%20of%20pollutants%20into%20the,cooling%20effects%20on%20the%20climate (2024).

  130. UN Report: Global Assessment of Soil Pollution. Chapter 4. Environmental, Health and Socio-economic Impacts of Soil Pollution. 4.4 Socio-economic impacts of soil pollution. FAO http://www.fao.org/3/cb4894en/online/src/html/chapter-04-4.html (2017).

  131. European Environment Agency. Soil moisture deficit, EEA http://www.eea.europa.eu/en/analysis/indicators/soil-moisture-deficit (2021).

  132. US Environmental Protection Agency. Climate change indicators: permafrost. EPA https://www.epa.gov/climate-indicators/climate-change-indicators-permafrost#:~:Text=Additionally%2C%20organic%20matter%20 (2021).

  133. United Nations. Water – at the center of the climate crisis. UN https://www.un.org/en/climatechange/science/climate-issues/water (2021).

  134. Liu, J. et al. Emission control priority of PM2.5-bound heavy metals in different seasons: a comprehensive analysis from health risk perspective. Sci. Total Environ. 644, 20–30 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E. & Gill, T. E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 40, 2-1–2-31 (2002).

    Article  Google Scholar 

  136. Chen, W., Meng, H., Song, H. & Zheng, H. Progress in dust modelling, global dust budgets, and soil organic carbon dynamics. Land 11, 176 (2022).

    Article  Google Scholar 

  137. Kok, J. F. S. et al. Mineral dust aerosol impacts on global climate and climate change. Nat. Rev. Earth Environ. 4, 71–86 (2023).

    Article  Google Scholar 

  138. Giannadaki, D., Pozzer, A. & Lelieveld, J. Modeled global effects of airborne desert dust on air quality and premature mortality. Atmos. Chem. Phys. 14, 957–968 (2014).

    Article  Google Scholar 

  139. Kotsyfakis, M., Zarogiannis, S. G. & Patelarou, E. The health impact of Saharan dust exposure. Int. J. Occup. Med. Environ. Health 32, 749–760 (2019).

    Article  PubMed  Google Scholar 

  140. Gomez, A. R. et al. The projected future degradation in air quality is caused by more abundant natural aerosols in a warmer world. Commun. Earth Environ. 4, 22 (2023).

    Article  Google Scholar 

  141. Achakulwisut, P. et al. Effects of increasing aridity on ambient dust and public health in the U.S. Southwest under climate change. Geohealth 3, 127–144 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Fussell, J. C. & Kelly, F. J. Mechanisms underlying the health effects of desert sand dust. Environ. Int. 157, 106790 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Miller, M. R. Oxidative stress and the cardiovascular effects of air pollution. Free Radic. Biol. Med. 151, 69–87 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lwin, K. S. et al. Effects of desert dust and sandstorms on human health: a scoping review. Geohealth 7, e2022GH000728 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Yu, Z. et al. Simulating the impact of long-range-transported Asian mineral dust on the formation of sulfate and nitrate during the KORUS-AQ Campaign. ACS Earth Space Chem. 4, 1039–1049 (2020).

    Article  CAS  Google Scholar 

  146. Karydis, V. A., Tsimpidi, A. P., Pozzer, A., Astitha, M. & Lelieveld, J. Effects of mineral dust on global atmospheric nitrate concentrations. Atmos. Chem. Phys. 16, 1491–1509 (2016).

    Article  CAS  Google Scholar 

  147. Ho, K. F. et al. Contributions of local pollution emissions to particle bioreactivity in downwind cities in China during Asian dust periods. Environ. Pollut. 245, 675–683 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Lovett, C., Sowlat, M. H., Saliba, N. A., Shihadeh, A. L. & Sioutas, C. Oxidative potential of ambient particulate matter in Beirut during Saharan and Arabian dust events. Atmos. Environ. 188, 34–42 (2018).

    Article  CAS  Google Scholar 

  149. Chirizzi, D. et al. Influence of Saharan dust outbreaks and carbon content on oxidative potential of water-soluble fractions of PM2.5 and PM10. Atmos. Environ. 163, 1–8 (2017).

    Article  CAS  Google Scholar 

  150. Yang, A., Tan, Q., Rajapakshe, C., Chin, M. & Yu, H. Global premature mortality by dust and pollution PM2.5 estimated from aerosol reanalysis of the modern-era retrospective analysis for research and applications, version 2. Sec. Atmos. Clim. 10, 975755 (2022).

    Google Scholar 

  151. Kojima, S. et al. Asian dust exposure triggers acute myocardial infarction. Eur. Heart J. 38, 3202–3208 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20130164 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Kicińska, A., Radoslaw, P. & Izquierdo-Diaz, M. Changes in soil pH and mobility of heavy metals in contaminated soils. Eur. J. Soil Sci. 73, e13203 (2022).

    Article  Google Scholar 

  155. Zhang, X., Ward, B. B. & Sigman, D. M. Global nitrogen cycle: critical enzymes, organisms, and processes for nitrogen budgets and dynamics. Chem. Rev. 120, 5308–5351 (2020).

    Article  CAS  PubMed  Google Scholar 

  156. McDuffie, E. E. et al. Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales. Nat. Commun. 12, 3594 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. & Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367–371 (2015).

    Article  CAS  PubMed  Google Scholar 

  158. Lelieveld, J. et al. Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proc. Natl Acad. Sci. USA 116, 7192–7197 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Gumanova, N. G., Deev, A. D., Zhang, W., Kots, A. Y. & Shalnova, S. A. Serum nitrite and nitrate levels, NOx, can predict cardiovascular mortality in the elderly in a 3-year follow-up study. Biofactors 43, 82–89 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Gumanova, N. G., Deev, A. D., Kots, A. Y. & Shalnova, S. A. Elevated levels of serum nitrite and nitrate, NOx, are associated with increased total and cardiovascular mortality in an 8-year follow-up study. Eur. J. Clin. Invest. 49, e13061 (2019).

    Article  PubMed  Google Scholar 

  161. Bahadoran, Z., Mirmiran, P., Tahmasebinejad, Z., Azizi, F. & Ghasemi, A. Serum nitric oxide metabolites and hard clinical endpoints: a population-based prospective study. Scand. Cardiovasc. J. 53, 176–182 (2019).

    Article  CAS  PubMed  Google Scholar 

  162. Wang, M. et al. Exposure to PM2.5 and its five constituents is associated with the incidence of type 2 diabetes mellitus: a prospective cohort study in northwest China. Environ. Geochem. Health 46, 34 (2024).

    Article  CAS  PubMed  Google Scholar 

  163. United Nations. World population prospects 2019: highlights. UN http://population.un.org/wpp/Publications/Files/wpp2019_10KeyFindings.pdf (2019).

  164. Dye, C. Health and urban living. Science 319, 766–769 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Ezzati, M. et al. Cities for global health. BMJ 363, k3794 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Bikis, A. Urban air pollution and greenness in relation to public health. J. Environ. Public Health 2023, 8516622 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  167. European Environment Agency. Air pollution still too high across Europe. EEA http://www.eea.europa.eu/highlights/air-pollution-still-too-high (2018).

  168. Hunter, R. F. et al. Advancing urban green and blue space contributions to public health. Lancet Public Health 8, e735–e742 (2023).

    Article  PubMed  Google Scholar 

  169. Munzel, T. et al. Heart healthy cities: genetics loads the gun but the environment pulls the trigger. Eur. Heart J. 42, 2422–2438 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Baumgartner, J., Brauer, M. & Ezzati, M. The role of cities in reducing the cardiovascular impacts of environmental pollution in low- and middle-income countries. BMC Med. 18, 39 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Guthold, R., Stevens, G. A., Riley, L. M. & Bull, F. C. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob. Health 6, e1077–e1086 (2018).

    Article  PubMed  Google Scholar 

  172. Munzel, T., Sorensen, M. & Daiber, A. Transportation noise pollution and cardiovascular disease. Nat. Rev. Cardiol. 18, 619–636 (2021).

    Article  PubMed  Google Scholar 

  173. Nieuwenhuijsen, M. J. New urban models for more sustainable, liveable and healthier cities post Covid19; reducing air pollution, noise and heat island effects and increasing green space and physical activity. Environ. Int. 157, 106850 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zota, A. R., Singla, V., Adamkiewicz, G., Mitro, S. D. & Dodson, R. E. Reducing chemical exposures at home: opportunities for action. J. Epidemiol. Community Health 71, 937–940 (2017).

    Article  PubMed  Google Scholar 

  175. Hahad, O. et al. Noise and air pollution as risk factors for hypertension: part II – pathophysiologic insight. Hypertension 80, 1384–1392 (2023).

    Article  CAS  PubMed  Google Scholar 

  176. European Commission. Zero Pollution Action Plan: towards zero pollution for air, water and soil. https://environment.ec.europa.eu/strategy/zero-pollution-action-plan_en# (2021).

  177. European Environment Agency. Soil. EEA http://www.eea.europa.eu/en/topics/in-depth/soil# (2023).

  178. European Environment Agency. Progress in the management of contaminated sites in Europe. EEA http://www.eea.europa.eu/en/analysis/indicators/progress-in-the-management-of (2022).

  179. Goldsborough, E.III, Gopal, M., McEvoy, J. W., Blumenthal, R. S. & Jacobsen, A. P. Pollution and cardiovascular health: a contemporary review of morbidity and implications for planetary health. Am. Heart J. 25, 100231 (2023).

    Google Scholar 

  180. Tsoi, M. F., Lo, C. W. H., Cheung, T. T. & Cheung, B. M. Y. Blood lead level and risk of hypertension in the United States National Health and Nutrition Examination Survey 1999-2016. Sci. Rep. 11, 3010 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Cook, M. K., Zhang, J. & Wei, Y. Blood lead levels and risk of deaths from cardiovascular disease. Am. J. Cardiol. 173, 132–138 (2022).

    Article  CAS  PubMed  Google Scholar 

  182. Lee, M. S., Park, S. K., Hu, H. & Lee, S. Cadmium exposure and cardiovascular disease in the 2005 Korea National Health and Nutrition Examination Survey. Environ. Res. 111, 171–176 (2011).

    Article  CAS  PubMed  Google Scholar 

  183. Tellez-Plaza, M. et al. Cadmium exposure and incident cardiovascular disease. Epidemiology 24, 421–429 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Li, Z. et al. Association between exposure to cadmium and risk of all-cause and cause-specific mortality in the general US adults: a prospective cohort study. Chemosphere 307, 136060 (2022).

    Article  CAS  PubMed  Google Scholar 

  185. Tellez-Plaza, M. et al. Cadmium exposure and all-cause and cardiovascular mortality in the U.S. general population. Environ. Health Perspect. 120, 1017–1022 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Nigra, A. E., Moon, K. A., Jones, M. R., Sanchez, T. R. & Navas-Acien, A. Urinary arsenic and heart disease mortality in NHANES 2003-2014. Environ. Res. 200, 111387 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Sun, Y. et al. Association of seafood consumption and mercury exposure with cardiovascular and all-cause mortality among US adults. JAMA Netw. Open 4, e2136367 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Isiozor, N. M. et al. Serum copper and the risk of cardiovascular disease death in Finnish men. Nutr. Metab. Cardiovasc. Dis. 33, 151–157 (2023).

    Article  CAS  PubMed  Google Scholar 

  189. Shankar, A., Teppala, S. & Sabanayagam, C. Bisphenol A and peripheral arterial disease: results from the NHANES. Environ. Health Perspect. 120, 1297–1300 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Sturgeon, S. R., Flynn, D., Kaiser, A. B. & Reeves, K. W. Urinary levels of phthalate metabolites and cardiovascular disease mortality (NHANES, 1999-2008). Int. J. Hyg. Environ. Health 219, 876–882 (2016).

    Article  CAS  PubMed  Google Scholar 

  191. Bao, W. et al. Association between bisphenol A exposure and risk of all-cause and cause-specific mortality in US adults. JAMA Netw. Open 3, e2011620 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Cai, S. et al. Relationship between urinary bisphenol A levels and cardiovascular diseases in the U.S. adult population, 2003-2014. Ecotoxicol. Environ. Saf. 192, 110300 (2020).

    Article  CAS  PubMed  Google Scholar 

  193. Chen, M. et al. Relationship between bisphenol A and the cardiovascular disease metabolic risk factors in American adults: a population-based study. Chemosphere 324, 138289 (2023).

    Article  CAS  PubMed  Google Scholar 

  194. Chen, S. et al. Association of urinary bisphenol A with cardiovascular and all-cause mortality: National Health and Nutrition Examination Survey (NHANES) 2003-2016. Environ. Sci. Pollut. Res. Int. 30, 51217–51227 (2023).

    Article  CAS  PubMed  Google Scholar 

  195. Shankar, A., Xiao, J. & Ducatman, A. Perfluorooctanoic acid and cardiovascular disease in US adults. Arch. Intern. Med. 172, 1397–1403 (2012).

    Article  CAS  PubMed  Google Scholar 

  196. Huang, M. et al. Serum polyfluoroalkyl chemicals are associated with risk of cardiovascular diseases in national US population. Environ. Int. 119, 37–46 (2018).

    Article  CAS  PubMed  Google Scholar 

  197. Simpson, C., Winquist, A., Lally, C. & Steenland, K. Relation between perfluorooctanoic acid exposure and strokes in a large cohort living near a chemical plant. Environ. Res. 127, 22–28 (2013).

    Article  CAS  PubMed  Google Scholar 

  198. Xue, Q. et al. Association between pyrethroid exposure and cardiovascular disease: a national population-based cross-sectional study in the US. Environ. Int. 153, 106545 (2021).

    Article  CAS  PubMed  Google Scholar 

  199. Bao, W., Liu, B., Simonsen, D. W. & Lehmler, H. J. Association between exposure to pyrethroid insecticides and risk of all-cause and cause-specific mortality in the general US adult population. JAMA Intern. Med. 180, 367–374 (2020).

    Article  CAS  PubMed  Google Scholar 

  200. Chang, J. W. et al. Predicting the risk of cardiovascular disease in people exposed to moderate to high levels of dioxin. J. Hazard Mater. 198, 317–322 (2011).

    Article  CAS  PubMed  Google Scholar 

  201. Ha, M. H., Lee, D. H. & Jacobs, D. R. Association between serum concentrations of persistent organic pollutants and self-reported cardiovascular disease prevalence: results from the National Health and Nutrition Examination Survey, 1999-2002. Environ. Health Perspect. 115, 1204–1209 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Lin, Y. S. et al. Environmental exposure to dioxin-like compounds and the mortality risk in the U.S. population. Int. J. Hyg. Environ. Health 215, 541–546 (2012).

    Article  CAS  PubMed  Google Scholar 

  203. Global Alliance on Health and Pollution. Pollution and Health Metrics. GAHP https://gahp.net/wp-content/uploads/2019/12/PollutionandHealthMetrics-final-12_18_2019.pdf (2019).

  204. Tang, F. H. M., Lenzen, M., McBratney, A. & Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 14, 206–210 (2021).

    Article  CAS  Google Scholar 

  205. Amini, M. et al. Statistical modeling of global geogenic arsenic contamination in groundwater. Environ. Sci. Technol. 42, 3669–3675 (2008).

    Article  CAS  PubMed  Google Scholar 

  206. Pure Earth. Lead country statistics. https://leadpollution.org/ (2019).

  207. Steenhuisen, F. & Wilson, S. J. Development and application of an updated geospatial distribution model for gridding 2015 global mercury emissions. Atmos. Environ. 211, 138–150 (2019).

    Article  CAS  Google Scholar 

  208. Lebreton, L. Where mismanaged plastic waste is generated and possible paths of change. The Ocean Cleanup https://theoceancleanup.com/updates/where-mismanaged-plastic-waste-is-generated-and-possible-paths-of-change/ (2019).

  209. Global Water Intelligence. Agencies plead for global action on water pollution. https://www.globalwaterintel.com/news/2019/34/agencies-plead-for-global-action-on-water-pollution (2019).

  210. FAO & UNEP. Global Assessment of Soil Pollution Ch. 4. Environmental, health and socio-economic impacts of soil pollution. 4.3 Soil pollution and risk to human health. https://openknowledge.fao.org/server/api/core/bitstreams/fe5df8d6-6b19-4def-bdc6-62886d824574/content/src/html/chapter-04-3.html (2021).

  211. Campanale, C., Massarelli, C., Savino, I., Locaputo, V. & Uricchio, V. F. A detailed review study on potential effects of microplastics and additives of concern on human health. Int. J. Environ. Res. Public Health 17, 1212 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Carré, F. et al. in Global Soil Security (eds Field, D. J., Morgan, C.L.S. & McBratney, A. B.) 275–295 (Springer, 2017).

  213. Filippini, T., Wise, L. A. & Vinceti, M. Cadmium exposure and risk of diabetes and prediabetes: a systematic review and dose-response meta-analysis. Environ. Int. 158, 106920 (2022).

    Article  CAS  PubMed  Google Scholar 

  214. Rahimi Kakavandi, N. et al. An updated systematic review and dose-response meta-analysis on the relation between exposure to arsenic and risk of type 2 diabetes. Toxicol. Lett. 384, 115–127 (2023).

    Article  CAS  PubMed  Google Scholar 

  215. Hu, X. F., Lowe, M. & Chan, H. M. Mercury exposure, cardiovascular disease, and mortality: a systematic review and dose-response meta-analysis. Environ. Res. 193, 110538 (2021).

    Article  CAS  PubMed  Google Scholar 

  216. Guo, Y., Lv, Y., Liu, X. & Wang, G. Association between heavy metal mercury in body fluids and tissues and diabetes mellitus: a systematic review and meta-analysis. Ann. Transl. Med. 11, 114 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Vena, J. et al. Exposure to dioxin and nonneoplastic mortality in the expanded IARC international cohort study of phenoxy herbicide and chlorophenol production workers and sprayers. Environ. Health Perspect. 106, 645–653 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Song, Y. et al. Endocrine-disrupting chemicals, risk of type 2 diabetes, and diabetes-related metabolic traits: a systematic review and meta-analysis. J. Diabetes 8, 516–532 (2016).

    Article  CAS  PubMed  Google Scholar 

  219. Mattsson, K. et al. Levels of perfluoroalkyl substances and risk of coronary heart disease: findings from a population-based longitudinal study. Environ. Res. 142, 148–154 (2015).

    Article  CAS  PubMed  Google Scholar 

  220. Schillemans, T. et al. Per- and polyfluoroalkyl substances and risk of myocardial infarction and stroke: a nested case-control study in Sweden. Environ. Health Perspect. 130, 37007 (2022).

    Article  CAS  PubMed  Google Scholar 

  221. Winquist, A. & Steenland, K. Modeled PFOA exposure and coronary artery disease, hypertension, and high cholesterol in community and worker cohorts. Environ. Health Perspect. 122, 1299–1305 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Gui, S. Y. et al. Association between per- and polyfluoroalkyl substances exposure and risk of diabetes: a systematic review and meta-analysis. J. Expo. Sci. Environ. Epidemiol. 33, 40–55 (2023).

    Article  CAS  PubMed  Google Scholar 

  223. Fu, X., Xu, J., Zhang, R. & Yu, J. The association between environmental endocrine disruptors and cardiovascular diseases: a systematic review and meta-analysis. Environ. Res. 187, 109464 (2020).

    Article  CAS  PubMed  Google Scholar 

  224. Zhang, H. et al. Phthalate exposure and risk of diabetes mellitus: implications from a systematic review and meta-analysis. Environ. Res. 204, 112109 (2022).

    Article  CAS  PubMed  Google Scholar 

  225. Zeng, G., Zhang, Q., Wang, X. & Wu, K. H. Low-level plasticizer exposure and all-cause and cardiovascular disease mortality in the general population. Environ. Health 21, 32 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Su, T. C., Hwang, J. J., Sun, C. W. & Wang, S. L. Urinary phthalate metabolites, coronary heart disease, and atherothrombotic markers. Ecotoxicol. Environ. Saf. 173, 37–44 (2019).

    Article  CAS  PubMed  Google Scholar 

  227. Melzer, D. et al. Urinary bisphenol A concentration and risk of future coronary artery disease in apparently healthy men and women. Circulation 125, 1482–1490 (2012).

    Article  CAS  PubMed  Google Scholar 

  228. Hwang, S., Lim, J. E., Choi, Y. & Jee, S. H. Bisphenol A exposure and type 2 diabetes mellitus risk: a meta-analysis. BMC Endocr. Disord. 18, 81 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

T.M. is the principal investigator of the German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany. O.H. and A.D. received funding from the DZHK. O.H. and A.D. have received vascular biology research grants from the Foundation Heart of Mainz. M.A. was supported by grants from the National Institute of Environmental Health Sciences (R01ES07331 and R01ES10563). All the authors were supported by the environmental network EXPOHEALTH, funded by the state of Rhineland-Palatinate, Germany.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Thomas Münzel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Mark Miller, Annette Peters and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Münzel, T., Hahad, O., Lelieveld, J. et al. Soil and water pollution and cardiovascular disease. Nat Rev Cardiol (2024). https://doi.org/10.1038/s41569-024-01068-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41569-024-01068-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing