Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dietary patterns to promote cardiometabolic health

Abstract

Multiple professional societies recommend the Mediterranean and/or Dietary Approaches to Stop Hypertension dietary patterns in their cardiovascular disease prevention guidelines because these diets can improve cardiometabolic health and reduce the risk of cardiovascular events. Furthermore, low sodium intake can be particularly beneficial for patients with hypertension. Carbohydrate restriction, with an emphasis on including high-quality carbohydrates and limiting refined starches and foods and beverages with added sugars, can promote weight loss and cardiometabolic benefits in the short term, compared with higher carbohydrate intake. Evidence is lacking for sustained, long-term effects of low carbohydrate and very low carbohydrate intake on cardiometabolic risk and cardiovascular outcomes. Time-restricted eating, in the context of an overall healthy dietary pattern, can promote cardiometabolic health by aligning food intake with the circadian rhythm, although its effect on hard clinical outcomes remains to be proven. Although there is no one dietary pattern that is appropriate for all patients, engaging in shared decision-making with patients, utilizing behaviour-change principles and engaging members of the health-care team, such as registered dietitian nutritionists, can lead to substantial improvement in the lifestyle and overall health trajectory of a patient. Emphasizing the similarities, rather than differences, of recommended dietary patterns, which include an emphasis on vegetables, fruits, legumes, nuts, whole grains and minimally processed protein foods, such as fatty fish or plant-based proteins, can simplify the process for both patients and clinicians alike.

Key points

  • The Mediterranean and Dietary Approaches to Stop Hypertension dietary patterns have high-quality evidence to support improvement in cardiometabolic health.

  • A low intake of sodium, in addition to a healthy dietary pattern, can be particularly beneficial for individuals with hypertension.

  • If patients choose to follow a carbohydrate-restricted diet, high-quality carbohydrates (fruits, vegetables, whole grains and legumes) should be emphasized, whereas refined carbohydrates (refined starches, and foods and beverages with added sugars) should be limited.

  • Carbohydrate restriction, versus higher carbohydrate intake, results in a significant reduction in body weight in the short term; evidence is lacking for long-term benefit on body weight, other cardiometabolic risk factors and clinical outcomes.

  • Time-restricted eating might improve cardiometabolic health parameters, but its effect on long-term, hard clinical outcomes remains to be proven.

  • Emphasizing the similarities between recommended dietary patterns (maximizing the consumption of vegetables, fruits, legumes, nuts, whole grains and minimally processed proteins) might enable clinicians to provide clear and concise guidance for patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dietary patterns to promote cardiometabolic health.

Similar content being viewed by others

References

  1. World Health Organization. Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (2021).

  2. Global Cardiovascular Risk Consortium et al. Global effect of modifiable risk factors on cardiovascular disease and mortality. N. Engl. J. Med. 389, 1273–1285 (2023).

    Article  Google Scholar 

  3. Mach, F. et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur. Heart J. 41, 111–188 (2020).

    Article  PubMed  Google Scholar 

  4. Visseren, F. L. J. et al. 2021 ESC guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 42, 3227–3337 (2021).

    Article  PubMed  Google Scholar 

  5. Pearson, G. J. et al. 2021 Canadian Cardiovascular Society Guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in adults. Can. J. Cardiol. 37, 1129–1150 (2021).

    Article  PubMed  Google Scholar 

  6. Arnett, D. K. et al. 2019 ACC/AHA Guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 140, e563–e595 (2019).

    PubMed  PubMed Central  Google Scholar 

  7. Virani, S. S. et al. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the management of patients with chronic coronary disease: a report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation 148, e9–e119 (2023).

    Article  PubMed  Google Scholar 

  8. Lichtenstein, A. H. et al. 2021 dietary guidance to improve cardiovascular health: a scientific statement from the American Heart Association. Circulation 144, e472–e487 (2021).

    Article  PubMed  Google Scholar 

  9. Bundy, J. D. et al. Estimated impact of achieving optimal cardiovascular health among US adults on cardiovascular disease events. J. Am. Heart Assoc. 10, e019681 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Devries, S. et al. A deficiency of nutrition education and practice in cardiology. Am. J. Med. 130, 1298–1305 (2017).

    Article  PubMed  Google Scholar 

  11. Aspry, K. E. et al. Medical nutrition education, training, and competencies to advance guideline-based diet counseling by physicians: a science advisory from the American Heart Association. Circulation 137, e821–e841 (2018).

    Article  PubMed  Google Scholar 

  12. Davis, C., Bryan, J., Hodgson, J. & Murphy, K. Definition of the Mediterranean diet; a literature review. Nutrients 7, 9139–9153 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Willett, W. C. et al. Mediterranean diet pyramid: a cultural model for healthy eating. Am. J. Clin. Nutr. 61, 1402S–1406S (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Belardo, D. et al. Practical, evidence-based approaches to nutritional modifications to reduce atherosclerotic cardiovascular disease: an American Society for Preventive Cardiology Clinical Practice Statement. Am. J. Prev. Cardiol. 10, 100323 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. de Lorgeril, M. et al. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet 343, 1454–1459 (1994).

    Article  PubMed  Google Scholar 

  16. de Lorgeril, M. et al. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation 99, 779–785 (1999).

    Article  PubMed  Google Scholar 

  17. Delgado-Lista, J. et al. Long-term secondary prevention of cardiovascular disease with a Mediterranean diet and a low-fat diet (CORDIOPREV): a randomised controlled trial. Lancet 399, 1876–1885 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Estruch, R. et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 378, e34 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Sayon-Orea, C. et al. Effect of a nutritional and behavioral intervention on energy-reduced Mediterranean diet adherence among patients with metabolic syndrome: interim analysis of the PREDIMED-plus randomized clinical trial. JAMA 322, 1486–1499 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Salas-Salvado, J. et al. Effect of a lifestyle intervention program with energy-restricted Mediterranean diet and exercise on weight loss and cardiovascular risk factors: one-year results of the PREDIMED-plus trial. Diabetes Care 42, 777–788 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Trichopoulou, A., Costacou, T., Bamia, C. & Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med. 348, 2599–2608 (2003).

    Article  PubMed  Google Scholar 

  22. Fung, T. T. et al. Mediterranean diet and incidence of and mortality from coronary heart disease and stroke in women. Circulation 119, 1093–1100 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dinu, M., Pagliai, G., Casini, A. & Sofi, F. Mediterranean diet and multiple health outcomes: an umbrella review of meta-analyses of observational studies and randomised trials. Eur. J. Clin. Nutr. 72, 30–43 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, D. D. et al. The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nat. Med. 27, 333–343 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Merra, G. et al. Influence of Mediterranean diet on human gut microbiota. Nutrients 13, 7 (2021).

    Article  CAS  Google Scholar 

  26. Fragopoulou, E. et al. The association between adherence to the Mediterranean diet and adiponectin levels among healthy adults: the ATTICA study. J. Nutr. Biochem. 21, 285–289 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Guasch-Ferre, M. & Willett, W. C. The Mediterranean diet and health: a comprehensive overview. J. Intern. Med. 290, 549–566 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Dinu, M. et al. Effects of popular diets on anthropometric and cardiometabolic parameters: an umbrella review of meta-analyses of randomized controlled trials. Adv. Nutr. 11, 815–833 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Martinez-Gonzalez, M. A. et al. A provegetarian food pattern and reduction in total mortality in the Prevencion con Dieta Mediterranea (PREDIMED) study. Am. J. Clin. Nutr. 100, 320S–328S (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Yaskolka Meir, A. et al. Effect of green-Mediterranean diet on intrahepatic fat: the DIRECT PLUS randomised controlled trial. Gut 70, 2085–2095 (2021).

    Article  PubMed  Google Scholar 

  31. Barnard, N. D. et al. A Mediterranean diet and low-fat vegan diet to improve body weight and cardiometabolic risk factors: a randomized, cross-over trial. J. Am. Nutr. Assoc. 41, 127–139 (2022).

    CAS  PubMed  Google Scholar 

  32. NIH. Your Guide to Lowering Blood Pressure With DASH. https://www.nhlbi.nih.gov/files/docs/public/heart/new_dash.pdf (2006).

  33. Onwuzo, C. et al. DASH diet: a review of its scientifically proven hypertension reduction and health benefits. Cureus 15, e44692 (2023).

    PubMed  PubMed Central  Google Scholar 

  34. Campbell, A. P. DASH Eating Plan: an eating pattern for diabetes management. Diabetes Spectr. 30, 76–81 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Appel, L. J. et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N. Engl. J. Med. 336, 1117–1124 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Sacks, F. M. et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N. Engl. J. Med. 344, 3–10 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Chiavaroli, L. et al. DASH dietary pattern and cardiometabolic outcomes: an umbrella review of systematic reviews and meta-analyses. Nutrients 11, 338 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Campos, C. L., Wood, A., Burke, G. L., Bahrami, H. & Bertoni, A. G. Dietary approaches to stop hypertension diet concordance and incident heart failure: the Multi-Ethnic Study of Atherosclerosis. Am. J. Prev. Med. 56, 819–826 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. McMaster, M. W., Sharma, D., Kafle, P., Frishman, W. H. & Aronow, W. S. Use of the DASH diet and coronary artery disease. Cardiol. Rev. 32, 153–156 (2024).

    Article  PubMed  Google Scholar 

  40. Akhlaghi, M. Dietary Approaches to Stop Hypertension (DASH): potential mechanisms of action against risk factors of the metabolic syndrome. Nutr. Res. Rev. 33, 1–18 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. National Heart, Lung, and Blood Institute. DASH Eating Plan. https://www.nhlbi.nih.gov/education/dash-eating-plan (2021).

  42. Kirkpatrick, C. F. et al. Review of current evidence and clinical recommendations on the effects of low-carbohydrate and very-low-carbohydrate (including ketogenic) diets for the management of body weight and other cardiometabolic risk factors: a scientific statement from the National Lipid Association Nutrition and Lifestyle Task Force. J. Clin. Lipidol. 13, 689–711.e1 (2019).

    Article  PubMed  Google Scholar 

  43. Jayedi, A. et al. Dose-dependent effect of carbohydrate restriction for type 2 diabetes management: a systematic review and dose–response meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 116, 40–56 (2022).

    Article  PubMed  Google Scholar 

  44. Reynolds, A. et al. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet 393, 434–445 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Ferruzzi, M. G. et al. Developing a standard definition of whole-grain foods for dietary recommendations: summary report of a multidisciplinary expert roundtable discussion. Adv. Nutr. 5, 164–176 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, Y. et al. Saturated fats compared with unsaturated fats and sources of carbohydrates in relation to risk of coronary heart disease: a prospective cohort study. J. Am. Coll. Cardiol. 66, 1538–1548 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sawicki, C. M. et al. Whole- and refined-grain consumption and longitudinal changes in cardiometabolic risk factors in the Framingham Offspring Cohort. J. Nutr. 151, 2790–2799 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hooper, L. et al. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst. Rev. 8, CD011737 (2020).

    PubMed  Google Scholar 

  49. Griel, A. E., Ruder, E. H. & Kris-Etherton, P. M. The changing roles of dietary carbohydrates: from simple to complex. Arterioscler. Thromb. Vasc. Biol. 26, 1958–1965 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Pacheco, L. S. et al. Sugar-sweetened beverage intake and cardiovascular disease risk in the California Teachers Study. J. Am. Heart Assoc. 9, e014883 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. von Philipsborn, P. et al. Environmental interventions to reduce the consumption of sugar-sweetened beverages and their effects on health. Cochrane Database Syst. Rev. 6, CD012292 (2019).

    Google Scholar 

  52. Li, S. et al. Better diet quality and decreased mortality among myocardial infarction survivors. JAMA Intern. Med. 173, 1808–1818 (2013).

    Article  PubMed  Google Scholar 

  53. Sievenpiper, J. L. Low-carbohydrate diets and cardiometabolic health: the importance of carbohydrate quality over quantity. Nutr. Rev. 78, 69–77 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Apekey, T. A., Maynard, M. J., Kittana, M. & Kunutsor, S. K. Comparison of the effectiveness of low carbohydrate versus low fat diets, in type 2 diabetes: systematic review and meta-analysis of randomized controlled trials. Nutrients 14, 4391 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Soltani, S. et al. Effect of carbohydrate restriction on body weight in overweight and obese adults: a systematic review and dose–response meta-analysis of 110 randomized controlled trials. Front. Nutr. 10, 1287987 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Choi, Y. J., Jeon, S. M. & Shin, S. Impact of a ketogenic diet on metabolic parameters in patients with obesity or overweight and with or without type 2 diabetes: a meta-analysis of randomized controlled trials. Nutrients 12, 2005 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fechner, E., Smeets, E., Schrauwen, P. & Mensink, R. P. The effects of different degrees of carbohydrate restriction and carbohydrate replacement on cardiometabolic risk markers in humans — a systematic review and meta-analysis. Nutrients 12, 991 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Goldberg, I. J. et al. Ketogenic diets, not for everyone. J. Clin. Lipidol. 15, 61–67 (2021).

    Article  PubMed  Google Scholar 

  59. Schaffer, A. E., D’Alessio, D. A. & Guyton, J. R. Extreme elevations of low-density lipoprotein cholesterol with very low carbohydrate, high fat diets. J. Clin. Lipidol. 15, 525–526 (2021).

    Article  PubMed  Google Scholar 

  60. Seidelmann, S. B. et al. Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. Lancet Public Health 3, e419–e428 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mazidi, M., Katsiki, N., Mikhailidis, D. P., Sattar, N. & Banach, M. Lower carbohydrate diets and all-cause and cause-specific mortality: a population-based cohort study and pooling of prospective studies. Eur. Heart J. 40, 2870–2879 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Kirkpatrick, C. F., Agarwala, A. & Maki, K. C. How low should one go in reducing carbohydrate? J. Clin. Lipidol. 16, 769–775 (2022).

    Article  PubMed  Google Scholar 

  63. Satija, A. et al. Healthful and unhealthful plant-based diets and the risk of coronary heart disease in U.S. adults. J. Am. Coll. Cardiol. 70, 411–422 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. de Cabo, R. & Mattson, M. P. Effects of intermittent fasting on health, aging, and disease. N. Engl. J. Med. 381, 2541–2551 (2019).

    Article  PubMed  Google Scholar 

  65. Manoogian, E. N. C., Chow, L. S., Taub, P. R., Laferrere, B. & Panda, S. Time-restricted eating for the prevention and management of metabolic diseases. Endocr. Rev. 43, 405–436 (2022).

    Article  PubMed  Google Scholar 

  66. Hatori, M. et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 15, 848–860 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Swiatkiewicz, I., Wozniak, A. & Taub, P. R. Time-restricted eating and metabolic syndrome: current status and future perspectives. Nutrients 13, 221 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Panda, S. Circadian physiology of metabolism. Science 354, 1008–1015 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wilkinson, M. J. et al. Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab. 31, 92–104.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Sutton, E. F. et al. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. 27, 1212–1221.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu, D. et al. Calorie restriction with or without time-restricted eating in weight loss. N. Engl. J. Med. 386, 1495–1504 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Laferrere, B. & Panda, S. Calorie and time restriction in weight loss. N. Engl. J. Med. 386, 1572–1573 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Acosta-Rodriguez, V. et al. Circadian alignment of early onset caloric restriction promotes longevity in male C57BL/6J mice. Science 376, 1192–1202 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lowe, D. A. et al. Effects of time-restricted eating on weight loss and other metabolic parameters in women and men with overweight and obesity: the TREAT randomized clinical trial. JAMA Intern. Med. 180, 1491–1499 (2020).

    Article  PubMed  Google Scholar 

  75. Jamshed, H. et al. Effectiveness of early time-restricted eating for weight loss, fat loss, and cardiometabolic health in adults with obesity: a randomized clinical trial. JAMA Intern. Med. 182, 953–962 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pavlou, V. et al. Effect of time-restricted eating on weight loss in adults with type 2 diabetes: a randomized clinical trial. JAMA Netw. Open 6, e2339337 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ezpeleta, M. et al. Time-restricted eating: watching the clock to treat obesity. Cell Metab. 36, 301–314 (2024).

    Article  CAS  PubMed  Google Scholar 

  78. Vadiveloo, M. et al. Rapid diet assessment screening tools for cardiovascular disease risk reduction across healthcare settings: a scientific statement from the American Heart Association. Circ. Cardiovasc. Qual. Outcomes 13, e000094 (2020).

    Article  PubMed  Google Scholar 

  79. Writing Committee: Lloyd-Jones, D. M. et al. 2022 ACC Expert Consensus Decision Pathway on the role of nonstatin therapies for LDL-cholesterol lowering in the management of atherosclerotic cardiovascular disease risk: a report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 80, 1366–1418 (2022).

    Article  PubMed  Google Scholar 

  80. Kirkpatrick, C. F. et al. Nutrition interventions for adults with dyslipidemia: a clinical perspective from the National Lipid Association. J. Clin. Lipidol. 17, 428–451 (2023).

    Article  PubMed  Google Scholar 

  81. Kirkpatrick, C. F., Willard, K. E. & Maki, K. C. Keto is trending: implications for body weight and lipid management. Curr. Cardiol. Rep. 24, 1093–1100 (2022).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Neha J. Pagidipati.

Ethics declarations

Competing interests

N.J.P. declares research support from Alnylam, Amgen, Bayer, Boehringer Ingelheim, Eggland’s Best, Eli Lilly, Novartis, Novo Nordisk and Merck; consultation/advisory panels for AstraZeneca, Bayer, Boehringer Ingelheim, CRISPR Therapeutics, Eli Lilly, Esperion, Merck, Novartis and Novo Nordisk; executive committee member for trials sponsored by Amgen and Novo Nordisk; data safety and monitoring board for trials sponsored by Johnson & Johnson and Novartis; and medical advisory board for Miga Health. P.R.T. is a consultant to Amgen, Bayer, Boehringer Ingelheim, Edwards, Esperion, Lilly, Medtronic, Merck, Novartis, Novo Nordisk and Sanofi; and is a founder and shareholder of Epirium Bio. R.J.O. declares research grants from Greenbaum Foundation and Purjes Foundation; research agreement with Beyond Meat; scientific advisory board of Mesuron, with stock option. C.F.K. declares no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Demosthenes Panagiotakos, who co-reviewed with Evangelia Sigala; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

DASH Eating Plan: https://www.nhlbi.nih.gov/education/dash-eating-plan

National Lipid Association infographic: https://www.lipid.org/sites/default/files/files/NLA_Infographic_EffectsLowVeryLowCarbDiets.pdf

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagidipati, N.J., Taub, P.R., Ostfeld, R.J. et al. Dietary patterns to promote cardiometabolic health. Nat Rev Cardiol (2024). https://doi.org/10.1038/s41569-024-01061-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41569-024-01061-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing