Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Autoimmune diseases and atherosclerotic cardiovascular disease

Abstract

Autoimmune diseases are associated with a dramatically increased risk of atherosclerotic cardiovascular disease and its clinical manifestations. The increased risk is consistent with the notion that atherogenesis is modulated by both protective and disease-promoting immune mechanisms. Notably, traditional cardiovascular risk factors such as dyslipidaemia and hypertension alone do not explain the increased risk of cardiovascular disease associated with autoimmune diseases. Several mechanisms have been implicated in mediating the autoimmunity-associated cardiovascular risk, either directly or by modulating the effect of other risk factors in a complex interplay. Aberrant leukocyte function and pro-inflammatory cytokines are central to both disease entities, resulting in vascular dysfunction, impaired resolution of inflammation and promotion of chronic inflammation. Similarly, loss of tolerance to self-antigens and the generation of autoantibodies are key features of autoimmunity but are also implicated in the maladaptive inflammatory response during atherosclerotic cardiovascular disease. Therefore, immunomodulatory therapies are potential efficacious interventions to directly reduce the risk of cardiovascular disease, and biomarkers of autoimmune disease activity could be relevant tools to stratify patients with autoimmunity according to their cardiovascular risk. In this Review, we discuss the pathophysiological aspects of the increased cardiovascular risk associated with autoimmunity and highlight the many open questions that need to be answered to develop novel therapies that specifically address this unmet clinical need.

Key points

  • Autoimmune diseases, including systemic lupus erythematosus and rheumatoid arthritis, are associated with an increased risk of atherosclerotic cardiovascular disease and cardiovascular death.

  • Epidemiological data in large cohorts of patients and experimental evidence in preclinical models have clearly established the link between autoimmunity and atherosclerosis.

  • Both shared and distinct mechanisms increase the risk of atherosclerosis in patients with systemic lupus erythematosus, rheumatoid arthritis or other connective-tissue autoimmune diseases.

  • Endothelial dysfunction, increased cytokine signalling (IL-1β, IL-6 and tumour necrosis factor) and leukocyte activation (monocytes, macrophages and neutrophils), and aberrant T cell and B cell functions are key mechanisms for accelerated atherosclerosis in patients with autoimmune diseases.

  • Knowledge about the functional role of classic autoimmune disease-associated autoantibodies in promoting atherosclerosis is limited.

  • Anti-inflammatory therapies that are being evaluated for atherosclerotic cardiovascular disease might represent important opportunities for reducing the risk of atherosclerosis particularly in patients with autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathogenesis of atherosclerosis.
Fig. 2: Autoimmune diseases are associated with an increased risk of atherosclerotic cardiovascular disease.
Fig. 3: Shared immune pathways in ASCVD and autoimmunity and their potential effects on endothelial dysfunction.
Fig. 4: Shared cytokine pathways in autoimmunity and ASCVD and their potential effects on atherogenesis and its complications.
Fig. 5: Shared innate immune pathways in autoimmunity and ASCVD and their potential effects on atherogenesis and its complications.
Fig. 6: Shared adaptive immune pathways in autoimmunity and ASCVD and their potential effects on atherogenesis and its complications.

Similar content being viewed by others

References

  1. Ridker, P. M. et al. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: a collaborative analysis of three randomised trials. Lancet 401, 1293–1301 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Fiolet, A. T. L. et al. Efficacy and safety of low-dose colchicine in patients with coronary disease: a systematic review and meta-analysis of randomized trials. Eur. Heart J. 42, 2765–2775 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Libby, P. The changing landscape of atherosclerosis. Nature 592, 524–533 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Byrne, R. A. et al. 2023 ESC guidelines for the management of acute coronary syndromes. Eur. Heart J. Acute Cardiovasc 44, 3720–3826 (2023).

    Article  CAS  Google Scholar 

  6. Ridker, P. M. From C-reactive protein to interleukin-6 to interleukin-1: moving upstream to identify novel targets for atheroprotection. Circ. Res. 118, 145–156 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saigusa, R., Winkels, H. & Ley, K. T cell subsets and functions in atherosclerosis. Nat. Rev. Cardiol. 17, 387–401 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Porsch, F., Mallat, Z. & Binder, C. J. Humoral immunity in atherosclerosis and myocardial infarction: from B cells to antibodies. Cardiovasc. Res. 117, 2544–2562 (2021).

    CAS  PubMed  Google Scholar 

  9. Roy, P., Orecchioni, M. & Ley, K. How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nat. Rev. Immunol. 22, 251–265 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Mallat, Z. & Binder, C. J. The why and how of adaptive immune responses in ischemic cardiovascular disease. Nat. Cardiovasc. Res. 1, 431–444 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Conrad, N. et al. Autoimmune diseases and cardiovascular risk: a population-based study on 19 autoimmune diseases and 12 cardiovascular diseases in 22 million individuals in the UK. Lancet 400, 733–743 (2022).

    Article  PubMed  Google Scholar 

  12. Smolen, J. S. et al. Rheumatoid arthritis. Nat. Rev. Dis. Prim. 4, 18001 (2018).

    Article  PubMed  Google Scholar 

  13. Kaul, A. et al. Systemic lupus erythematosus. Nat. Rev. Dis. Prim. 2, 16039 (2016).

    Article  PubMed  Google Scholar 

  14. Skaggs, B. J., Hahn, B. H. & McMahon, M. Accelerated atherosclerosis in patients with SLE – mechanisms and management. Nat. Rev. Rheumatol. 8, 214–223 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ambler, W. G. & Kaplan, M. J. Vascular damage in systemic lupus erythematosus. Nat. Rev. Nephrol. 20, 251–265 (2024).

    Article  CAS  PubMed  Google Scholar 

  16. Weber, B. N., Giles, J. T. & Liao, K. P. Shared inflammatory pathways of rheumatoid arthritis and atherosclerotic cardiovascular disease. Nat. Rev. Rheumatol. 19, 417–428 (2023).

    Article  PubMed  Google Scholar 

  17. Forte, F. et al. Association of systemic lupus erythematosus with peripheral arterial disease: a meta-analysis of literature studies. Rheumatology 59, 3181–3192 (2020).

    Article  PubMed  Google Scholar 

  18. Restivo, V. et al. Systematic review and meta-analysis of cardiovascular risk in rheumatological disease: symptomatic and non-symptomatic events in rheumatoid arthritis and systemic lupus erythematosus. Autoimmun. Rev. 21, 102925 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Yafasova, A. et al. Long-term cardiovascular outcomes in systemic lupus erythematosus. J. Am. Coll. Cardiol. 77, 1717–1727 (2021).

    Article  PubMed  Google Scholar 

  20. Manzi, S. et al. Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: comparison with the Framingham Study. Am. J. Epidemiol. 145, 408–415 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Sparks, J. A. et al. Rheumatoid arthritis and mortality among women during 36 years of prospective follow-up: results from the Nurses’ Health Study. Arthritis Care Res 68, 753–762 (2016).

    Article  Google Scholar 

  22. Bartoloni, E. et al. Cardiovascular disease risk burden in primary Sjögren’s syndrome: results of a population-based multicentre cohort study. J. Intern. Med. 278, 185–192 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Butt, S. A. et al. Cardiovascular manifestations of systemic sclerosis: a Danish nationwide cohort study. J. Am. Heart Assoc. 8, e013405 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kiani, A. N. Coronary calcification in SLE: comparison with the Multi-Ethnic Study of Atherosclerosis. Rheumatology 54, 1976–1981 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carlucci, P. M. et al. Neutrophil subsets and their gene signature associate with vascular inflammation and coronary atherosclerosis in lupus. JCI Insight 3, e99276 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Agca, R. et al. Arterial wall inflammation is increased in rheumatoid arthritis compared with osteoarthritis, as a marker of early atherosclerosis. Rheumatology 60, 3360–3368 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Geraldino-Pardilla, L. et al. Arterial inflammation detected with 18F-fluorodeoxyglucose-positron emission tomography in rheumatoid arthritis. Arthritis Rheumatol. 70, 30–39 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Hansen, P. R., Feineis, M. & Abdulla, J. Rheumatoid arthritis patients have higher prevalence and burden of asymptomatic coronary artery disease assessed by coronary computed tomography: a systematic literature review and meta-analysis. Eur. J. Intern. Med. 62, 72–79 (2019).

    Article  PubMed  Google Scholar 

  29. Tyrrell, P. N. et al. Rheumatic disease and carotid intima-media thickness: a systematic review and meta-analysis. Arterioscler. Thromb. Vasc. Biol. 30, 1014–1026 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Willeit, P. et al. Carotid intima-media thickness progression as surrogate marker for cardiovascular risk: meta-analysis of 119 clinical trials involving 100 667 patients. Circulation 142, 621–642 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gautier, E. L. et al. Enhanced immune system activation and arterial inflammation accelerates atherosclerosis in lupus-prone mice. Arterioscler. Thromb. Vasc. Biol. 27, 1625–1631 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Aprahamian, T. et al. Impaired clearance of apoptotic cells promotes synergy between atherogenesis and autoimmune disease. J. Exp. Med. 199, 1121–1131 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ma, Z. et al. Accelerated atherosclerosis in ApoE deficient lupus mouse models. Clin. Immunol. 127, 168–175 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Feng, X. et al. ApoE−/−Fas−/− C57BL/6 mice: a novel murine model simultaneously exhibits lupus nephritis, atherosclerosis, and osteopenia. J. Lipid Res. 48, 794–805 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Lewis, M. J. et al. Distinct roles for complement in glomerulonephritis and atherosclerosis revealed in mice with a combination of lupus and hyperlipidemia. Arthritis Rheum. 64, 2707–2718 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stanic, A. K. et al. Immune dysregulation accelerates atherosclerosis and modulates plaque composition in systemic lupus erythematosus. Proc. Natl Acad. Sci. USA 103, 7018–7023 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Braun, N. A., Wade, N. S., Wakeland, E. K. & Major, A. S. Accelerated atherosclerosis is independent of feeding high fat diet in systemic lupus erythematosus-susceptible LDLr−/− mice. Lupus 17, 1070–1078 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wilhelm, A. J., Rhoads, J. P., Wade, N. S. & Major, A. S. Dysregulated CD4+ T cells from SLE-susceptible mice are sufficient to accelerate atherosclerosis in LDLr−/− mice. Ann. Rheum. Dis. 74, 778–785 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Postigo, J. et al. Exacerbation of type II collagen-induced arthritis in apolipoprotein E-deficient mice in association with the expansion of Th1 and Th17 cells. Arthritis Rheum. 63, 971–980 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Shi, N. et al. Protective effect of hydroxychloroquine on rheumatoid arthritis-associated atherosclerosis. Anim. Models Exp. Med. 2, 98–106 (2019).

    Article  Google Scholar 

  41. Santiago-Raber, M.-L. et al. Atherosclerotic plaque vulnerability is increased in mouse model of lupus. Sci. Rep. 10, 18324 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Centa, M. et al. Acute loss of apolipoprotein E triggers an autoimmune response that accelerates atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 38, e145–e158 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hutchinson, M. A. et al. Auto-antibody production during experimental atherosclerosis in ApoE−/− mice. Front. Immunol. 12, 695220 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ryu, H. et al. Atherogenic dyslipidemia promotes autoimmune follicular helper T cell responses via IL-27. Nat. Immunol. 19, 583–593 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Afek, A. et al. Enhancement of atherosclerosis in beta-2-glycoprotein I-immunized apolipoprotein E-deficient mice. Pathobiology 67, 19–25 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, X. et al. Anti-β2GPI antibodies enhance atherosclerosis in ApoE-deficient mice. Biochem. Biophys. Res. Commun. 512, 72–78 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Nicolo, D., Goldman, B. I. & Monestier, M. Reduction of atherosclerosis in low-density lipoprotein receptor-deficient mice by passive administration of antiphospholipid antibody. Arthritis Rheum. 48, 2974–2978 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Rose, S. et al. A novel mouse model that develops spontaneous arthritis and is predisposed towards atherosclerosis. Ann. Rheum. Dis. 72, 89–95 (2013).

    Article  PubMed  Google Scholar 

  49. Archer, A. M. et al. ApoE deficiency exacerbates the development and sustainment of a semi-chronic K/BxN serum transfer-induced arthritis model. J. Transl. Med. 14, 170 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dragoljevic, D. et al. Defective cholesterol metabolism in haematopoietic stem cells promotes monocyte-driven atherosclerosis in rheumatoid arthritis. Eur. Heart J. 39, 2158–2167 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Timmis, A. et al. European Society of Cardiology: cardiovascular disease statistics 2021. Eur. Heart J. 43, 716–799 (2022).

    Article  PubMed  Google Scholar 

  52. Hermansen, M.-L. et al. Atherosclerosis and renal disease involvement in patients with systemic lupus erythematosus: a cross-sectional cohort study. Rheumatology 57, 1964–1971 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Robinson, G., Pineda-Torra, I., Ciurtin, C. & Jury, E. C. Lipid metabolism in autoimmune rheumatic disease: implications for modern and conventional therapies. J. Clin. Invest. 132, e148552 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Takvorian, S. U., Merola, J. F. & Costenbader, K. H. Cigarette smoking, alcohol consumption and risk of systemic lupus erythematosus. Lupus 23, 537–544 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Maisha, J. A., El-Gabalawy, H. S. & O’Neil, L. J. Modifiable risk factors linked to the development of rheumatoid arthritis: evidence, immunological mechanisms and prevention. Front. Immunol. 14, 1221125 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Szabó, M. Z., Szodoray, P. & Kiss, E. Dyslipidemia in systemic lupus erythematosus. Immunol. Res. 65, 543–550 (2017).

    Article  PubMed  Google Scholar 

  57. Purmalek, M. M. et al. Association of lipoprotein subfractions and glycoprotein acetylation with coronary plaque burden in SLE. Lupus Sci. Med. 6, e000332 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ramos-Casals, M. et al. High prevalence of serum metabolic alterations in primary Sjögren’s syndrome: influence on clinical and immunological expression. J. Rheumatol. 34, 754–761 (2007).

    CAS  PubMed  Google Scholar 

  59. Kronbichler, A., Leierer, J., Gauckler, P. & Shin, J. I. Comorbidities in ANCA-associated vasculitis. Rheumatology 59, iii79–iii83 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. McMahon, M. et al. Proinflammatory high-density lipoprotein as a biomarker for atherosclerosis in patients with systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. 54, 2541–2549 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Charles-Schoeman, C. et al. Abnormal function of high-density lipoprotein is associated with poor disease control and an altered protein cargo in rheumatoid arthritis. Arthritis Rheum. 60, 2870–2879 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Smith, C. K. et al. Neutrophil extracellular trap-derived enzymes oxidize high-density lipoprotein: an additional proatherogenic mechanism in systemic lupus erythematosus. Arthritis Rheumatol. 66, 2532–2544 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Charles-Schoeman, C. et al. Effects of tofacitinib and other DMARDs on lipid profiles in rheumatoid arthritis: implications for the rheumatologist. Semin. Arthritis Rheum. 46, 71–80 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Yan, J. et al. Dyslipidemia in rheumatoid arthritis: the possible mechanisms. Front. Immunol. 14, 1254753 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Turesson, C., Bergström, U., Pikwer, M., Nilsson, J.-Å. & Jacobsson, L. T. High serum cholesterol predicts rheumatoid arthritis in women, but not in men: a prospective study. Arthritis Res. Ther. 17, 284 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wang, M. et al. The causal relationship between blood lipids and systemic lupus erythematosus risk: a bidirectional two-sample Mendelian randomization study. Front. Genet. 13, 858653 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kawai, V. K. et al. Pleiotropy of systemic lupus erythematosus risk alleles and cardiometabolic disorders: a phenome-wide association study and inverse-variance weighted meta-analysis. Lupus 30, 1264–1272 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Schloss, M. J., Swirski, F. K. & Nahrendorf, M. Modifiable cardiovascular risk, hematopoiesis and innate immunity. Circ. Res. 126, 1242–1259 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jury, E. C., Isenberg, D. A., Mauri, C. & Ehrenstein, M. R. Atorvastatin restores Lck expression and lipid raft-associated signaling in T cells from patients with systemic lupus erythematosus. J. Immunol. 177, 7416–7422 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Krishnan, S. et al. Alterations in lipid raft composition and dynamics contribute to abnormal T cell responses in systemic lupus erythematosus. J. Immunol. 172, 7821–7831 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Baardman, J. & Lutgens, E. Regulatory T cell metabolism in atherosclerosis. Metabolites 10, 279 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Maganto-García, E., Tarrio, M. L., Grabie, N., Bu, D. & Lichtman, A. H. Dynamic changes in regulatory T cells are linked to levels of diet-induced hypercholesterolemia. Circulation 124, 185–195 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gaddis, D. E. et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat. Commun. 9, 1095 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Klingenberg, R. et al. Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. J. Clin. Invest. 123, 1323–1334 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, Z. et al. Pairing of single-cell RNA analysis and T cell antigen receptor profiling indicates breakdown of T cell tolerance checkpoints in atherosclerosis. Nat. Cardiovasc. Res. 2, 290–306 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Khan, A., Roy, P. & Ley, K. Breaking tolerance: the autoimmune aspect of atherosclerosis. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-024-01010-y (2024).

  77. Ito, A. et al. Cholesterol accumulation in CD11c+ immune cells is a causal and targetable factor in autoimmune disease. Immunity 45, 1311–1326 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Westerterp, M. et al. Cholesterol accumulation in dendritic cells links the inflammasome to acquired immunity. Cell Metab. 25, 1294–1304.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rahman, P., Aguero, S., Gladman, D. D., Hallett, D. & Urowitz, M. B. Vascular events in hypertensive patients with systemic lupus erythematosus. Lupus 9, 672–675 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Bartoloni, E., Alunno, A. & Gerli, R. Hypertension as a cardiovascular risk factor in autoimmune rheumatic diseases. Nat. Rev. Cardiol. 15, 33–44 (2018).

    Article  PubMed  Google Scholar 

  81. Costello, R. E., Yimer, B. B., Roads, P., Jani, M. & Dixon, W. G. Glucocorticoid use is associated with an increased risk of hypertension. Rheumatology 60, 132–139 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Mathis, K. W. et al. Preventing autoimmunity protects against the development of hypertension and renal injury. Hypertension 64, 792–800 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. McClung, D. M., Kalusche, W. J., Jones, K. E., Ryan, M. J. & Taylor, E. B. Hypertension and endothelial dysfunction in the pristane model of systemic lupus erythematosus. Physiol. Rep. 9, e14734 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang, K. et al. Rheumatoid arthritis and the risk of major cardiometabolic diseases: a Mendelian randomization study. Scand. J. Rheumatol. 52, 335–341 (2023).

    Article  PubMed  Google Scholar 

  85. Rohm, T. V., Meier, D. T., Olefsky, J. M. & Donath, M. Y. Inflammation in obesity, diabetes, and related disorders. Immunity 55, 31–55 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Haase, C. L., Tybjærg-Hansen, A., Nordestgaard, B. G. & Frikke-Schmidt, R. HDL cholesterol and risk of type 2 diabetes: a Mendelian randomization study. Diabetes 64, 3328–3333 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Mellor, D. D. et al. Association between lipids and apolipoproteins on type 2 diabetes risk; moderating effects of gender and polymorphisms; the ATTICA study. Nutr. Metab. Cardiovasc. Dis. 30, 788–795 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Peng, J. et al. Association between dyslipidemia and risk of type 2 diabetes mellitus in middle-aged and older Chinese adults: a secondary analysis of a nationwide cohort. BMJ Open 11, e042821 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. de Resende Guimarães, M. F. B. et al. High prevalence of obesity in rheumatoid arthritis patients: association with disease activity. hypertension, dyslipidemia and diabetes, a multi-center study. Adv. Rheumatol. 59, 44 (2019).

    Article  PubMed  Google Scholar 

  90. Tamargo, I. A., Baek, K. I., Kim, Y., Park, C. & Jo, H. Flow-induced reprogramming of endothelial cells in atherosclerosis. Nat. Rev. Cardiol. 20, 738–753 (2023).

    Article  PubMed  Google Scholar 

  91. Gimbrone, M. A. & García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res. 118, 620–636 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bordy, R. et al. Microvascular endothelial dysfunction in rheumatoid arthritis. Nat. Rev. Rheumatol. 14, 404–420 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Matucci-Cerinic, M., Kahaleh, B. & Wigley, F. M. Review: evidence that systemic sclerosis is a vascular disease. Arthritis Rheum. 65, 1953–1962 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Weber, B. N. et al. Coronary microvascular dysfunction in systemic lupus erythematosus. J. Am. Heart Assoc. 10, e018555 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Conrad, N. et al. Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: a population-based cohort study of 22 million individuals in the UK. Lancet 401, 1878–1890 (2023).

    Article  PubMed  Google Scholar 

  96. Allanore, Y. et al. Systemic sclerosis. Nat. Rev. Dis. Prim. 1, 15002 (2015).

    Article  PubMed  Google Scholar 

  97. Libby, P. Interleukin-1 beta as a target for atherosclerosis therapy: biological basis of CANTOS and beyond. J. Am. Coll. Cardiol. 70, 2278–2289 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen, H.-J., Tas, S. W. & de Winther, M. P. J. Type-I interferons in atherosclerosis. J. Exp. Med. 217, e20190459 (2020).

    Article  PubMed  Google Scholar 

  99. Urschel, K. & Cicha, I. TNF-α in the cardiovascular system: from physiology to therapy. Int. J. Interferon Cytokine Mediat. Res. 7, 9–25 (2015).

    CAS  Google Scholar 

  100. Buie, J. J., Renaud, L. L., Muise-Helmericks, R. & Oates, J. C. IFN-α negatively regulates the expression of endothelial nitric oxide synthase and nitric oxide production: implications for systemic lupus erythematosus. J. Immunol. 199, 1979–1988 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. Akhmedov, A. et al. TNFα induces endothelial dysfunction in rheumatoid arthritis via LOX-1 and arginase 2: reversal by monoclonal TNFα antibodies. Cardiovasc. Res. 118, 254–266 (2022).

    Article  CAS  PubMed  Google Scholar 

  102. Mak, A. et al. Endothelial dysfunction in systemic lupus erythematosus – a case-control study and an updated meta-analysis and meta-regression. Sci. Rep. 7, 7320 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Denny, M. F. et al. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J. Immunol. 184, 3284–3297 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Denny, M. F. et al. Interferon-α promotes abnormal vasculogenesis in lupus: a potential pathway for premature atherosclerosis. Blood 110, 2907–2915 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Villanueva, E. et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J. Immunol. 187, 538–552 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Carmona-Rivera, C., Zhao, W., Yalavarthi, S. & Kaplan, M. J. Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2. Ann. Rheum. Dis. 74, 1417–1424 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Rajagopalan, S. et al. Endothelial cell apoptosis in systemic lupus erythematosus: a common pathway for abnormal vascular function and thrombosis propensity. Blood 103, 3677–3683 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Lee, P. Y. et al. Type I interferon as a novel risk factor for endothelial progenitor cell depletion and endothelial dysfunction in systemic lupus erythematosus. Arthritis Rheum. 56, 3759–3769 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Pieterse, E. et al. Neutrophil extracellular traps drive endothelial-to-mesenchymal transition. Arterioscler. Thromb. Vasc. Biol. 37, 1371–1379 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. Kessenbrock, K. et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat. Med. 15, 623–625 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Schreiber, A. et al. Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis. Proc. Natl Acad. Sci. USA 114, E9618–E9625 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nakazawa, D., Masuda, S., Tomaru, U. & Ishizu, A. Pathogenesis and therapeutic interventions for ANCA-associated vasculitis. Nat. Rev. Rheumatol. 15, 91–101 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Lood, C. et al. Platelet transcriptional profile and protein expression in patients with systemic lupus erythematosus: up-regulation of the type I interferon system is strongly associated with vascular disease. Blood 116, 1951–1957 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Nhek, S. et al. Activated platelets induce endothelial cell activation via an interleukin-1β pathway in systemic lupus erythematosus. Arterioscler. Thromb. Vasc. Biol. 37, 707–716 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Maugeri, N. et al. Platelet microparticles sustain autophagy-associated activation of neutrophils in systemic sclerosis. Sci. Transl. Med. 10, eaao3089 (2018).

    Article  PubMed  Google Scholar 

  116. Legendre, P., Régent, A., Thiebault, M. & Mouthon, L. Anti-endothelial cell antibodies in vasculitis: a systematic review. Autoimmun. Rev. 16, 146–153 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Truchetet, M. E., Brembilla, N. C. & Chizzolini, C. Current concepts on the pathogenesis of systemic sclerosis. Clin. Rev. Allergy Immunol. 64, 262–283 (2023).

    Article  PubMed  Google Scholar 

  118. Almanzar, G. et al. Autoreactive HSP60 epitope-specific T-cells in early human atherosclerotic lesions. J. Autoimmun. 39, 441–450 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Crane, E. D. et al. Anti-GRP78 autoantibodies induce endothelial cell activation and accelerate the development of atherosclerotic lesions. JCI Insight 3, e99363 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Ait-Oufella, H., Taleb, S., Mallat, Z. & Tedgui, A. Recent advances on the role of cytokines in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 31, 969–979 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Ait-Oufella, H., Libby, P. & Tedgui, A. Anticytokine immune therapy and atherothrombotic cardiovascular risk. Arterioscler. Thromb. Vasc. Biol. 39, 1510–1519 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Shin, J. I. et al. Inflammasomes and autoimmune and rheumatic diseases: a comprehensive review. J. Autoimmun. 103, 102299 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Fuster, J. J. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355, 842–847 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Fidler, T. P. et al. The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature 592, 296–301 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Svensson, E. C. et al. TET2-driven clonal hematopoiesis and response to canakinumab: an exploratory analysis of the CANTOS randomized clinical trial. JAMA Cardiol. 7, 521–528 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  126. David, C. et al. Clonal haematopoiesis of indeterminate potential and cardiovascular events in systemic lupus erythematosus (HEMATOPLUS study). Rheumatology 61, 4355–4363 (2022).

    Article  PubMed  Google Scholar 

  127. Broderick, L. & Hoffman, H. M. IL-1 and autoinflammatory disease: biology, pathogenesis and therapeutic targeting. Nat. Rev. Rheumatol. 18, 448–463 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Clark, W., Jobanputra, P., Barton, P. & Burls, A. The clinical and cost-effectiveness of anakinra for the treatment of rheumatoid arthritis in adults: a systematic review and economic analysis. Health Technol. Assess. 8, 18 (2004).

    Article  Google Scholar 

  129. Schiff, M. H. Role of interleukin 1 and interleukin 1 receptor antagonist in the mediation of rheumatoid arthritis. Ann. Rheum. Dis. 59, i103–i108 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Eastgate, J. A. et al. Correlation of plasma interleukin 1 levels with disease activity in rheumatoid arthritis. Lancet 2, 706–709 (1988).

    Article  CAS  PubMed  Google Scholar 

  131. McGeachy, M. J. et al. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nat. Immunol. 8, 1390–1397 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Zhou, L. et al. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8, 967–974 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Ridker, P. M. & Rane, M. Interleukin-6 signaling and anti-interleukin-6 therapeutics in cardiovascular disease. Circ. Res. 128, 1728–1746 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. van der Harst, P. & Verweij, N. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ. Res. 122, 433–443 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium. et al. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet 379, 1214–1224 (2012).

    Article  Google Scholar 

  136. Sarwar, N. et al. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet 379, 1205–1213 (2012).

    Article  PubMed  Google Scholar 

  137. Rosa, M. et al. A Mendelian randomization study of IL6 signaling in cardiovascular diseases, immune-related disorders and longevity. NPJ Genom. Med 4, 23 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Bick, A. G. et al. Genetic interleukin 6 signaling deficiency attenuates cardiovascular risk in clonal hematopoiesis. Circulation 141, 124–131 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Ridker, P. M. et al. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Eur. Heart J. 39, 3499–3507 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Romano, M. et al. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 6, 315–325 (1997).

    Article  CAS  PubMed  Google Scholar 

  141. Alsaffar, H., Martino, N., Garrett, J. P. & Adam, A. P. Interleukin-6 promotes a sustained loss of endothelial barrier function via Janus kinase-mediated STAT3 phosphorylation and de novo protein synthesis. Am. J. Physiol. Cell Physiol. 314, C589–C602 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. Neumann, F.-J. et al. Effect of human recombinant interleukin-6 and interleukin-8 on monocyte procoagulant activity. Arterioscler. Thromb. Vasc. Biol. 17, 3399–3405 (1997).

    Article  CAS  PubMed  Google Scholar 

  143. Holt, I., Cooper, R. G. & Hopkins, S. J. Relationships between local inflammation, interleukin-6 concentration and the acute phase protein response in arthritis patients. Eur. J. Clin. Invest. 21, 479–484 (1991).

    Article  CAS  PubMed  Google Scholar 

  144. Marczynski, P. et al. Vascular inflammation and dysfunction in lupus-prone mice-IL-6 as mediator of disease initiation. Int. J. Mol. Sci. 22, 2291 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Weber, B. et al. Relationship between risk of atherosclerotic cardiovascular disease, inflammation, and coronary microvascular dysfunction in rheumatoid arthritis. J. Am. Heart Assoc. 11, e025467 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Bacchiega, B. C. et al. Interleukin 6 inhibition and coronary artery disease in a high‐risk population: a prospective community‐based clinical study. J. Am. Heart Assoc. 6, e005038 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Protogerou, A. D. et al. A pilot study of endothelial dysfunction and aortic stiffness after interleukin-6 receptor inhibition in rheumatoid arthritis. Atherosclerosis 219, 734–736 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Souto, A. et al. Lipid profile changes in patients with chronic inflammatory arthritis treated with biologic agents and tofacitinib in randomized clinical trials: a systematic review and meta-analysis. Arthritis Rheumatol. 67, 117–127 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. McInnes, I. B. et al. Effect of interleukin-6 receptor blockade on surrogates of vascular risk in rheumatoid arthritis: MEASURE, a randomised, placebo-controlled study. Ann. Rheum. Dis. 74, 694–702 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Pierini, F. S. et al. Effect of tocilizumab on LDL and HDL characteristics in patients with rheumatoid arthritis. an observational study. Rheumatol. Ther. 8, 803–815 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Giles, J. T. et al. Cardiovascular safety of tocilizumab versus etanercept in rheumatoid arthritis: a randomized controlled trial. Arthritis Rheumatol. 72, 31–40 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Ridker, P. M. et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 397, 2060–2069 (2021).

    Article  CAS  PubMed  Google Scholar 

  153. US National Library of Medicine. ClinicalTrials.gov www.clinicaltrials.gov/ct2/show/NCT05021835 (2024).

  154. van Loo, G. & Bertrand, M. J. M. Death by TNF: a road to inflammation. Nat. Rev. Immunol. 23, 289–303 (2023).

    Article  PubMed  Google Scholar 

  155. Siegmund, D. & Wajant, H. TNF and TNF receptors as therapeutic targets for rheumatic diseases and beyond. Nat. Rev. Rheumatol. 19, 576–591 (2023).

    Article  CAS  PubMed  Google Scholar 

  156. Weckerle, C. E. et al. Large scale analysis of tumor necrosis factor ɑ levels in systemic lupus erythematosus. Arthritis Rheum. 64, 2947–2952 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Rho, Y. H. et al. Inflammatory mediators and premature coronary atherosclerosis in rheumatoid arthritis. Arthritis Rheum. 61, 1580–1585 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Del Porto, F. et al. Response to anti-tumour necrosis factor alpha blockade is associated with reduction of carotid intima-media thickness in patients with active rheumatoid arthritis. Rheumatology 46, 1111–1115 (2007).

    Article  PubMed  Google Scholar 

  159. Papamichail, G. V. et al. The effects of biologic agents on cardiovascular risk factors and atherosclerosis in rheumatoid arthritis patients: a prospective observational study. Heart Vessels 37, 2128–2136 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Jacobsson, L. T. H. et al. Treatment with tumor necrosis factor blockers is associated with a lower incidence of first cardiovascular events in patients with rheumatoid arthritis. J. Rheumatol. 32, 1213–1218 (2005).

    CAS  PubMed  Google Scholar 

  161. Dixon, W. G. et al. Reduction in the incidence of myocardial infarction in patients with rheumatoid arthritis who respond to anti-tumor necrosis factor ɑ therapy: results from the British Society for Rheumatology Biologics Register. Arthritis Rheum. 56, 2905–2912 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Barnabe, C., Martin, B.-J. & Ghali, W. A. Systematic review and meta-analysis: anti-tumor necrosis factor α therapy and cardiovascular events in rheumatoid arthritis. Arthritis Care Res 63, 522–529 (2011).

    Article  CAS  Google Scholar 

  163. Roubille, C. et al. The effects of tumour necrosis factor inhibitors, methotrexate, non-steroidal anti-inflammatory drugs and corticosteroids on cardiovascular events in rheumatoid arthritis, psoriasis and psoriatic arthritis: a systematic review and meta-analysis. Ann. Rheum. Dis. 74, 480–489 (2015).

    Article  CAS  PubMed  Google Scholar 

  164. McKellar, G. E., McCarey, D. W., Sattar, N. & McInnes, I. B. Role for TNF in atherosclerosis? Lessons from autoimmune disease. Nat. Rev. Cardiol. 6, 410–417 (2009).

    Article  CAS  PubMed  Google Scholar 

  165. Ridker, P. M. et al. Elevation of tumor necrosis factor-ɑ and increased risk of recurrent coronary events after myocardial infarction. Circulation 101, 2149–2153 (2000).

    Article  CAS  PubMed  Google Scholar 

  166. Chung, E. S. et al. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-ɑ, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 107, 3133–3140 (2003).

    Article  CAS  PubMed  Google Scholar 

  167. Mann, D. L. et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 109, 1594–1602 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Solomon, D. H. et al. Reducing cardiovascular risk with immunomodulators: a randomised active comparator trial among patients with rheumatoid arthritis. Ann. Rheum. Dis. 82, 324–330 (2023).

    Article  CAS  PubMed  Google Scholar 

  169. Goossens, P. et al. Myeloid type I interferon signaling promotes atherosclerosis by stimulating macrophage recruitment to lesions. Cell Metab. 12, 142–153 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. Li, J. et al. Interferon-α priming promotes lipid uptake and macrophage-derived foam cell formation: a novel link between interferon-α and atherosclerosis in lupus. Arthritis Rheum. 63, 492–502 (2011).

    Article  CAS  PubMed  Google Scholar 

  171. Boshuizen, M. C. S. et al. Interferon-β promotes macrophage foam cell formation by altering both cholesterol influx and efflux mechanisms. Cytokine 77, 220–226 (2016).

    Article  PubMed  Google Scholar 

  172. Pulliam, L., Calosing, C., Sun, B., Grunfeld, C. & Rempel, H. Monocyte activation from interferon-α in HIV infection increases acetylated LDL uptake and ROS production. J. Interferon Cytokine Res. 34, 822–828 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Spann, N. J. et al. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 151, 138–152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kim, K. et al. Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models. Circ. Res. 123, 1127–1142 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zernecke, A. et al. Integrated single-cell analysis-based classification of vascular mononuclear phagocytes in mouse and human atherosclerosis. Cardiovasc. Res. 119, 1676–1689 (2023).

    Article  CAS  PubMed  Google Scholar 

  176. King, K. R. et al. IRF3 and type I interferons fuel a fatal response to myocardial infarction. Nat. Med. 23, 1481–1487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Lin, J.-D. et al. Single-cell analysis of fate-mapped macrophages reveals heterogeneity, including stem-like properties, during atherosclerosis progression and regression. JCI Insight 4, e124574 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Park, S. H. et al. Type I interferons and the cytokine TNF cooperatively reprogram the macrophage epigenome to promote inflammatory activation. Nat. Immunol. 18, 1104–1116 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Guarda, G. et al. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity 34, 213–223 (2011).

    Article  CAS  PubMed  Google Scholar 

  180. Reboldi, A. et al. Inflammation. 25-Hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon. Science 345, 679–684 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Barrat, F. J., Crow, M. K. & Ivashkiv, L. B. Interferon target-gene expression and epigenomic signatures in health and disease. Nat. Immunol. 20, 1574–1583 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Lood, C. et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 22, 146–153 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Lövgren, T., Eloranta, M.-L., Båve, U., Alm, G. V. & Rönnblom, L. Induction of interferon-ɑ production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum. 50, 1861–1872 (2004).

    Article  PubMed  Google Scholar 

  184. Barrat, F. J., Meeker, T., Chan, J. H., Guiducci, C. & Coffman, R. L. Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms. Eur. J. Immunol. 37, 3582–3586 (2007).

    Article  CAS  PubMed  Google Scholar 

  185. Sisirak, V. et al. Digestion of chromatin in apoptotic cell microparticles prevents autoimmunity. Cell 166, 88–101 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Caielli, S. et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J. Exp. Med. 213, 697–713 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Blanco, L. P. et al. RNA externalized by neutrophil extracellular traps promotes inflammatory pathways in endothelial cells. Arthritis Rheumatol. 73, 2282–2292 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Bellini, R., Bonacina, F. & Norata, G. D. Crosstalk between dendritic cells and T lymphocytes during atherogenesis: focus on antigen presentation and break of tolerance. Front. Cardiovasc. Med. 9, 934314 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Nagahama, M. et al. Platelet activation markers and soluble adhesion molecules in patients with systemic lupus erythematosus. Autoimmunity 33, 85–94 (2001).

    Article  CAS  PubMed  Google Scholar 

  190. Duffau, P. et al. Platelet CD154 potentiates interferon-ɑ secretion by plasmacytoid dendritic cells in systemic lupus erythematosus. Sci. Transl. Med. 2, 47ra63 (2010).

    Article  PubMed  Google Scholar 

  191. Massberg, S. et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J. Exp. Med. 196, 887–896 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Huo, Y. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat. Med. 9, 61–67 (2003).

    Article  CAS  PubMed  Google Scholar 

  193. Barrett, T. J. et al. Platelet regulation of myeloid suppressor of cytokine signaling 3 accelerates atherosclerosis. Sci. Transl. Med. 11, eaax0481 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Crow, M. K. & Wohlgemuth, J. Microarray analysis of gene expression in lupus. Arthritis Res Ther. 5, 279 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Eloranta, M.-L. et al. Type I interferon system activation and association with disease manifestations in systemic sclerosis. Ann. Rheum. Dis. 69, 1396–1402 (2010).

    Article  CAS  PubMed  Google Scholar 

  197. van Bon, L. et al. Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis. N. Engl. J. Med. 370, 433–443 (2014).

    Article  PubMed  Google Scholar 

  198. Gottenberg, J.-E. et al. Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjögren’s syndrome. Proc. Natl Acad. Sci. USA 103, 2770–2775 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Muskardin, T. L. W. & Niewold, T. B. Type I interferon in rheumatic diseases. Nat. Rev. Rheumatol. 14, 214–228 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Somers, E. C. et al. Type I interferons are associated with subclinical markers of cardiovascular disease in a cohort of systemic lupus erythematosus patients. PloS ONE 7, e37000 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Rogacev, K. S. et al. CD14++CD16+ monocytes independently predict cardiovascular events: a cohort study of 951 patients referred for elective coronary angiography. J. Am. Coll. Cardiol. 60, 1512–1520 (2012).

    Article  CAS  PubMed  Google Scholar 

  202. Lioté, F., Boval-Boizard, B., Weill, D., Kuntz, D. & Wautier, J. L. Blood monocyte activation in rheumatoid arthritis: increased monocyte adhesiveness, integrin expression, and cytokine release. Clin. Exp. Immunol. 106, 13–19 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Rossol, M., Kraus, S., Pierer, M., Baerwald, C. & Wagner, U. The CD14brightCD16+ monocyte subset is expanded in rheumatoid arthritis and promotes expansion of the Th17 cell population. Arthritis Rheum. 64, 671–677 (2012).

    Article  CAS  PubMed  Google Scholar 

  204. Korman, B. D. et al. Inflammatory expression profiles in monocyte-to-macrophage differentiation in patients with systemic lupus erythematosus and relationship with atherosclerosis. Arthritis Res. Ther. 16, R147 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  205. O’Gorman, W. E. et al. Single-cell systems-level analysis of human Toll-like receptor activation defines a chemokine signature in patients with systemic lupus erythematosus. J. Allergy Clin. Immunol. 136, 1326–1336 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Shi, L. et al. Monocyte enhancers are highly altered in systemic lupus erythematosus. Epigenomics 7, 921–935 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Mikołajczyk, T. P. et al. Heterogeneity of peripheral blood monocytes, endothelial dysfunction and subclinical atherosclerosis in patients with systemic lupus erythematosus. Lupus 25, 18–27 (2016).

    Article  PubMed  Google Scholar 

  208. López, P. et al. Low-density granulocytes and monocytes as biomarkers of cardiovascular risk in systemic lupus erythematosus. Rheumatology 59, 1752–1764 (2020).

    Article  PubMed  Google Scholar 

  209. Tacke, F. et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 117, 185–194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Combadière, C. et al. Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6Chi and Ly6Clo monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 117, 1649–1657 (2008).

    Article  PubMed  Google Scholar 

  211. Adamstein, N. H. et al. The neutrophil-lymphocyte ratio and incident atherosclerotic events: analyses from five contemporary randomized trials. Eur. Heart J. 42, 896–903 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Nurmohamed, N. S. et al. Targeted proteomics improves cardiovascular risk prediction in secondary prevention. Eur. Heart J. 43, 1569–1577 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Luo, J., Thomassen, J. Q., Nordestgaard, B. G., Tybjærg-Hansen, A. & Frikke-Schmidt, R. Neutrophil counts and cardiovascular disease. Eur. Heart J. 44, 4953–4964 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Zernecke, A. et al. Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. Circ. Res. 102, 209–217 (2008).

    Article  CAS  PubMed  Google Scholar 

  215. Drechsler, M., Megens, R. T. A., van Zandvoort, M., Weber, C. & Soehnlein, O. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 122, 1837–1845 (2010).

    Article  CAS  PubMed  Google Scholar 

  216. Delporte, C. et al. Impact of myeloperoxidase-LDL interactions on enzyme activity and subsequent posttranslational oxidative modifications of apoB-100. J. Lipid Res. 55, 747–757 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Döring, Y. et al. Lack of neutrophil-derived CRAMP reduces atherosclerosis in mice. Circ. Res. 110, 1052–1056 (2012).

    Article  PubMed  Google Scholar 

  218. Nakamura, Y. et al. Increased LL37 in psoriasis and other inflammatory disorders promotes LDL uptake and atherosclerosis. J. Clin. Invest. 134, e172578 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Knight, J. S. et al. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ. Res. 114, 947–956 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Quillard, T. et al. TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. Eur. Heart J. 36, 1394–1404 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Silvestre-Roig, C. et al. Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature 569, 236–240 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Mangold, A. et al. Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ. Res. 116, 1182–1192 (2015).

    Article  CAS  PubMed  Google Scholar 

  223. Libby, P., Pasterkamp, G., Crea, F. & Jang, I.-K. Reassessing the mechanisms of acute coronary syndromes. Circ. Res. 124, 150–160 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Gómez-Moreno, D., Adrover, J. M. & Hidalgo, A. Neutrophils as effectors of vascular inflammation. Eur. J. Clin. Invest. 48, e12940 (2018).

    Article  PubMed  Google Scholar 

  225. Franck, G. et al. Flow perturbation mediates neutrophil recruitment and potentiates endothelial injury via TLR2 in mice. Circ. Res. 121, 31–42 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Franck, G. et al. Roles of PAD4 and NETosis in experimental atherosclerosis and arterial injury. Circ. Res. 123, 33–42 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Fuchs, T. A. et al. Extracellular DNA traps promote thrombosis. Proc. Natl Acad. Sci. USA 107, 15880–15885 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Folco, E. J. et al. Neutrophil extracellular traps induce endothelial cell activation and tissue factor production through interleukin-1α and cathepsin G. Arterioscler. Thromb. Vasc. Biol. 38, 1901–1912 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Ferrante, G. et al. High levels of systemic myeloperoxidase are associated with coronary plaque erosion in patients with acute coronary syndromes. Circulation 122, 2505–2513 (2010).

    Article  CAS  PubMed  Google Scholar 

  230. Apel, F., Zychlinsky, A. & Kenny, E. F. The role of neutrophil extracellular traps in rheumatic diseases. Nat. Rev. Rheumatol. 14, 467–475 (2018).

    Article  CAS  PubMed  Google Scholar 

  231. Wigerblad, G. & Kaplan, M. J. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat. Rev. Immunol. 23, 274–288 (2023).

    Article  CAS  PubMed  Google Scholar 

  232. Wipke, B. T. & Allen, P. M. Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis. J. Immunol. 167, 1601–1608 (2001).

    Article  CAS  PubMed  Google Scholar 

  233. Grieshaber-Bouyer, R. et al. Ageing and interferon gamma response drive the phenotype of neutrophils in the inflamed joint. Ann. Rheum. Dis. 81, 805–814 (2022).

    Article  CAS  PubMed  Google Scholar 

  234. Garcia-Romo, G. S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra20 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Lande, R. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA–peptide complexes in systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra19 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Döring, Y. et al. Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis. Circulation 125, 1673–1683 (2012).

    Article  PubMed  Google Scholar 

  237. Rahman, S. et al. Low-density granulocytes activate T cells and demonstrate a non-suppressive role in systemic lupus erythematosus. Ann. Rheum. Dis. 78, 957–966 (2019).

    Article  CAS  PubMed  Google Scholar 

  238. Kiss, M. G. & Binder, C. J. The multifaceted impact of complement on atherosclerosis. Atherosclerosis 351, 29–40 (2022).

    Article  CAS  PubMed  Google Scholar 

  239. Stark, K. & Massberg, S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat. Rev. Cardiol. 18, 666–682 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Seifert, P. S., Hugo, F., Hansson, G. K. & Bhakdi, S. Prelesional complement activation in experimental atherosclerosis. Terminal C5b-9 complement deposition coincides with cholesterol accumulation in the aortic intima of hypercholesterolemic rabbits. Lab. Invest. 60, 747–754 (1989).

    CAS  PubMed  Google Scholar 

  241. Vlaicu, R., Rus, H. G., Niculescu, F. & Cristea, A. Immunoglobulins and complement components in human aortic atherosclerotic intima. Atherosclerosis 55, 35–50 (1985).

    Article  CAS  PubMed  Google Scholar 

  242. Kiss, M. G. et al. Cell-autonomous regulation of complement C3 by factor H limits macrophage efferocytosis and exacerbates atherosclerosis. Immunity 56, 1809–1824.e10 (2023).

    Article  CAS  PubMed  Google Scholar 

  243. Truedsson, L., Bengtsson, A. A. & Sturfelt, G. Complement deficiencies and systemic lupus erythematosus. Autoimmunity 40, 560–566 (2007).

    Article  CAS  PubMed  Google Scholar 

  244. Stojan, G. & Petri, M. Anti-C1q in systemic lupus erythematosus. Lupus 25, 873–877 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Dragon-Durey, M.-A., Blanc, C., Marinozzi, M. C., van Schaarenburg, R. A. & Trouw, L. A. Autoantibodies against complement components and functional consequences. Mol. Immunol. 56, 213–221 (2013).

    Article  CAS  PubMed  Google Scholar 

  246. Santer, D. M. et al. C1q deficiency leads to the defective suppression of IFN-ɑ in response to nucleoprotein containing immune complexes. J. Immunol. 185, 4738–4749 (2010).

    Article  CAS  PubMed  Google Scholar 

  247. Coss, S. L. et al. The complement system and human autoimmune diseases. J. Autoimmun. 137, 102979 (2023).

    Article  CAS  PubMed  Google Scholar 

  248. Aringer, M. et al. 2019 EULAR/ACR classification criteria for systemic lupus erythematosus. Arthritis Rheumatol. 71, 1400–1412 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Chen, M., Jayne, D. R. W. & Zhao, M.-H. Complement in ANCA-associated vasculitis: mechanisms and implications for management. Nat. Rev. Nephrol. 13, 359–367 (2017).

    Article  CAS  PubMed  Google Scholar 

  250. Fernandez, D. M. et al. Single-cell immune landscape of human atherosclerotic plaques. Nat. Med. 25, 1576–1588 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Ait-Oufella, H. et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 12, 178–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  252. Sharma, M. et al. Regulatory T cells license macrophage pro-resolving functions during atherosclerosis regression. Circ. Res. 127, 335–353 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Rosetti, F., Madera-Salcedo, I. K., Rodríguez-Rodríguez, N. & Crispín, J. C. Regulation of activated T cell survival in rheumatic autoimmune diseases. Nat. Rev. Rheumatol. 18, 232–244 (2022).

    Article  CAS  PubMed  Google Scholar 

  254. Sumida, T. S., Cheru, N. T. & Hafler, D. A. The regulation and differentiation of regulatory T cells and their dysfunction in autoimmune diseases. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-024-00994-x (2024).

  255. Kolios, A. G. A., Tsokos, G. C. & Klatzmann, D. Interleukin-2 and regulatory T cells in rheumatic diseases. Nat. Rev. Rheumatol. 17, 749–766 (2021).

    Article  CAS  PubMed  Google Scholar 

  256. Bailey-Bucktrout, S. L. et al. Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response. Immunity 39, 949–962 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Ehrenstein, M. R. et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J. Exp. Med. 200, 277–285 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Komatsu, N. et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 20, 62–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  259. Li, J. et al. CCR5+T-bet+FoxP3+ effector CD4 T cells drive atherosclerosis. Circ. Res. 118, 1540–1552 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Butcher, M. J. et al. Atherosclerosis-driven treg plasticity results in formation of a dysfunctional subset of plastic IFNγ+ Th1/Tregs. Circ. Res. 119, 1190–1203 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Kimura, T. et al. Regulatory CD4+ T cells recognize major histocompatibility complex class II molecule-restricted peptide epitopes of apolipoprotein B. Circulation 138, 1130–1143 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Spee-Mayer et al. Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 75, 1407–1415 (2016).

    Article  Google Scholar 

  263. He, J. et al. Low-dose interleukin-2 treatment selectively modulates CD4+ T cell subsets in patients with systemic lupus erythematosus. Nat. Med. 22, 991–993 (2016).

    Article  CAS  PubMed  Google Scholar 

  264. Rosenzwajg, M. et al. Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann. Rheum. Dis. 78, 209–217 (2019).

    Article  CAS  PubMed  Google Scholar 

  265. He, J. et al. Efficacy and safety of low-dose IL-2 in the treatment of systemic lupus erythematosus: a randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 79, 141–149 (2020).

    Article  CAS  PubMed  Google Scholar 

  266. Akbarzadeh, R., Riemekasten, G. & Humrich, J. Y. Low-dose interleukin-2 therapy: a promising targeted therapeutic approach for systemic lupus erythematosus. Curr. Opin. Rheumatol. 35, 98–106 (2023).

    Article  CAS  PubMed  Google Scholar 

  267. Sriranjan, R. et al. Low-dose interleukin 2 for the reduction of vascular inflammation in acute coronary syndromes (IVORY): protocol and study rationale for a randomised, double-blind, placebo-controlled, phase II clinical trial. BMJ Open 12, e062602 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Koshy, M., Berger, D. & Crow, M. K. Increased expression of CD40 ligand on systemic lupus erythematosus lymphocytes. J. Clin. Invest. 98, 826–837 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Liossis, S. N., Ding, X. Z., Dennis, G. J. & Tsokos, G. C. Altered pattern of TCR/CD3-mediated protein-tyrosyl phosphorylation in T cells from patients with systemic lupus erythematosus. Deficient expression of the T cell receptor zeta chain. J. Clin. Invest. 101, 1448–1457 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Enyedy, E. J. et al. Fcϵ receptor type I γ chain replaces the deficient T cell receptor ζ chain in T cells of patients with systemic lupus erythematosus. Arthritis Rheum. 44, 1114–1121 (2001).

    Article  CAS  PubMed  Google Scholar 

  271. Wagner, U. G., Koetz, K., Weyand, C. M. & Goronzy, J. J. Perturbation of the T cell repertoire in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 95, 14447–14452 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Weyand, C. M. & Goronzy, J. J. The immunology of rheumatoid arthritis. Nat. Immunol. 22, 10–18 (2021).

    Article  CAS  PubMed  Google Scholar 

  273. Weng, N., Akbar, A. N. & Goronzy, J. CD28 T cells: their role in the age-associated decline of immune function. Trends Immunol. 30, 306–312 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Dumitriu, I. E. et al. High levels of costimulatory receptors OX40 and 4-1BB characterize CD4+CD28null T cells in patients with acute coronary syndrome. Circ. Res. 110, 857–869 (2012).

    Article  CAS  PubMed  Google Scholar 

  275. Liuzzo, G. et al. Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation 101, 2883–2888 (2000).

    Article  CAS  PubMed  Google Scholar 

  276. Téo, F. H. et al. Characterization of CD4+CD28null T cells in patients with coronary artery disease and individuals with risk factors for atherosclerosis. Cell. Immunol. 281, 11–19 (2013).

    Article  PubMed  Google Scholar 

  277. Okba, A. M. et al. Expanded peripheral CD4+CD28null T cells and its association with atherosclerotic changes in patients with end stage renal disease on hemodialysis. Hum. Immunol. 80, 748–754 (2019).

    Article  CAS  PubMed  Google Scholar 

  278. Gerli, R. et al. CD4+CD28 T lymphocytes contribute to early atherosclerotic damage in rheumatoid arthritis patients. Circulation 109, 2744–2748 (2004).

    Article  CAS  PubMed  Google Scholar 

  279. Jiang, Q. et al. Role of Th22 cells in the pathogenesis of autoimmune diseases. Front. Immunol. 12, 688066 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Schnell, A., Littman, D. R. & Kuchroo, V. K. TH17 cell heterogeneity and its role in tissue inflammation. Nat. Immunol. 24, 19–29 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Simpson, N. et al. Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis Rheum. 62, 234–244 (2010).

    Article  CAS  PubMed  Google Scholar 

  282. Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Nus, M. et al. Marginal zone B cells control the response of follicular helper T cells to a high-cholesterol diet. Nat. Med. 23, 601–610 (2017).

    Article  CAS  PubMed  Google Scholar 

  284. Clement, M. et al. Control of the T follicular helper–germinal center B-cell axis by CD8+ regulatory T cells limits atherosclerosis and tertiary lymphoid organ development. Circulation 131, 560–570 (2015).

    Article  CAS  PubMed  Google Scholar 

  285. Bocharnikov, A. V. et al. PD-1hiCXCR5 T peripheral helper cells promote B cell responses in lupus via MAF and IL-21. JCI Insight 4, e130062 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Hu, D. et al. Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin β receptors. Immunity 42, 1100–1115 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Srikakulapu, P. et al. Artery tertiary lymphoid organs control multilayered territorialized atherosclerosis B-cell responses in aged ApoE−/− mice. Arterioscler. Thromb. Vasc. Biol. 36, 1174–1185 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Paulsson, G., Zhou, X., Törnquist, E. & Hansson, G. K. Oligoclonal T cell expansions in atherosclerotic lesions of apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 20, 10–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  289. Lin, Z. et al. Deep sequencing of the T cell receptor β repertoire reveals signature patterns and clonal drift in atherosclerotic plaques and patients. Oncotarget 8, 99312–99322 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Sage, A. P., Tsiantoulas, D., Binder, C. J. & Mallat, Z. The role of B cells in atherosclerosis. Nat. Rev. Cardiol. 16, 180–196 (2019).

    Article  CAS  PubMed  Google Scholar 

  291. Chaturvedi, A., Dorward, D. & Pierce, S. K. The B cell receptor governs the subcellular location of Toll-like receptor 9 leading to hyperresponses to DNA-containing antigens. Immunity 28, 799–809 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Groom, J. R. et al. BAFF and MyD88 signals promote a lupuslike disease independent of T cells. J. Exp. Med. 204, 1959–1971 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Rubtsov, A. V. et al. Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c+ B-cell population is important for the development of autoimmunity. Blood 118, 1305–1315 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Naradikian, M. S. et al. Cutting edge: IL-4, IL-21, and IFN-γ interact to govern T-bet and CD11c expression in TLR-activated B cells. J. Immunol. 197, 1023–1028 (2016).

    Article  CAS  PubMed  Google Scholar 

  295. Brown, G. J. et al. TLR7 gain-of-function genetic variation causes human lupus. Nature 605, 349–356 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Guerrier, T., Youinou, P., Pers, J.-O. & Jamin, C. TLR9 drives the development of transitional B cells towards the marginal zone pathway and promotes autoimmunity. J. Autoimmun. 39, 173–179 (2012).

    Article  CAS  PubMed  Google Scholar 

  297. Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  298. Dörner, T., Jacobi, A. M., Lee, J. & Lipsky, P. E. Abnormalities of B cell subsets in patients with systemic lupus erythematosus. J. Immunol. Methods 363, 187–197 (2011).

    Article  PubMed  Google Scholar 

  299. Meeuwsen, J. A. L. et al. High levels of (un)switched memory B cells are associated with better outcome in patients with advanced atherosclerotic disease. J. Am. Heart Assoc. 6, e005747 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  300. She, Z. et al. The role of B1 cells in systemic lupus erythematosus. Front. Immunol. 13, 814857 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Mantovani, L., Wilder, R. L. & Casali, P. Human rheumatoid B-1a (CD5+ B) cells make somatically hypermutated high affinity IgM rheumatoid factors. J. Immunol. 151, 473–488 (1993).

    Article  CAS  PubMed  Google Scholar 

  302. Peng, S. L., Szabo, S. J. & Glimcher, L. H. T-bet regulates IgG class switching and pathogenic autoantibody production. Proc. Natl Acad. Sci. USA 99, 5545–5550 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Rubtsova, K. et al. B cells expressing the transcription factor T-bet drive lupus-like autoimmunity. J. Clin. Invest. 127, 1392–1404 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  304. Buono, C. et al. T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc. Natl Acad. Sci. USA 102, 1596–1601 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Li, Z.-Y., Cai, M.-L., Qin, Y. & Chen, Z. Age/autoimmunity-associated B cells in inflammatory arthritis: an emerging therapeutic target. Front. Immunol. 14, 1103307 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  307. Qin, Y. et al. Age-associated B cells contribute to the pathogenesis of rheumatoid arthritis by inducing activation of fibroblast-like synoviocytes via TNF-α-mediated ERK1/2 and JAK-STAT1 pathways. Ann. Rheum. Dis. 81, 1504–1514 (2022).

    Article  CAS  PubMed  Google Scholar 

  308. Smit, V. et al. Single-cell profiling reveals age-associated immunity in atherosclerosis. Cardiovasc. Res. 119, 2508–2521 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Ait-Oufella, H. et al. B cell depletion reduces the development of atherosclerosis in mice. J. Exp. Med. 207, 1579–1587 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Kyaw, T. et al. Conventional B2 B cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis. J. Immunol. 185, 4410–4419 (2010).

    Article  CAS  PubMed  Google Scholar 

  311. US National Library of Medicine. ClinicalTrials.gov www.clinicaltrials.gov/ct2/show/NCT05211401 (2023).

  312. Giordano, D. et al. B cell-activating factor (BAFF) from dendritic cells, monocytes and neutrophils is required for B cell maturation and autoantibody production in SLE-like autoimmune disease. Front. Immunol. 14, 1050528 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Thien, M. et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 20, 785–798 (2004).

    Article  CAS  PubMed  Google Scholar 

  314. Hamilton, J. A., Hsu, H.-C. & Mountz, J. D. Autoreactive B cells in SLE, villains or innocent bystanders? Immunol. Rev. 292, 120–138 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Zhang, J. et al. Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus. J. Immunol. 166, 6–10 (2001).

    Article  CAS  PubMed  Google Scholar 

  316. Salazar-Camarena, D. C. et al. Association of BAFF, APRIL serum levels, BAFF-R, TACI and BCMA expression on peripheral B-cell subsets with clinical manifestations in systemic lupus erythematosus. Lupus 25, 582–592 (2016).

    Article  CAS  PubMed  Google Scholar 

  317. Stohl, W. et al. B lymphocyte stimulator overexpression in patients with systemic lupus erythematosus: longitudinal observations. Arthritis Rheum. 48, 3475–3486 (2003).

    Article  PubMed  Google Scholar 

  318. Landolt-Marticorena, C. et al. Increased expression of B cell activation factor supports the abnormal expansion of transitional B cells in systemic lupus erythematosus. J. Rheumatol. 38, 642–651 (2011).

    Article  PubMed  Google Scholar 

  319. Sage, A. P. et al. BAFF receptor deficiency reduces the development of atherosclerosis in mice – brief report. Arterioscler. Thromb. Vasc. Biol. 32, 1573–1576 (2012).

    Article  CAS  PubMed  Google Scholar 

  320. Kyaw, T. et al. Depletion of B2 but not B1a B cells in BAFF receptor-deficient ApoE mice attenuates atherosclerosis by potently ameliorating arterial inflammation. PloS ONE 7, e29371 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Jackson, S. W. et al. Cutting edge: BAFF overexpression reduces atherosclerosis via TACI-dependent B cell activation. J. Immunol. 197, 4529–4534 (2016).

    Article  CAS  PubMed  Google Scholar 

  322. Tsiantoulas, D. et al. B cell-activating factor neutralization aggravates atherosclerosis. Circulation 138, 2263–2273 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Saidoune, F. et al. Effects of BAFF neutralization on atherosclerosis associated with systemic lupus erythematosus. Arthritis Rheumatol. 73, 255–264 (2021).

    Article  CAS  PubMed  Google Scholar 

  324. Mauri, C. & Blair, P. A. Regulatory B cells in autoimmunity: developments and controversies. Nat. Rev. Rheumatol. 6, 636–643 (2010).

    Article  CAS  PubMed  Google Scholar 

  325. Sakkas, L. I., Daoussis, D., Mavropoulos, A., Liossis, S.-N. & Bogdanos, D. P. Regulatory B cells: new players in inflammatory and autoimmune rheumatic diseases. Semin. Arthritis Rheum. 48, 1133–1141 (2019).

    Article  CAS  PubMed  Google Scholar 

  326. Meng, X. et al. Hypoxia-inducible factor-1α is a critical transcription factor for IL-10-producing B cells in autoimmune disease. Nat. Commun. 9, 251 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  327. Gao, N. et al. Impaired suppressive capacity of activation-induced regulatory B cells in systemic lupus erythematosus. Arthritis Rheumatol. 66, 2849–2861 (2014).

    Article  CAS  PubMed  Google Scholar 

  328. Smith, K. G. C. & Clatworthy, M. R. FcγRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat. Rev. Immunol. 10, 328–343 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Bagchi-Chakraborty, J. et al. B cell Fcγ receptor IIb modulates atherosclerosis in male and female mice by controlling adaptive germinal center and innate B-1-cell responses. Arterioscler. Thromb. Vasc. Biol. 39, 1379–1389 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Pisetsky, D. S. Pathogenesis of autoimmune disease. Nat. Rev. Nephrol. 19, 509–524 (2023).

    Article  CAS  PubMed  Google Scholar 

  331. Lewis, M. J. et al. Immunoglobulin M is required for protection against atherosclerosis in low-density lipoprotein receptor–deficient mice. Circulation 120, 417–426 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Tsiantoulas, D. et al. Increased plasma IgE accelerate atherosclerosis in secreted IgM deficiency. Circ. Res. 120, 78–84 (2017).

    Article  CAS  PubMed  Google Scholar 

  333. Ebrahimian, T. et al. B cell-specific knockout of AID protects against atherosclerosis. Sci. Rep. 13, 8723 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Centa, M. et al. Germinal center-derived antibodies promote atherosclerosis plaque size and stability. Circulation 139, 2466–2482 (2019).

    Article  PubMed  Google Scholar 

  335. Tay, C. et al. Follicular B cells promote atherosclerosis via T cell-mediated differentiation into plasma cells and secreting pathogenic immunoglobulin G. Arterioscler. Thromb. Vasc. Biol. 38, e71–e84 (2018).

    Article  CAS  PubMed  Google Scholar 

  336. Mackey, R. H. et al. Rheumatoid arthritis, anti-cyclic citrullinated peptide positivity, and cardiovascular disease risk in the Women’s Health Initiative. Arthritis Rheumatol. 67, 2311–2322 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Hörkkö, S. et al. Antiphospholipid antibodies are directed against epitopes of oxidized phospholipids. Recognition of cardiolipin by monoclonal antibodies to epitopes of oxidized low density lipoprotein. J. Clin. Invest. 98, 815–825 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  338. Deroissart, J. & Binder, C. J. Mapping the functions of IgM antibodies in atherosclerotic cardiovascular disease. Nat. Rev. Cardiol. 20, 433–434 (2023).

    Article  PubMed  Google Scholar 

  339. Grönwall, C. et al. IgM autoantibodies to distinct apoptosis-associated antigens correlate with protection from cardiovascular events and renal disease in patients with SLE. Clin. Immunol. 142, 390–398 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  340. Thiagarajan, D. et al. IgM antibodies against malondialdehyde and phosphorylcholine in different systemic rheumatic diseases. Sci. Rep. 10, 11010 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Anania, C. et al. Increased prevalence of vulnerable atherosclerotic plaques and low levels of natural IgM antibodies against phosphorylcholine in patients with systemic lupus erythematosus. Arthritis Res. Ther. 12, R214 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  342. Shaw, P. X. et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J. Clin. Invest. 105, 1731–1740 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Binder, C. J. et al. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat. Med. 9, 736–743 (2003).

    Article  CAS  PubMed  Google Scholar 

  344. Chen, Y. et al. Regulation of dendritic cells and macrophages by an anti-apoptotic cell natural antibody that suppresses TLR responses and inhibits inflammatory arthritis. J. Immunol. 183, 1346–1359 (2009).

    Article  CAS  PubMed  Google Scholar 

  345. Faria-Neto, J. R. et al. Passive immunization with monoclonal IgM antibodies against phosphorylcholine reduces accelerated vein graft atherosclerosis in apolipoprotein E-null mice. Atherosclerosis 189, 83–90 (2006).

    Article  CAS  PubMed  Google Scholar 

  346. Urowitz, M. B., Ibañez, D., Su, J. & Gladman, D. D. Modified Framingham Risk Factor Score for systemic lupus erythematosus. J. Rheumatol. 43, 875–879 (2016).

    Article  PubMed  Google Scholar 

  347. Hippisley-Cox, J., Coupland, C. & Brindle, P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ 357, j2099 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  348. Petri, M. A., Barr, E. & Magder, L. S. Development of a systemic lupus erythematosus cardiovascular risk equation. Lupus Sci. Med. 6, e000346 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  349. McMahon, M. et al. A panel of biomarkers is associated with increased risk of the presence and progression of atherosclerosis in women with systemic lupus erythematosus. Arthritis Rheumatol. 66, 130–139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Skaggs, B. J. et al. A panel of biomarkers associates with increased risk for cardiovascular events in women with systemic lupus erythematosus. ACR Open Rheumatol. 3, 209–220 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  351. Sivakumaran, J. et al. Assessment of cardiovascular risk tools as predictors of cardiovascular disease events in systemic lupus erythematosus. Lupus Sci. Med. 8, e000448 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  352. Agca, R. et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann. Rheum. Dis. 76, 17–28 (2017).

    Article  CAS  PubMed  Google Scholar 

  353. Drosos, G. C. et al. EULAR recommendations for cardiovascular risk management in rheumatic and musculoskeletal diseases, including systemic lupus erythematosus and antiphospholipid syndrome. Ann. Rheum. Dis. 81, 768–779 (2022).

    Article  CAS  PubMed  Google Scholar 

  354. Buckley, L. F. & Libby, P. Colchicine’s role in cardiovascular disease management. Arterioscler. Thromb. Vasc. Biol. 44, 1031–1041 (2024).

    Article  PubMed  Google Scholar 

  355. Wade, N. S., Stevenson, B. G., Dunlap, D. S. & Major, A. S. The lupus susceptibility locus Sle3 is not sufficient to accelerate atherosclerosis in lupus-susceptible low density lipoprotein receptor-deficient mice. Lupus 19, 34–42 (2010).

    Article  CAS  PubMed  Google Scholar 

  356. Asquith, D. L. et al. Apolipoprotein E-deficient mice are resistant to the development of collagen-induced arthritis. Arthritis Rheum. 62, 472–477 (2010).

    Article  CAS  PubMed  Google Scholar 

  357. Blackler, G. et al. The effect of HLA-DRB1*04:01 on a mouse model of atherosclerosis. J. Transl. Autoimmun. 7, 100203 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Ridker, P. M. et al. Low-dose methotrexate for the prevention of atherosclerotic events. N. Engl. J. Med. 380, 752–762 (2019).

    Article  CAS  PubMed  Google Scholar 

  359. Tardif, J.-C. et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 381, 2497–2505 (2019).

    Article  CAS  PubMed  Google Scholar 

  360. Nidorf, S. M., Eikelboom, J. W., Budgeon, C. A. & Thompson, P. L. Low-dose colchicine for secondary prevention of cardiovascular disease. J. Am. Coll. Cardiol. 61, 404–410 (2013).

    Article  CAS  PubMed  Google Scholar 

  361. Nidorf, S. M. et al. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 383, 1838–1847 (2020).

    Article  CAS  PubMed  Google Scholar 

  362. US National Library of Medicine. ClinicalTrials.gov www.clinicaltrials.gov/ct2/show/NCT03048825 (2024).

  363. Kelly, P. et al. Long-term colchicine for the prevention of vascular recurrent events in non-cardioembolic stroke (CONVINCE): a randomised controlled trial. Lancet https://doi.org/10.1016/S0140-6736(24)00968-1 (2024).

    Article  PubMed  Google Scholar 

  364. Morton, A. C. et al. The effect of interleukin-1 receptor antagonist therapy on markers of inflammation in non-ST elevation acute coronary syndromes: the MRC-ILA Heart Study. Eur. Heart J. 36, 377–384 (2015).

    Article  CAS  PubMed  Google Scholar 

  365. Abbate, A. et al. Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot Study). Am. J. Cardiol. 105, 1371–1377.e1 (2010).

    Article  CAS  PubMed  Google Scholar 

  366. Abbate, A. et al. Effects of interleukin-1 blockade with anakinra on adverse cardiac remodeling and heart failure after acute myocardial infarction [from the Virginia Commonwealth University–Anakinra Remodeling Trial (2) (VCU-ART2) pilot study]. Am. J. Cardiol. 111, 1394–1400 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. Abbate, A. et al. Interleukin‐1 blockade inhibits the acute inflammatory response in patients with ST‐segment-elevation myocardial infarction. J. Am. Heart Assoc. 9, e014941 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Kleveland, O. et al. Effect of a single dose of the interleukin-6 receptor antagonist tocilizumab on inflammation and troponin T release in patients with non-ST-elevation myocardial infarction: a double-blind, randomized, placebo-controlled phase 2 trial. Eur. Heart J. 37, 2406–2413 (2016).

    Article  CAS  PubMed  Google Scholar 

  369. Kleveland, O. et al. Interleukin-6 receptor inhibition with tocilizumab induces a selective and substantial increase in plasma IP-10 and MIP-1β in non-ST-elevation myocardial infarction. Int. J. Cardiol. 271, 1–7 (2018).

    Article  PubMed  Google Scholar 

  370. Carroll, M. B., Haller, C. & Smith, C. Short-term application of tocilizumab during myocardial infarction (STAT-MI). Rheumatol. Int. 38, 59–66 (2018).

    Article  CAS  PubMed  Google Scholar 

  371. Broch, K. et al. Randomized trial of interleukin-6 receptor inhibition in patients with acute ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 77, 1845–1855 (2021).

    Article  CAS  PubMed  Google Scholar 

  372. Kunkel, J. B. et al. Low-dose dobutamine infusion and single-dose tocilizumab in acute myocardial infarction patients with high risk of cardiogenic shock development – rationale and design of the DOBERMANN trial [abstract zuad036.131]. Eur. Heart J. Acute Cardiovasc. Care 12 (Suppl. 1), i193–i194 (2023).

    Google Scholar 

  373. US National Library of Medicine. ClinicalTrials.gov www.clinicaltrials.gov/ct2/show/NCT05350592 (2024).

  374. Ridker, P. M. From RESCUE to ZEUS: will interleukin-6 inhibition with ziltivekimab prove effective for cardiovascular event reduction? Cardiovasc. Res. 117, e138–e140 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. US National Library of Medicine. ClinicalTrials.gov www.clinicaltrials.gov/ct2/show/NCT06118281 (2024).

  376. Zhao, T. X. et al. Rituximab in patients with acute ST-elevation myocardial infarction: an experimental medicine safety study. Cardiovasc. Res. 118, 872–882 (2022).

    Article  PubMed  Google Scholar 

  377. Zhao, T. X. et al. Regulatory T-cell response to low-dose interleukin-2 in ischemic heart disease. NEJM Evid. 1, EVIDoa2100009 (2022).

    Article  PubMed  Google Scholar 

  378. US National Library of Medicine. ClinicalTrials.gov www.clinicaltrials.gov/ct2/show/NCT04241601 (2024).

  379. Borén, J. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 41, 2313–2330 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  380. Moore, K. J., Sheedy, F. J. & Fisher, E. A. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13, 709–721 (2013).

    Article  Google Scholar 

  381. Binder, C. J., Papac-Milicevic, N. & Witztum, J. L. Innate sensing of oxidation-specific epitopes in health and disease. Nat. Rev. Immunol. 16, 485–497 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).

    Article  CAS  PubMed  Google Scholar 

  383. Hung, T. et al. The Ro60 autoantigen binds endogenous retroelements and regulates inflammatory gene expression. Science 350, 455–459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  384. Kudo, T. et al. Regulation of NETosis and inflammation by cyclophilin D in myeloperoxidase-positive antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheumatol. 75, 71–83 (2023).

    Article  CAS  PubMed  Google Scholar 

  385. Müller-Calleja, N. et al. Lipid presentation by the protein C receptor links coagulation with autoimmunity. Science 371, eabc0956 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  386. Schreiber, K. et al. Antiphospholipid syndrome. Nat. Rev. Dis. Prim. 4, 17103 (2018).

    Article  PubMed  Google Scholar 

  387. Pagano, S. et al. Anti-apolipoprotein A-1 IgG in patients with myocardial infarction promotes inflammation through TLR2/CD14 complex. J. Intern. Med. 272, 344–357 (2012).

    Article  CAS  PubMed  Google Scholar 

  388. Kitching, A. R. et al. ANCA-associated vasculitis. Nat. Rev. Dis. Prim. 6, 71 (2020).

    Article  PubMed  Google Scholar 

  389. van Delft, M. A. M. & Huizinga, T. W. J. An overview of autoantibodies in rheumatoid arthritis. J. Autoimmun. 110, 102392 (2020).

    Article  PubMed  Google Scholar 

  390. Vander Cruyssen, B. et al. Anti-citrullinated protein/peptide antibodies (ACPA) in rheumatoid arthritis: specificity and relation with rheumatoid factor. Autoimmun. Rev. 4, 468–474 (2005).

    Article  Google Scholar 

  391. Anquetil, F., Clavel, C., Offer, G., Serre, G. & Sebbag, M. IgM and IgA rheumatoid factors purified from rheumatoid arthritis sera boost the Fc receptor- and complement-dependent effector functions of the disease-specific anti-citrullinated protein autoantibodies. J. Immunol. 194, 3664–3674 (2015).

    Article  CAS  PubMed  Google Scholar 

  392. Suurmond, J. & Diamond, B. Autoantibodies in systemic autoimmune diseases: specificity and pathogenicity. J. Clin. Invest. 125, 2194–2202 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C.J.B. was supported by grants from the Vienna Science and Technology Fund (LS18-090), by the Leducq Foundation (Transatlantic Network of Excellence; TNE-20CVD03) and the EU Horizon Europe (TillT; 101080897).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Christoph J. Binder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Jan Nilsson, Michael Nurmohamed and Marten Trendelenburg for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Clonal haematopoiesis of indeterminate potential

(CHIP). A common, age-related condition in which somatic mutations in some genes in haematopoietic progenitor cells result in the clonal expansion of leukocytes. The presence of CHIP is associated with a significantly increased risk of cardiovascular disease.

Endothelial-to-mesenchymal transition

A process in which endothelial cells change their molecular and cellular phenotype to that of mesenchymal cells (such as myofibroblasts and smooth muscle cells). Endothelial-to-mesenchymal transition has been implicated in the development of atherosclerosis.

Lipoprotein(a)

An LDL particle that contains apolipoprotein(a). Lipoprotein(a) is one of the strongest genetically determined risk factors for atherosclerotic cardiovascular disease.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porsch, F., Binder, C.J. Autoimmune diseases and atherosclerotic cardiovascular disease. Nat Rev Cardiol (2024). https://doi.org/10.1038/s41569-024-01045-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41569-024-01045-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing