Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plaque erosion and acute coronary syndromes: phenotype, molecular characteristics and future directions

Abstract

Although acute coronary syndromes (ACS) remain one of the leading causes of death, the clinical presentation has changed over the past three decades with a decline in the incidence of ST-segment elevation myocardial infarction (STEMI) and an increase in non-STEMI. This epidemiological shift is at least partially explained by changes in plaque biology as a result of the widespread use of statins. Historically, atherosclerotic plaque rupture of the fibrous cap was thought to be the main culprit in ACS. However, plaque erosion with an intact fibrous cap is now responsible for about one third of ACS and up to two thirds of non-STEMI. Two major research approaches have enabled a better understanding of plaque erosion. First, advanced intravascular imaging has provided opportunities for an ‘optical biopsy’ and extensive phenotyping of coronary plaques in living patients. Second, basic science experiments have shed light on the unique molecular characteristics of plaque erosion. At present, patients with ACS are still uniformly treated with coronary stents irrespective of the underlying pathobiology. However, pilot studies indicate that patients with plaque erosion might be treated conservatively without coronary stenting. In this Review, we discuss the patient phenotype and the molecular characteristics in atherosclerotic plaque erosion and provide our vision for a potential major shift in the management of patients with plaque erosion.

Key points

  • Plaque erosion rather than plaque rupture has become the predominant mechanism of non-ST-segment elevation myocardial infarction as a result of better control of cardiovascular risk factors since the introduction of statins.

  • Plaque erosion starts with changes in endothelial shear stress gradients that activate Toll-like receptor 2 in endothelial cells, resulting in loss of basement membrane integrity and endothelial cell desquamation, with subsequent formation of neutrophil extracellular traps and thrombosis.

  • Optical coherence tomography has enabled the in vivo diagnosis of plaque erosion, providing a better understanding of the characteristics and vascular biology of plaque erosion in patients with acute coronary syndromes.

  • Plaque erosion is characterized by preserved vascular integrity, a larger vessel lumen than in plaque rupture and the presence of a platelet-rich thrombus and, overall, is associated with a better risk profile and outcomes than plaque rupture.

  • Multiple clinical, angiographic and laboratory predictors of plaque erosion can help identify patients with plaque erosion, but more specific point-of-care biomarkers and non-invasive imaging techniques are needed.

  • Early clinical studies suggest that patients with plaque erosion might be managed without percutaneous coronary intervention, ushering in a new era of precision medicine in the management of patients with acute coronary syndromes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optical phenotypes of atherosclerotic plaque erosion and plaque rupture.
Fig. 2: Main molecular mechanisms of atherosclerotic plaque erosion.
Fig. 3: Potential future paradigm for tailored management of acute coronary syndromes.

Similar content being viewed by others

References

  1. Antman, E. M. & Loscalzo, J. Precision medicine in cardiology. Nat. Rev. Cardiol. 13, 591–602 (2016).

    Article  PubMed  Google Scholar 

  2. Virani, S. S. et al. Heart disease and stroke statistics–2020 update: a report from the American Heart Association. Circulation 141, e139–e596 (2020).

    Article  PubMed  Google Scholar 

  3. Amsterdam, E. A. et al. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 130, 2354–2394 (2014).

    Article  PubMed  Google Scholar 

  4. Antman, E.M. et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1999 Guidelines for the Management of Patients with Acute Myocardial Infarction). Circulation 110, e82–e292 (2004).

    PubMed  Google Scholar 

  5. Prati, F. et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur. Heart J. 31, 401–415 (2010).

    Article  PubMed  Google Scholar 

  6. Crea, F. & Libby, P. Acute coronary syndromes: the way forward from mechanisms to precision treatment. Circulation 136, 1155–1166 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jia, H. et al. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J. Am. Coll. Cardiol. 62, 1748–1758 (2013).

    Article  PubMed  Google Scholar 

  8. Higuma, T. et al. A combined optical coherence tomography and intravascular ultrasound study on plaque rupture, plaque erosion, and calcified nodule in patients with ST-segment elevation myocardial infarction. JACC Cardiovasc. Interv. 8, 1166–1176 (2015).

    Article  PubMed  Google Scholar 

  9. Saia, F. et al. Eroded versus ruptured plaques at the culprit site of STEMI: in vivo pathophysiological features and response to primary PCI. JACC Cardiovasc. Imaging 8, 566–575 (2015).

    Article  PubMed  Google Scholar 

  10. Niccoli, G. et al. Plaque rupture and intact fibrous cap assessed by optical coherence tomography portend different outcomes in patients with acute coronary syndrome. Eur. Heart J. 36, 1377–1384 (2015).

    Article  PubMed  Google Scholar 

  11. Yonetsu, T. et al. Plaque morphologies and the clinical prognosis of acute coronary syndrome caused by lesions with intact fibrous cap diagnosed by optical coherence tomography. Int. J. Cardiol. 203, 766–774 (2016).

    Article  PubMed  Google Scholar 

  12. Kajander, O. A. et al. Culprit plaque morphology in STEMI – an optical coherence tomography study: insights from the TOTAL-OCT substudy. EuroIntervention 12, 716–723 (2016).

    Article  PubMed  Google Scholar 

  13. Kwon, J. E. et al. Multimodality intravascular imaging assessment of plaque erosion versus plaque rupture in patients with acute coronary syndrome. Korean Circ. J. 46, 499–506 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Libby, P., Pasterkamp, G., Crea, F. & Jang, I.-K. Reassessing the mechanisms of acute coronary syndromes. Circ. Res. 124, 150–160 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jia, H. et al. Effective anti-thrombotic therapy without stenting: intravascular optical coherence tomography-based management in plaque erosion (the EROSION study). Eur. Heart J. 38, 792–800 (2016).

    Google Scholar 

  16. van der Wal, A. C., Becker, A. E., van der Loos, C. M. & Das, P. K. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89, 36–44 (1994).

    Article  PubMed  Google Scholar 

  17. Farb, A. et al. Coronary plaque erosion without rupture into a lipid core: a frequent cause of coronary thrombosis in sudden coronary death. Circulation 93, 1354–1363 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Burke, A. P. et al. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N. Engl. J. Med. 336, 1276–1282 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Arbustini, E. et al. Plaque erosion is a major substrate for coronary thrombosis in acute myocardial infarction. Heart 82, 269–272 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Muller, J. E., Tofler, G. H. & Stone, P. H. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation 79, 733–743 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Falk, E. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br. Heart J. 50, 127–134 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Davies, M. J. & Thomas, A. C. Plaque fissuring–the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br. Heart J. 53, 363–373 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Libby, P. Inflammation in atherosclerosis. Nature 420, 868–874 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Burke, A. P. et al. Effect of risk factors on the mechanism of acute thrombosis and sudden coronary death in women. Circulation 97, 2110–2116 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Burke, A. P. et al. Traditional risk factors and the incidence of sudden coronary death with and without coronary thrombosis in blacks. Circulation 105, 419–424 (2002).

    Article  PubMed  Google Scholar 

  26. Durand, E. et al. In vivo induction of endothelial apoptosis leads to vessel thrombosis and endothelial denudation: a clue to the understanding of the mechanisms of thrombotic plaque erosion. Circulation 109, 2503–2506 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Henriques de Gouveia, R. Sudden unexpected death in young adults. Discrepancies between initiation of acute plaque complications and the onset of acute coronary death. Eur. Heart J. 23, 1433–1440 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Hu, S. et al. Management and outcome of patients with acute coronary syndrome caused by plaque rupture versus plaque erosion: an intravascular optical coherence tomography study. J. Am. Heart Assoc. 6, e00473 (2017).

    Article  Google Scholar 

  29. Kolodgie, F. D. et al. Differential accumulation of proteoglycans and hyaluronan in culprit lesions: insights into plaque erosion. Arterioscler. Thromb. Vasc. Biol. 22, 1642–1648 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Kramer, M. C. A. et al. Relationship of thrombus healing to underlying plaque morphology in sudden coronary death. J. Am. Coll. Cardiol. 55, 122–132 (2010).

    Article  PubMed  Google Scholar 

  31. Sato, Y. Proportion of fibrin and platelets differs in thrombi on ruptured and eroded coronary atherosclerotic plaques in humans. Heart 91, 526–530 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schwartz, R. S. et al. Microemboli and microvascular obstruction in acute coronary thrombosis and sudden coronary death. J. Am. Coll. Cardiol. 54, 2167–2173 (2009).

    Article  PubMed  Google Scholar 

  33. Tavora, F. et al. Sudden coronary death caused by pathologic intimal thickening without atheromatous plaque formation. Cardiovasc. Pathol. 20, 51–57 (2011).

    Article  PubMed  Google Scholar 

  34. Stone, G. W. et al. A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 364, 226–235 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Puri, R., Worthley, M. I. & Nicholls, S. J. Intravascular imaging of vulnerable coronary plaque: current and future concepts. Nat. Rev. Cardiol. 8, 131–139 (2011).

    Article  PubMed  Google Scholar 

  36. Kubo, T. et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J. Am. Coll. Cardiol. 50, 933–939 (2007).

    Article  PubMed  Google Scholar 

  37. Hong, S. et al. Effect of intravascular ultrasound-guided vs angiography-guided everolimus-eluting stent implantation: the IVUS-XPL randomized clinical trial. JAMA 314, 2155–2163 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, J. et al. Intravascular ultrasound versus angiography-guided drug-eluting stent implantation: the ULTIMATE trial. J. Am. Coll. Cardiol. 72, 3126–3137 (2018).

    Article  PubMed  Google Scholar 

  39. Pasterkamp, G., den Ruijter, H. M. & Libby, P. Temporal shifts in clinical presentation and underlying mechanisms of atherosclerotic disease. Nat. Rev. Cardiol. 14, 21–29 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Hayashi, T. et al. Plaque erosion in the culprit lesion is prone to develop a smaller myocardial infarction size compared with plaque rupture. Am. Heart J. 149, 284–290 (2005).

    Article  PubMed  Google Scholar 

  41. Sun, R. et al. Pre-infarction angina and culprit lesion morphologies in patients with a first ST-segment elevation acute myocardial infarction: insights from in vivo optical coherence tomography. EuroIntervention 14, 1768–1775 (2019).

    Article  PubMed  Google Scholar 

  42. Prati, F. et al. OCT-based diagnosis and management of STEMI associated with intact fibrous cap. JACC Cardiovasc. Imaging 6, 283–287 (2013).

    Article  PubMed  Google Scholar 

  43. Yahagi, K., Davis, H. R., Arbustini, E. & Virmani, R. Sex differences in coronary artery disease: pathological observations. Atherosclerosis 239, 260–267 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Yamamoto, E. et al. Clinical and laboratory predictors for plaque erosion in patients with acute coronary syndromes. J. Am. Heart Assoc. 8, e012322 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Virmani, R., Kolodgie, F. D., Burke, A. P., Farb, A. & Schwartz, S. M. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 20, 1262–1275 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Niccoli, G. et al. Morphological-biohumoral correlations in acute coronary syndromes: pathogenetic implications. Int. J. Cardiol. 171, 463–466 (2014).

    Article  PubMed  Google Scholar 

  47. Dai, J. et al. In vivo predictors of plaque erosion in patients with ST-segment elevation myocardial infarction: a clinical, angiographical, and intravascular optical coherence tomography study. Eur. Heart J. 39, 2077–2085 (2018).

    Article  PubMed  Google Scholar 

  48. Papaioannou, T. G. & Stefanadis, C. Vascular wall shear stress: basic principles and methods. Hellenic J. Cardiol. 46, 9–15 (2005).

    PubMed  Google Scholar 

  49. Ferrante, G. et al. High levels of systemic myeloperoxidase are associated with coronary plaque erosion in patients with acute coronary syndromes: a clinicopathological study. Circulation 122, 2505–2513 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Pedicino, D. et al. Alterations of hyaluronan metabolism in acute coronary syndrome: implications for plaque erosion. J. Am. Coll. Cardiol. 72, 1490–1503 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Chandran, S. et al. Inflammatory differences in plaque erosion and rupture in patients with ST-segment elevation myocardial infarction. J. Am. Heart Assoc. 6, e005868 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tian, J. et al. Morphologic characteristics of eroded coronary plaques: a combined angiographic, optical coherence tomography, and intravascular ultrasound study. Int. J. Cardiol. 176, e137–e139 (2014).

    Article  PubMed  Google Scholar 

  53. Vergallo, R. et al. Dual quantitative coronary angiography accurately quantifies intracoronary thrombotic burden in patients with acute coronary syndrome: comparison with optical coherence tomography imaging. Int. J. Cardiol. 292, 25–31 (2019).

    Article  PubMed  Google Scholar 

  54. Kim, H. O. et al. Angiographic features of patients with coronary plaque erosion. Int. J. Cardiol. 288, 12–16 (2019).

    Article  PubMed  Google Scholar 

  55. Gensini, G. G. A more meaningful scoring system for determining the severity of coronary heart disease. Am. J. Cardiol. 51, 606 (1983).

    Article  CAS  PubMed  Google Scholar 

  56. Sianos, G. et al. The SYNTAX score: an angiographic tool grading the complexity of coronary artery disease. EuroIntervention 1, 219–227 (2005).

    PubMed  Google Scholar 

  57. Neeland, I. J. et al. Coronary angiographic scoring systems: an evaluation of their equivalence and validity. Am. Heart J. 164, 547–552.e1 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ryan, T. J. Guidelines for percutaneous transluminal coronary angioplasty: a report of the American College of Cardiology/American Heart Association Task Force on Assessment of Diagnostic and Therapeutic Cardiovascular Procedures (Subcommittee on Percutaneous Transluminal Coronary Angioplasty). J. Am. Coll. Cardiol. 12, 529–545 (1988).

    Article  Google Scholar 

  59. Gijsen, F. J. et al. A new imaging technique to study 3-D plaque and shear stress distribution in human coronary artery bifurcations in vivo. J. Biomech. 40, 2349–2357 (2007).

    Article  PubMed  Google Scholar 

  60. Araki, M. et al. Spatial distribution of vulnerable plaques: comprehensive in vivo coronary plaque mapping. JACC Cardiovasc. Imaging 13, 1989–1999 (2020).

    Article  PubMed  Google Scholar 

  61. Thondapu, V. et al. High spatial endothelial shear stress gradient independently predicts site of acute coronary plaque rupture and erosion. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvaa251 (2020).

    Article  Google Scholar 

  62. Vergallo, R. et al. Endothelial shear stress and coronary plaque characteristics in humans: combined frequency-domain optical coherence tomography and computational fluid dynamics study. Circ. Cardiovasc. Imaging 7, 905–911 (2014).

    Article  PubMed  Google Scholar 

  63. Vergallo, R. et al. Coronary plaque erosion developing in an area of high endothelial shear stress: insights from serial optical coherence tomography imaging. Coron. Artery Dis. 30, 74–75 (2019).

    Article  PubMed  Google Scholar 

  64. Yamamoto, E. et al. Endothelial shear stress and plaque erosion: a computational fluid dynamics and optical coherence tomography study. JACC Cardiovasc. Imaging 12, 374–375 (2019).

    Article  PubMed  Google Scholar 

  65. Matsuura, Y., Kanter, J. E. & Bornfeldt, K. E. Highlighting residual atherosclerotic cardiovascular disease risk. Arterioscler. Thromb. Vasc. Biol. 39, e1–e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mullick, A. E., Tobias, P. S. & Curtiss, L. K. Modulation of atherosclerosis in mice by Toll-like receptor 2. J. Clin. Invest. 115, 3149–3156 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mullick, A. E. et al. Increased endothelial expression of Toll-like receptor 2 at sites of disturbed blood flow exacerbates early atherogenic events. J. Exp. Med. 205, 373–383 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rajavashisth, T. B. et al. Inflammatory cytokines and oxidized low density lipoproteins increase endothelial cell expression of membrane type 1-matrix metalloproteinase. J. Biol. Chem. 274, 11924–11929 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Franck, G. et al. Flow perturbation mediates neutrophil recruitment and potentiates endothelial injury via TLR2 in mice: implications for superficial erosion. Circ. Res. 121, 31–42 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Quillard, T. et al. TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. Eur. Heart J. 36, 1394–1404 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Giannotta, M., Trani, M. & Dejana, E. VE-cadherin and endothelial adherens junctions: active guardians of vascular integrity. Dev. Cell 26, 441–454 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Scheibner, K. A. et al. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J. Immunol. 177, 1272–1281 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Taylor, K. R. et al. Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. J. Biol. Chem. 279, 17079–17084 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Bertheloot, D. & Latz, E. HMGB1, IL-1α, IL-33 and S100 proteins: dual-function alarmins. Cell. Mol. Immunol. 14, 43–64 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Laman, J. D., Schoneveld, A. H., Moll, F. L., van Meurs, M. & Pasterkamp, G. Significance of peptidoglycan, a proinflammatory bacterial antigen in atherosclerotic arteries and its association with vulnerable plaques. Am. J. Cardiol. 90, 119–123 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Nijhuis, M. M. O. et al. Peptidoglycan increases firm adhesion of monocytes under flow conditions and primes monocyte chemotaxis. J. Vasc. Res. 44, 214–222 (2007).

    Article  PubMed  CAS  Google Scholar 

  77. Wright, H. L., Moots, R. J., Bucknall, R. C. & Edwards, S. W. Neutrophil function in inflammation and inflammatory diseases. Rheumatology 49, 1618–1631 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Borregaard, N., Sørensen, O. E. & Theilgaard-Mönch, K. Neutrophil granules: a library of innate immunity proteins. Trends Immunol. 28, 340–345 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Naegelen, I. et al. Regulation of neutrophil degranulation and cytokine secretion: a novel model approach based on linear fitting. J. Immunol. Res. 2015, 817038 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Folco, E. J. et al. Neutrophil extracellular traps induce endothelial cell activation and tissue factor production through interleukin-1α and cathepsin G. Arterioscler. Thromb. Vasc. Biol. 38, 1901–1912 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fuchs, T. A. et al. Extracellular DNA traps promote thrombosis. Proc. Natl Acad. Sci. USA 107, 15880–15885 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Martinod, K. & Wagner, D. D. Thrombosis: tangled up in NETs. Blood 123, 2768–2776 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chow, O. A. et al. Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe 8, 445–454 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Soehnlein, O., Bazioti, V. & Westerterp, M. A Pad 4 plaque erosion. Circ. Res. 123, 6–8 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Franck, G. et al. Roles of PAD4 and NETosis in experimental atherosclerosis and arterial injury: implications for superficial erosion. Circ. Res. 123, 33–42 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cooley, B. C. et al. TGF-β signaling mediates endothelial-to-mesenchymal transition (EndMT) during vein graft remodeling. Sci. Transl. Med. 6, 227ra34 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Wesseling, M., Sakkers, T. R., de Jager, S. C. A., Pasterkamp, G. & Goumans, M. J. The morphological and molecular mechanisms of epithelial/endothelial-to-mesenchymal transition and its involvement in atherosclerosis. Vascul. Pharmacol. 106, 1–8 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Evrard, S. M. et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat. Commun. 7, 11853 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen, P.-Y. et al. FGF regulates TGF-β signaling and endothelial-to-mesenchymal transition via control of let-7 miRNA expression. Cell Rep. 2, 1684–1696 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hu, S. et al. Plaque erosion delays vascular healing after drug eluting stent implantation in patients with acute coronary syndrome: an in vivo optical coherence tomography study. Catheter. Cardiovasc. Interv. 89, 592–600 (2017).

    Article  PubMed  Google Scholar 

  91. Xing, L. et al. EROSION study (Effective Anti-Thrombotic Therapy without Stenting: Intravascular Optical Coherence Tomography-Based Management in Plaque Erosion): a 1-year follow-up report. Circ. Cardiovasc. Interv. 10, e005860 (2017).

    Article  PubMed  Google Scholar 

  92. Ozaki, Y. et al. Coronary CT angiographic characteristics of culprit lesions in acute coronary syndromes not related to plaque rupture as defined by optical coherence tomography and angioscopy. Eur. Heart J. 32, 2814–2823 (2011).

    Article  PubMed  Google Scholar 

  93. Subirana, I. et al. Prediction of coronary disease incidence by biomarkers of inflammation, oxidation, and metabolism. Sci. Rep. 8, 3191 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Bittner, D. O. et al. Coronary computed tomography angiography–specific definitions of high-risk plaque features improve detection of acute coronary syndrome. Circ. Cardiovasc. Imaging 11, e007657 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sevakula, R. K. et al. State-of-the-art machine learning techniques aiming to improve patient outcomes pertaining to the cardiovascular system. J. Am. Heart Assoc. 9, e013924 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Yang, S. et al. Deep learning segmentation of major vessels in X-ray coronary angiography. Sci. Rep. 9, 16897 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Cho, H. et al. Angiography-based machine learning for predicting fractional flow reserve in intermediate coronary artery lesions. J. Am. Heart Assoc. 8, e011685 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.C.F. is supported by a grant T32HL007208 from the National Heart, Lung, and Blood Institute. I.-K.J.’s research is supported by the Allan Grey Fellowship Fund in Cardiology and by Mr. and Mrs. Michael and Kathryn Park.

Author information

Authors and Affiliations

Authors

Contributions

A.C.F. and I.-K.J. researched data for the article, discussed its content and wrote the manuscript. I.-K.J. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Ik-Kyung Jang.

Ethics declarations

Competing interests

A.C.F. is a consultant and holds equity in Goodpath, which was not involved in the writing of this article. I.-K.J. has received educational grants from Abbott Vascular and a consulting fee from Svelte Medical.

Additional information

Peer review information

Nature Reviews Cardiology thanks H. Garcia-Garcia, P. Stone and R. Virmani for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Optical coherence tomography

(OCT). Intravascular diagnostic modality used during cardiac catheterization. Near-infrared light is used to create images of the coronary artery and atherosclerotic plaque from inside the vessel.

Non-ST-segment elevation myocardial infarction

(Non-STEMI). A myocardial infarction that does not have ST-segment elevation on the 12-lead electrocardiogram.

STEMI

A myocardial infarction characterized by complete occlusion of a coronary artery by a thrombus and by ST-segment elevation on the 12-lead electrocardiogram.

Endothelial shear stress

The tangential stress generated by friction caused by flowing blood on the endothelial surface of the vessel wall.

SYNTAX score

Angiographic grading tool to determine the complexity of coronary artery disease, dependent on both the number and the characteristics of stenoses in the coronary artery tree.

Gensini score

Angiographic grading tool to determine the complexity of coronary artery disease that accounts for the degree and location of arterial stenoses.

ACC/AHA lesion classification

Classifies lesion types by complexity; includes type A (simple lesions), type B (moderate lesions) and type C (complex lesions). Takes into consideration several factors such as the length of the lesion, its location (such as major branch involvement), the tortuosity of the vessel and the angulation required to access the vessel, among others.

Oscillatory shear index

The ratio between backwards and forwards shear stress; a marker of flow reversal.

Thrombolysis In Myocardial Infarction

(TIMI). The TIMI grade flow is a scoring system for the levels of coronary blood flow distal to a stenosis. TIMI grade 0 indicates no anterograde flow, grade 1 indicates faint antegrade flow and incomplete filling of the distal coronary artery, grade 2 flow indicates delayed or sluggish antegrade flow and grade 3 indicates normal flow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahed, A.C., Jang, IK. Plaque erosion and acute coronary syndromes: phenotype, molecular characteristics and future directions. Nat Rev Cardiol 18, 724–734 (2021). https://doi.org/10.1038/s41569-021-00542-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-021-00542-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing