Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Beyond CMOS computing with spin and polarization

Abstract

Spintronic and multiferroic systems are leading candidates for achieving attojoule-class logic gates for computing, thereby enabling the continuation of Moore’s law for transistor scaling. However, shifting the materials focus of computing towards oxides and topological materials requires a holistic approach addressing energy, stochasticity and complexity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Definition of a collective switch.
Fig. 2: A unified computing framework comprising three axes for scaling.

Similar content being viewed by others

References

  1. Auth, C., A. et al. in 2017 IEEE Int. Electron Devices Meeting 29–1. (IEEE, 2017).

  2. Xu, M. & Arce, G. R. Computational Lithography Vol. 77. (Wiley, New York, NY, 2011).

  3. Danowitz, A., Kelley, K., Mao, J., Stevenson, J. P. & Horowitz, M. Commun. ACM 55, 55–63 (2012).

    Article  Google Scholar 

  4. Moore, G. E. ISSCC Dig. Tech. Pap. 20–23 (2003).

  5. Dennard, R. H. et al. IEEE J. Solid-State Circuits 9, 256–268 (1974).

    Article  Google Scholar 

  6. Holt, W. M. in 2016 IEEE International Solid-State Circuits Conf. 8–13 (IEEE, 2016).

  7. Ghani, T. et al. in 2003 IEEE Int. Electron Devices Meeting 11–6 (IEEE, 2003).

  8. Ferain, I., Colinge, C. A. & Colinge, J.-P. Nature 479, 310–316 (2011).

  9. Nikonov, D. E. & Young, I. A. IEEE J. Explor. Solid-State Computat. Devices Circuits 1, 3–11 (2015).

    Article  Google Scholar 

  10. Chappert, C., Fert, A. & Nguyen Van Dau, F. Nat. Mater. 6, 813–823 (2007).

    Article  ADS  Google Scholar 

  11. Allwood, D. A. et al. Science 309, 1688–1692 (2005).

    Article  ADS  Google Scholar 

  12. Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Nat. Phys 11, 453–461 (2015).

    Article  Google Scholar 

  13. Manipatruni, S., Nikonov, D. E. & Young, I. A. Preprint at https://arxiv.org/abs/1512.05428 (2015).

  14. Meindl, J. D., Chen, Q. & Davis, J. A. Science 293, 2044–2049 (2001).

    Article  ADS  Google Scholar 

  15. Nyquist, H. Phys. Rev 32, 110–113 (1928).

    Article  ADS  Google Scholar 

  16. Saleh, B. E. A. & Teich, M. C. Fundamentals of Photonics (Wiley, New York, NY, 1991).

  17. Camsari, K. Y., Faria, R., Sutton, B. M. & Datta, S. Preprint at https://arxiv.org/abs/1610.00377 (2016).

  18. von Neumann, J. Automata Studies 34, 43–98 (1956).

    Google Scholar 

  19. Merolla, P. A. et al. Science 345, 668–673 (2014).

    Article  ADS  Google Scholar 

  20. Hopfield, J. J. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  21. Behin-Aein, B., Datta, D., Salahuddin, S. & Datta, S. Nat. Nanotech 5, 266–270 (2010).

    Article  ADS  Google Scholar 

  22. Spaldin, N. A. & Fiebig, M. Science 309, 391–392 (2005).

    Article  Google Scholar 

  23. Khomskii, D. Physics 2, 20 (2009).

    Article  Google Scholar 

  24. Birol, T. et al. Curr. Opin. Solid State Mater. Sci 16, 227–242 (2012).

    Article  ADS  Google Scholar 

  25. Heron, J. T. et al. Nature 516, 370–373 (2014).

    Article  ADS  Google Scholar 

  26. Chu, Y.-H. et al. Nat. Mater. 7, 478–482 (2008).

    Article  ADS  Google Scholar 

  27. He, X. et al. Nat. Mater. 9, 579–585 (2010).

    Article  ADS  Google Scholar 

  28. Maruyama, T. et al. Nat. Nanotech 4, 158–161 (2009).

    Article  ADS  Google Scholar 

  29. Mayadas, A. F., Shatzkes, M. & Janak, J. F. Appl. Phys. Lett. 14, 345–347 (1969).

    Article  ADS  Google Scholar 

  30. Iraei, R. M., Manipatruni, S., Nikonov, D., Young, I. & Naeemi, A. IEEE J. Explor. Solid-State Computat. Devices Circuits 3, 47–55 (2017).

    Article  Google Scholar 

  31. Pan, C., Chang, S.-C. & Naeemi, A. in 2016 IEEE Int. Interconnect Technology Conf./Advanced Metallization Conf. (IITC/AMC) 56–58 (IEEE, 2016).

  32. Manipatruni, S., Lipson, M. & Young, I. A. IEEE J. Sel. Topics Quantum Electron. 19, 8200109 (2013).

    Article  Google Scholar 

  33. Landauer, R. IBM J. Res. Dev 5, 183–191 (1961).

    Article  Google Scholar 

  34. Mead, C. Proc. IEEE 78, 1629–1636 (1990).

  35. Nikonov, D. E. et al. IEEE J. Explor. Solid-State Computat. Devices Circuits 1, 85–93 (2015).

    Article  Google Scholar 

  36. Davies, M. et al. IEEE Micro 38, 82–99 (2018).

    Article  Google Scholar 

  37. Jouppi, N. P. et al. Preprint at https://arxiv.org/abs/1704.04760 (2017).

  38. Köster, U. et al. Preprint at https://arxiv.org/abs/1711.02213 (2017).

  39. Strogatz, S. Sync: The Emerging Science of Spontaneous Order (Penguin, London, 2004).

  40. Anderson, P. W. Science 177, 393–396 (1972).

    Article  ADS  Google Scholar 

  41. Stupakiewicz, A., Szerenos, K., Afanasiev, D., Kirilyuk, A. & Kimel, A. V. Nature 542, 71–74 (2017).

    Article  ADS  Google Scholar 

  42. Rowlands, G. E. et al. Appl. Phys. Lett. 98, 102509 (2011).

    Article  ADS  Google Scholar 

  43. Chu, Y. H. et al. Appl. Phys. Lett. 92, 102909 (2008).

    Article  ADS  Google Scholar 

  44. Nowak, J. J. et al. IEEE Magn. Lett 2, 3000204 (2011).

    Article  Google Scholar 

  45. Jan, G. in 2016 IEEE Symp. on VLSI Technology 1–2 (IEEE, 2016).

  46. Shiota, Y. et al. Appl. Phys. Lett. 111, 022408 (2017).

    Article  ADS  Google Scholar 

  47. Mundy, J. A. et al. Nature 537, 523–527 (2016).

    Article  ADS  Google Scholar 

  48. Wang, Y., Hu, J., Lin, Y. & Nan, C.-W. NPG Asia Mater 2, 61–68 (2010).

    Article  Google Scholar 

  49. Shiomi, Y. et al. Phys. Rev. Lett. 113, 196601 (2014).

    Article  ADS  Google Scholar 

  50. Bakaul, S. R. et al. Nat. Commun. 7, 10547 (2016).

    Article  ADS  Google Scholar 

  51. Song, Q. et al. Sci. Adv. 3, e1602312 (2017).

    Article  ADS  Google Scholar 

  52. Cheng, C. et al. Preprint at https://arxiv.org/abs/1510.03451 (2015).

  53. Jamali, M, et al. Preprint at https://arxiv.org/abs/1703.03822 (2017).

  54. Omori, Y. et al. Appl. Phys. Lett. 104, 242415 (2014).

    Article  ADS  Google Scholar 

  55. Sagasta, E. et al. Phys. Rev. B 94, 060412 (2016).

    Article  ADS  Google Scholar 

  56. Noguchi, H, et al. in 2016 IEEE Int. Electron Devices Meeting 27–5 (IEEE, 2016).

  57. Chen, L., Preston, K., Manipatruni, S. & Lipson, M. Opt. Express 17, 15248–15256 (2009).

    Article  ADS  Google Scholar 

  58. Hamaya, K. et al. Phys. Rev. B 85, 100404 (2012).

    Article  ADS  Google Scholar 

  59. Liu, S., Grinberg, I. & Rappe, A. M. Nature 534, 360–363 (2016).

    Article  ADS  Google Scholar 

  60. Stengel, M. & Íñiguez, J. Phys. Rev. B 92, 235148 (2015).

    Article  ADS  Google Scholar 

  61. Yang, Y. Sci. Adv. 3, e1603117 (2017).

    Article  ADS  Google Scholar 

  62. Butler, W. H. et al. IEEE Trans. Magn. 48, 4684–4700 (2012).

    Article  ADS  Google Scholar 

  63. Warren, W. L., Tuttle, B. A. & Dimos, D. Appl. Phys. Lett. 67, 1426–1428 (1995).

    Article  ADS  Google Scholar 

  64. D’Souza, N., Fashami, M. S., Bandyopadhyay, S. & Atulasimha, J. Nano Lett. 16, 1069–1075 (2016).

    Article  ADS  Google Scholar 

  65. Edelstein, V. M. Solid State Commun 73, 233–235 (1990).

    Article  ADS  Google Scholar 

  66. Rojas Sánchez, J. C. et al. Nat. Commun. 4, 2944 (2013).

    Google Scholar 

  67. Kirilyuk, A., Kimel, A. V. & Rasing, T. Rev. Mod. Phys. 82, 2731–2784 (2010).

    Article  ADS  Google Scholar 

  68. Brewer, R. T. et al. J. Appl. Phys. 97, 034103 (2005).

    Article  ADS  Google Scholar 

  69. Patil, A. D., Manipatruni, S., Nikonov, D., Young, I. A. & Shanbhag, N. R. Preprint at https://arxiv.org/abs/1702.06119 (2017).

  70. Kish, L. B. & Granqvist, C.-G. PLoS ONE 7, e46800 (2012).

Download references

Acknowledgements

We sincerely acknowledge the discussions with R. Ramamoorthy, N. Shanbhag, D. Schlom, S. Salahuddin, F. Rana, B. Hillebrands, J.-P. Wang and A. Patil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasikanth Manipatruni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manipatruni, S., Nikonov, D.E. & Young, I.A. Beyond CMOS computing with spin and polarization. Nature Phys 14, 338–343 (2018). https://doi.org/10.1038/s41567-018-0101-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0101-4

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics