Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Optical skyrmions and other topological quasiparticles of light

Abstract

Skyrmions are topologically stable quasiparticles that have been predicted and demonstrated in quantum fields, solid-state physics and magnetic materials, but only recently observed in electromagnetic fields. Here we review the recent advances in optical skyrmions within a unified topological framework. Starting from fundamental theories and classification of skyrmionic states, we describe generation and topological control of different kinds of skyrmions in evanescent, structured and spatiotemporal optical fields. We further highlight generalized classes of optical topological quasiparticles beyond skyrmions and outline the emerging applications, future trends and open challenges. A complex vectorial field structure of optical quasiparticles with versatile topological characteristics emerges as an important feature in modern spin optics, imaging, metrology, optical forces, structured light, and topological and quantum technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Topological quasiparticle classification.
Fig. 2: Construction of optical skyrmions.
Fig. 3: Diversified optical skyrmions.

Similar content being viewed by others

References

  1. Skyrme, T. H. R. A non-linear feld theory. Proc. R. Soc. A 260, 127–138 (1961).

    ADS  MathSciNet  Google Scholar 

  2. Skyrme, T. H. R. A unifed feld theory of mesons and baryons. Nucl. Phys. 31, 556–569 (1962).

    MathSciNet  Google Scholar 

  3. Al Khawaja, U. & Stoof, H. Skyrmions in a ferromagnetic Bose–Einstein condensate. Nature 411, 918–920 (2001).

    ADS  Google Scholar 

  4. Duzgun, A. & Nisoli, C. Skyrmion spin ice in liquid crystals. Phys. Rev. Lett. 126, 047801 (2021).

    ADS  Google Scholar 

  5. Liu, J. P., Zhang, Z. & Zhao, G. Skyrmions: Topological Structures, Properties, and Applications (CRC Press, 2016).

  6. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

  7. Han, L. et al. High-density switchable skyrmion-like polar nanodomains integrated on silicon. Nature 603, 63–67 (2022).

    ADS  Google Scholar 

  8. Bogdanov, A. N. & Panagopoulos, C. Physical foundations and basic properties of magnetic skyrmions. Nat. Rev. Phys. 2, 492–498 (2020).

    Google Scholar 

  9. Kwan, Y. H., Wagner, G., Bultinck, N., Simon, S. H. & Parameswaran, S. Skyrmions in twisted bilayer graphene: stability, pairing, and crystallization. Phys. Rev. 12, 031020 (2022).

    Google Scholar 

  10. M¨uhlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    ADS  Google Scholar 

  11. Yu, X. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    ADS  Google Scholar 

  12. Tsesses, S. et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science 361, 993–996 (2018).

    ADS  MathSciNet  Google Scholar 

  13. Du, L., Yang, A., Zayats, A. V. & Yuan, X. Deep subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys. 15, 650–654 (2019).

    Google Scholar 

  14. Rivera, N. & Kaminer, I. Light–matter interactions with photonic quasiparticles. Nat. Rev. Phys. 2, 538–561 (2020).

    Google Scholar 

  15. Forbes, A., Oliveira, M. & Dennis, M. Structured light. Nat. Photon. 15, 253–262 (2021).

    ADS  Google Scholar 

  16. He, C., Shen, Y. & Forbes, A. Towards higher-dimensional structured light. Light Sci. Appl. 11, 205 (2022).

    ADS  Google Scholar 

  17. Manton, N. & Sutcliffe, P. Topological Solitons (Cambridge Univ. Press, 2004).

  18. Ward, R. S. Hopf solitons on \({{\mathscr{S}}}^{3}\) and \({{\mathscr{S}}}^{3}\). Nonlinearity 12, 241–246 (1999).

  19. Rybakov, F. N. et al. Magnetic hopfions in solids. APL Mater. 10, 111113 (2022).

  20. Gobel, B., Mertig, I. & Tretiakov, O. A. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep. 895, 1–28 (2021).

    ADS  MathSciNet  Google Scholar 

  21. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    ADS  Google Scholar 

  22. Kolesnikov, A. G., Stebliy, M. E., Samardak, A. S. & Ognev, A. V. Skyrmionium—high velocity without the skyrmion hall effect. Sci. Rep. 8, 16966 (2018).

  23. Song, C. et al. Field-tuned spin excitation spectrum of kπ skyrmion. New J. Phys. 21, 083006 (2019).

    ADS  Google Scholar 

  24. Zheng, F. et al. Direct imaging of a zero-field target skyrmion and its polarity switch in a chiral magnetic nanodisk. Phys. Rev. Lett. 119, 197205 (2017).

    ADS  Google Scholar 

  25. Jani, H. et al. Antiferromagnetic half-skyrmions and bimerons at room temperature. Nature 590, 74–79 (2021).

    Google Scholar 

  26. Yu, X. et al. Transformation between meron and skyrmion topological spin textures in a chiral magnet. Nature 564, 95–98 (2018).

    ADS  Google Scholar 

  27. Zhang, X. et al. A frustrated bimeronium: static structure and dynamics. Appl. Phys. Lett. 118, 052411 (2021).

    ADS  Google Scholar 

  28. Davis, T. J. et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science 368, eaba6415 (2020).

  29. Deng, Z.-L., Shi, T., Krasnok, A., Li, X. & Alù, A. Observation of localized magnetic plasmon skyrmions. Nat. Commun. 13, 8 (2022).

  30. Yang, J. et al. Symmetry-protected spoof localized surface plasmonic skyrmion. Laser Photon. Rev. 16, 2200007 (2022).

    ADS  Google Scholar 

  31. Bai, C., Chen, J., Zhang, Y., Zhang, D. & Zhan, Q. Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons. Opt. Express 28, 10320–10328 (2020).

    ADS  Google Scholar 

  32. Meiler, T., Frank, B. & Giessen, H. Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons: comment. Opt. Express 28, 33614–33615 (2020).

    ADS  Google Scholar 

  33. Lei, X. et al. Photonic spin lattices: symmetry constraints for skyrmion and meron topologies. Phys. Rev. Lett. 127, 237403 (2021).

    ADS  Google Scholar 

  34. Shi, P., Du, L. & Yuan, X. Strong spin–orbit interaction of photonic skyrmions at the general optical interface. Nanophotonics 9, 4619–4628 (2020).

    Google Scholar 

  35. Shi, P., Du, L., Li, C., Zayats, A. V. & Yuan, X. Transverse spin dynamics in structured electromagnetic guided waves. Proc. Natl Acad. Sci. USA 118, e2018816118 (2021).

    MathSciNet  Google Scholar 

  36. Lei, X., Du, L., Yuan, X. & Zayats, A. V. Optical spin–orbit coupling in the presence of magnetization: photonic skyrmion interaction with magnetic domains. Nanophotonics 10, 3667–3675 (2021).

  37. Dai, Y. et al. Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature 588, 616–619 (2020).

    ADS  Google Scholar 

  38. Xiong, L. et al. Polaritonic vortices with a half-integer charge. Nano Lett. 21, 9256–9261 (2021).

    ADS  Google Scholar 

  39. Ghosh, A. et al. A topological lattice of plasmonic merons. Appl. Phys. Rev. 8, 041413 (2021).

    ADS  Google Scholar 

  40. Zhang, Q. et al. Optical topological lattices of Bloch type skyrmion and meron topologies. Photon. Res. 10, 947–957 (2022).

    Google Scholar 

  41. Ghosh, A., Yang, S., Dai, Y. & Petek, H. The spin texture topology of polygonal plasmon fields. ACS Photon. 10, 13–23 (2023).

  42. Zhang, Q., Xie, Z., Du, L., Shi, P. & Yuan, X. Bloch-type photonic skyrmions in optical chiral multilayers. Phys. Rev. Res. 3, 023109 (2021).

    Google Scholar 

  43. Król, M. et al. Observation of second-order meron polarization textures in optical microcavities. Optica 8, 255–261 (2021).

  44. Karnieli, A., Tsesses, S., Bartal, G. & Arie, A. Emulating spin transport with nonlinear optics, from high-order skyrmions to the topological hall effect. Nat. Commun. 12, 1092 (2021).

    ADS  Google Scholar 

  45. Karnieli, A., Li, Y. & Arie, A. The geometric phase in nonlinear frequency conversion. Front. Phys. 17, 12301 (2022).

  46. Karnieli, A. & Arie, A. All-optical stern-gerlach effect. Phys. Rev. Lett. 120, 053901 (2018).

    ADS  Google Scholar 

  47. Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nature. Physics 13, 162–169 (2017).

    Google Scholar 

  48. Chen, G. Skyrmion hall effect. Nat. Phys. 13, 112–113 (2017).

    Google Scholar 

  49. Guti´errez-Cuevas, R. & Pisanty, E. Optical polarization skyrmionic fields in free space. J. Opt. 23, 024004 (2021).

    Google Scholar 

  50. Liu, C., Zhang, S., Maier, S. A. & Ren, H. Disorder induced topological state transition in the optical skyrmion family. Phys. Rev. Lett. 129, 267401 (2022).

    ADS  Google Scholar 

  51. Gao, S. et al. Paraxial skyrmionic beams. Phys. Rev. A 102, 053513 (2020).

    ADS  Google Scholar 

  52. Beckley, A. M., Brown, T. G. & Alonso, M. A. Full Poincaré beams. Opt. Express 18, 10777–10785 (2010).

    ADS  Google Scholar 

  53. Donati, S. et al. Twist of generalized skyrmions and spin vortices in a polariton superfluid. Proc. Natl Acad. Sci. USA 113, 14926–14931 (2016).

    ADS  Google Scholar 

  54. Shen, Y. Topological bimeronic beams. Opt. Lett. 46, 3737–3740 (2021).

    ADS  Google Scholar 

  55. Shen, Y. & Rosales‐Guzmán, C. Nonseparable states of light: from quantum to classical. Laser Photon. Rev. 16, 2100533 (2022).

    ADS  Google Scholar 

  56. Shen, Y., Mart´ınez, E. C. & Rosales-Guzm´an, C. Generation of optical skyrmions with tunable topological textures. ACS Photon. 9, 296–303 (2022).

    Google Scholar 

  57. Lin, W., Ota, Y., Arakawa, Y. & Iwamoto, S. Microcavity-based generation of full Poincaré beams with arbitrary skyrmion numbers. Phys. Rev. Res. 3, 023055 (2021).

    Google Scholar 

  58. Dennis, M. R., O’Holleran, K. & Padgett, M. J. Singular optics: optical vortices and polarization singularities. Prog. Optics 53, 293–363 (2009).

  59. Nape, I. et al. Revealing the invariance of vectorial structured light in complex media. Nat. Photon. 16, 538–546 (2022).

    ADS  Google Scholar 

  60. Zdagkas, A., Papasimakis, N., Savinov, V. & Zheludev, N. I. Space-time nonseparable pulses: constructing isodiffracting donut pulses from plane waves and single cycle pulses. Phys. Rev. A 102, 063512 (2020).

    ADS  MathSciNet  Google Scholar 

  61. Hellwarth, R. & Nouchi, P. Focused one-cycle electromagnetic pulses. Phys. Rev. E 54, 889 (1996).

    ADS  Google Scholar 

  62. Shen, Y., Hou, Y., Papasimakis, N. & Zheludev, N. I. Supertoroidal light pulses as electromagnetic skyrmions propagating in free space. Nat. Commun. 12, 5891 (2021).

    ADS  Google Scholar 

  63. Zdagkas, A. et al. Observation of toroidal pulses of light. Nat. Photon. 16, 523–528 (2022).

    ADS  Google Scholar 

  64. Wan, C., Cao, Q., Chen, J., Chong, A. & Zhan, Q. Toroidal vortices of light. Nat. Photon. 16, 519–522 (2022).

    ADS  Google Scholar 

  65. Wan, C., Shen, Y., Chong, A. & Zhan, Q. Scalar optical hopfons. eLight 2, 22 (2022).

  66. Shen, Y., Papasimakis, N. & Zheludev, N. I. Non diffracting supertoroidal pulses: optical "Kármán vortex streets". Preprint at https://arxiv.org/abs/2204.05676 (2022).

  67. Guo, C., Xiao, M., Guo, Y., Yuan, L. & Fan, S. Meron spin textures in momentum space. Phys. Rev. Lett. 124, 106103 (2020).

    ADS  Google Scholar 

  68. Guo, C., Xiao, M., Orenstein, M. & Fan, S. Structured 3D linear space–time light bullets by nonlocal nanophotonics. Light Sci. Appl. 10, 160 (2021).

  69. Loder, F., Kampf, A. P., Kopp, T. & Braak, D. Momentum-space spin texture in a topological superconductor. Phys. Rev. B 96, 024508 (2017).

    ADS  Google Scholar 

  70. Lin, M., Du, L. & Yuan, X. Photonic pseudospin skyrmion in momentum space. IEEE Photon. J. 15, 6500106 (2022).

    Google Scholar 

  71. Cisowski, C., Ross, C. & Franke-Arnold, S. Building paraxial optical skyrmions using rational maps. Adv. Photon. Res. 4, 2200350 (2023).

  72. Shen, Y. et al. Topologically controlled multiskyrmions in photonic gradient-index lenses. Preprint at https://arxiv.org/abs/2304.06332 (2023).

  73. Kuratsuji, H. & Tsuchida, S. Evolution of the stokes parameters, polarization singularities, and optical skyrmion. Phys. Rev. A 103, 023514 (2021).

    ADS  MathSciNet  Google Scholar 

  74. Sugic, D. et al. Particle-like topologies in light. Nat. Commun. 12, 6785 (2021).

  75. Shen, Y. et al. Topological transformation and freespace transport of photonic hopfons. Adv. Photon. 5, 015001 (2023).

    ADS  Google Scholar 

  76. Ehrmanntraut, D. et al. Optical second-order skyrmionic hopfion. Optica 10, 725–731 (2023).

    ADS  Google Scholar 

  77. Tang, J. et al. Magnetic skyrmion bundles and their current-driven dynamics. Nat. Nanotechnol. 16, 1086–1091 (2021).

  78. Tai, J.-S. B. & Smalyukh, I. I. Three-dimensional crystals of adaptive knots. Science 365, 1449–1453 (2019).

    ADS  Google Scholar 

  79. Ackerman, P. J. & Smalyukh, I. I. Diversity of knot solitons in liquid crystals manifested by linking of preimages in torons and hopfons. Phys. Rev. 7, 011006 (2017).

    Google Scholar 

  80. Yang, H., Liang, J. & Cui, Q. First-principles calculations for Dzyaloshinskii–Moriya interaction. Nat. Rev. Phys. 5, 43–61 (2023).

    Google Scholar 

  81. Železný J., Wadley, P., Olejník, K., Hoffmann. A. & Ohno, H. Spin transport and spin torque in antiferromagnetic devices. Nat. Phys. 14, 220–228 (2018).

  82. Yang, S.-H., Naaman, R., Paltiel, Y. & Parkin, S. S. Chiral spintronics. Nat. Rev. Phys. 3, 328–343 (2021).

    Google Scholar 

  83. Fujita, H. & Sato, M. Ultrafast generation of skyrmionic defects with vortex beams: printing laser profles on magnets. Phys. Rev. B 95, 054421 (2017).

    ADS  Google Scholar 

  84. Hirosawa, T., Klinovaja, J., Loss, D. & Díaz, S. A. Laser-controlled real-and reciprocal-space topology in multiferroic insulators. Phys. Rev. Lett. 128, 037201 (2022).

    ADS  Google Scholar 

  85. Zhao, H. J., Chen, P., Prosandeev, S., Artyukhin, S. & Bellaiche, L. Dzyaloshinskii–Moriya-like interaction in ferroelectrics and antiferroelectrics. Nat. Mater. 20, 341–345 (2021).

    ADS  Google Scholar 

  86. Shi, P., Du, L., Li, M. & Yuan, X. Symmetry-protected photonic chiral spin textures by spin–orbit coupling. Laser Photon. Rev. 15, 2000554 (2021).

    ADS  Google Scholar 

  87. Wu, H.-J. et al. Conformal frequency conversion for arbitrary vectorial structured light. Optica 9, 187–196 (2022).

    ADS  Google Scholar 

  88. Wätzel, J. & Berakdar, J. Topological light fields for highly non-linear charge quantum dynamics and high harmonic generation. Opt. Express 28, 19469–19481 (2020).

    ADS  Google Scholar 

  89. Jiang, Y. et al. Twisted magnon as a magnetic tweezer. Phys. Rev. Lett. 124, 217204 (2020).

    ADS  Google Scholar 

  90. Wang, X.-G. et al. The optical tweezer of skyrmions. npj Comput. Mater. 6, 140 (2020).

  91. Poy, G. et al. Interaction and co-assembly of optical and topological solitons. Nat. Photon. 16, 454–461 (2022).

    ADS  Google Scholar 

  92. Tengdin, P. et al. Imaging the ultrafast coherent control of a skyrmion crystal. Phys. Rev. 12, 041030 (2022).

    Google Scholar 

  93. Li, X. et al. Highly sensitive and topologically robust multimode sensing on spoof plasmonic skyrmions. Adv. Opt. Mater. 10, 2200331 (2022).

  94. Yuan, G. H. & Zheludev, N. I. Detecting nanometric displacements with optical ruler metrology. Science 364, 771–775 (2019).

    ADS  Google Scholar 

  95. Lin, M., Zhang, W., Liu, C., Du, L. & Yuan, X. Photonic spin skyrmion with dynamic position control. ACS Photon. 8, 2567–2572 (2021).

    Google Scholar 

  96. Yang, A. et al. Spin-manipulated photonic skyrmionpair for pico-metric displacement sensing. Adv. Sci. 10, 2205249 (2023).

    Google Scholar 

  97. Shen, Y. et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 8, 90 (2019).

  98. Wan, Z., Wang, H., Liu, Q., Fu, X. & Shen, Y. Ultra-degree-of-freedom structured light for ultracapacity information carriers. ACS Photon. 10, 2149–2164 (2023).

  99. Ornelas, P., Nape, I., Koch, R. D. M. & Forbes, A. Nonlocal skyrmions as topologically resilient quantum entangled states of light. Preprint at https://arxiv.org/abs/2210.04690 (2022).

  100. Galiffi, E. et al. Photonics of time-varying media. Adv. Photon. 4, 014002 (2022).

  101. Ge, H. et al. Observation of acoustic skyrmions. Phys. Rev. Lett. 127, 144502 (2021).

    Google Scholar 

  102. Muelas-Hurtado, R. D. et al. Observation of polarization singularities and topological textures in sound waves. Phys. Rev. Lett. 129, 204301 (2022).

    ADS  Google Scholar 

  103. Hu, P. et al. Observation of localized acoustic skyrmions. Appl. Phys. Lett. 122, 022201 (2023).

    ADS  Google Scholar 

  104. Cao, L., Wan, S., Zeng, Y., Zhu, Y. & Assouar, B. Observation of phononic skyrmions based on hybrid spin of elastic waves. Sci. Adv. 9, eadf3652 (2023).

    Google Scholar 

  105. Parmee, C. D., Dennis, M. R. & Ruostekoski, J. Optical excitations of skyrmions, knotted solitons, and defects in atoms. Commun. Phys. 5, 54 (2022).

Download references

Acknowledgements

We thank C. Guo for useful discussions and P. Ornelas for assisting with graphics. Y. S. acknowledges the support from Nanyang Technological University Start Up Grant. This work was funded by Guangdong Major Project of Basic Research number 2020B0301030009, National Natural Science Foundation of China (grant numbers 12047540, U1701661, 61935013, 62075139, 92250304 and 12174266), Science and Technology Innovation Commission of Shenzhen (grant RCJC20200714114435063), and European Research Council iCOMM project (789340).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yijie Shen, Xiaocong Yuan or Anatoly V. Zayats.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Aviv Karnieli, Jakub Zelezny and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1.

Supplementary Video 1

Visualization of a topologically protected transformation of a Bloch-type skyrmion using z-component colour convention.

Supplementary Video 2

Visualization of a topologically protected transformation of a Bloch-type skyrmion using hue colour convention.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Zhang, Q., Shi, P. et al. Optical skyrmions and other topological quasiparticles of light. Nat. Photon. 18, 15–25 (2024). https://doi.org/10.1038/s41566-023-01325-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01325-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing