Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-discriminating engineered masking of immuno-evasive ligands on tumour-derived extracellular vesicles enhances tumour vaccination outcomes

Abstract

The success of personalized cancer immunotherapy depends on the initial tumour antigenic presentation to dendritic cells and macrophages. Tumour-derived extracellular vesicles (TEVs) contain abundant tumour antigenic molecules. The presence of anti-phagocytotic signals such as cluster of differentiation 47 (CD47) on the surface of the TEVs, however, leads to evasion of the same dendritic cells and macrophages. Here we show that iron oxide hydroxide nanocomposites can successfully mask TEV surfaces and unblock phagocytosis without affecting extracellular vesicles’ elicited immune goals. After internalization, the mask disintegrates in the lysosome, releasing the tumour antigenic cargo. This triggers antigen presentation and promotes dendritic cell activation and maturation and macrophage reprogramming in animal models, leading to a drastic reduction of tumour volume and metastasis, and in human malignant pleural effusion clinical samples. This straightforward masking strategy eliminates the ubiquitous anti-phagocytosis block found in clinical samples and can be applied universally across all patient-specific TEVs as tumour antigenic agents for enhanced immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The presence of anti-phagocytosis ligands on TEVs and nano-mask technology.
Fig. 2: Successful mTEV phagocytosis by DC-activated tumour antigen processing and DC activation and maturation.
Fig. 3: Macrophages phagocytosed mTEVs and were reprogrammed to M1 and indirectly contributed to DC maturation.
Fig. 4: Masking TEVs improved their in vivo tumour antigenic vaccination processing, which culminated in a reduced tumour volume and lung metastasis.
Fig. 5: Masking TEV sourced from human MPE-enhanced autologous dendritic cells and macrophage immuno-processing.

Data availability

The authors declare that all data supporting the results in this study are available within the paper and Supplementary Information. Source data for Figs. 15 and Supplementary Figs. 150 are available in separate source data files. Source data are provided with this paper.

Code availability

The custom code used for the statistical analyses is available from the corresponding author upon reasonable request.

References

  1. Hilf, N. et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565, 240–245 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Chen, L. et al. Bacterial cytoplasmic membranes synergistically enhance the antitumor activity of autologous cancer vaccines. Sci. Transl. Med. 13, eabc2816 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Möller, A. & Lobb, R. J. The evolving translational potential of small extracellular vesicles in cancer. Nat. Rev. Cancer 20, 697–709 (2020).

    Article  PubMed  Google Scholar 

  4. Xu, R. et al. Extracellular vesicles in cancer-implications for future improvements in cancer care. Nat. Rev. Clin. Oncol. 15, 617–638 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Buzas, E. I. The roles of extracellular vesicles in the immune system. Nat. Rev. Immunol. 23, 236–250 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 367, eaau6977 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, S. et al. Macrophage-tumor chimeric exosomes accumulate in lymph node and tumor to activate the immune response and the tumor microenvironment. Sci. Transl. Med. 13, eabb6981 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Xi, X. et al. Self-healing microcapsules synergetically modulate immunization microenvironments for potent cancer vaccination. Sci. Adv. 6, eaay7735 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rao, L. et al. Hybrid cellular membrane nanovesicles amplify macrophage immune responses against cancer recurrence and metastasis. Nat. Commun. 11, 4909 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shimizu, A. et al. Exosomal CD47 plays an essential role in immune evasion in ovarian cancer. Mol. Cancer Res. 19, 1583–1595 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Sockolosky, J. T. et al. Durable antitumor responses to CD47 blockade require adaptive immune stimulation. Proc. Natl Acad. Sci. USA 113, E2646–E2654 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vonderheide, R. H. CD47 blockade as another immune checkpoint therapy for cancer. Nat. Med. 21, 1122–1123 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Wilschut, J., Duezguenes, N. & Papahadjopoulos, D. Calcium/magnesium specificity in membrane fusion: kinetics of aggregation and fusion of phosphatidylserine vesicles and the role of bilayer curvature. Biochemistry 20, 3126–3133 (1981).

    Article  CAS  PubMed  Google Scholar 

  14. Zhu, L. et al. In vitro selection of highly efficient G-quadruplex-based DNAzymes. Anal. Chem. 84, 8383–8390 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Kong, D. M., Xu, J. & Shen, H. X. Positive effects of ATP on G-Quadruplex-hemin DNAzyme-mediated reactions. Anal. Chem. 82, 6148–6153 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Bhuyan, S. K. et al. Directed evolution of a G-quadruplex peroxidase DNAzyme and application in proteomic DNAzyme-aptamer proximity labeling. J. Am. Chem. Soc. 145, 12726–12736 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Veglia, F. et al. Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. Nat. Commun. 8, 2122 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jhunjhunwala, S., Hammer, C. & Delamarre, L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat. Rev. Cancer 21, 298–312 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Feng, M. et al. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat. Rev. Cancer 19, 568–586 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, Y. C., Shi, W., Shi, J. J. & Lu, J. J. Progress of CD47 immune checkpoint blockade agents in anticancer therapy: a hematotoxic perspective. J. Cancer Res. Clin. Oncol. 148, 1–14 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Lu, Y. et al. Immunological conversion of solid tumours using a bispecific nanobioconjugate for cancer immunotherapy. Nat. Nanotech 17, 1332–1341 (2022).

    Article  CAS  Google Scholar 

  22. Hauser, A. K. et al. Targeted iron oxide nanoparticles for the enhancement of radiation therapy. Biomaterials 105, 127–135 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mulens-Arias, V., Rojas, J. M., Pérez-Yagüe, S., Morales, M. P. & Barber, D. F. Barber polyethylenimine-coated SPIONs trigger macrophage activation through TLR-4 signaling and ROS production and modulate podosome dynamics. Biomaterials 52, 494–506 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Batool, F. et al. Biologically synthesized iron nanoparticles (FeNPs) from Phoenix dactylifera have anti-bacterial activities. Sci. Rep. 11, 22132–22140 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang, S. et al. Synergistic anticancer therapy by ovalbumin encapsulation‐enabled tandem reactive oxygen species generation. Angew. Chem. Int. Ed. Engl. 59, 20008–20016 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Joffre, O. P., Segura, E., Savina, A. & Amigorena, S. Cross-presentation by dendritic cells. Nat. Rev. Immunol. 12, 557–569 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Mantegazza, A. R. et al. NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells. Blood 112, 4712–4722 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Savina, A. et al. NOX2 controls phagosomal pH to regulate antigen processing during cross presentation by dendritic cells. Cell 126, 205–218 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Kitai, Y. et al. DNA-containing exosomes derived from cancer cells treated with topotecan activate a STING-dependent pathway and reinforce antitumor immunity. J. Immunol. 198, 1649–1659 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, H. et al. Cell-free tumor microparticle vaccines stimulate dendritic cells via cGAS/STING signaling tumor cell-derived microparticles as vaccine. Cancer Immunol. Res. 3, 196–205 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Voets, E. et al. Functional characterization of the selective pan-allele anti-SIRPα antibody ADU-1805 that blocks the SIRPα-CD47 innate immune checkpoint. J. Immunother. Cancer 7, 340–354 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sikic, B. I. et al. First-in-human, first-in-class phase I trial of the anti-CD47 antibody hu5F9-G4 in patients with advanced cancers. J. Clin. Oncol. 37, 946–953 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. DeNardo, D. G. & Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 19, 369–382 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vitale, I., Shema, E., Loi, S. & Galluzzi, L. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat. Med. 27, 212–224 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Vitale, I., Manic, G., Coussens, L. M., Kroemer, G. & Galluzzi, L. Macrophages and metabolism in the tumor microenvironment. Cell. Metab. 30, 36–50 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Gu, Z. et al. Mechanism of iron oxide-induced macrophage activation:tThe impact of composition and the underlying signaling pathway. J. Am. Chem. Soc. 141, 6122–6126 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, Y. et al. ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res. 23, 898–914 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gao, Y. et al. Methotrexate-loaded tumour-cell-derived microvesicles can relieve biliary obstruction in patients with extrahepatic cholangiocarcinoma. Nat. Biomed. Eng. 4, 743–753 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Bangert, C. et al. Persistence of mature dendritic cells, TH2A, and Tc2 cells characterize clinically resolved atopic dermatitis under IL-4Rα blockade. Sci. Immunol. 6, eabe2749 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Woller, N. et al. Virus-induced tumor inflammation facilitates effective DC cancer immunotherapy in a Treg-dependent manner in mice. J. Clin. Invest. 121, 2570–2582 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, Y. et al. Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to enhance anti-PD-L1 therapy for malignant pleural effusion. Nat. Nanotechnol. 17, 206–216 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Bard, M. P. et al. Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am. J. Respir. Cell Mol. Biol. 31, 114–121 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Chen, G. et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560, 382–386 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xian, Y. et al. Controllable assembly of enzymes for multiplexed lab-on-a-Chip bioassays with a tunable detection range. Angew. Chem. Int. Ed. 130, 7625–7629 (2018).

    Article  Google Scholar 

  45. Tian, F., Chao, L., Deng, J. & Sun, J. Microfluidic separation, detection, and engineering of extracellular vesicles for cancer diagnostics and drug delivery. Acc. Mater. Res. 3, 498–510 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Leading-edge Technology Programme of Jiangsu Natural Science Foundation (BK20212012), Natural Science Foundation (22207056 and 62288102) and the Natural Science Foundation of Jiangsu Province (BK20210580). This work was also supported by the CAS Key Laboratory of Nano-Bio Interface (21NBI01) and Key Laboratory of Nanodevices and Applications (22ZS06). We thank H. Zhou (The First Affiliated Hospital of Soochow University) for the assistance of clinical MPE collection. We thank K. P. Wang and J. X. Du for their help in animal experiments.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was carried out by X.G.D. and D.T.L. Analysis was carried out by X.G.D. and D.T.L. Methodology was planned by J.J.Z., S.S.W., X.W., Z.Y.W., M.W., Y.C. and K.F.P. Investigation was performed by J.J.Z., S.S.W., L.X.W., H.J.Z., F.P., Y.C., J.C. and R.J.P. Visualization was performed by J.J.Z., X.W., Z.Y.W. and M.W. Funding acquisition was carried out by X.G.D. and L.H.W. Project administration was performed by X.G.D. and L.H.W. Supervision was carried out by X.G.D. and L.H.W. Writing of the original draft was performed by J.J.Z., X.G.D. and D.T.L. Writing, review and editing was carried out by J.J.Z., X.G.D. and D.T.L.

Corresponding authors

Correspondence to Xianguang Ding, David Tai Leong or Lianhui Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Hui Qian, Tadashi Yokosuka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–50, Methods and Tables 1 and 2.

Reporting Summary

Supplementary Data 1

Source data for supplementary figures.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data

Source Data Fig. 2

Unprocessed gels.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, X., Zhang, J., Wan, S. et al. Non-discriminating engineered masking of immuno-evasive ligands on tumour-derived extracellular vesicles enhances tumour vaccination outcomes. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01783-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01783-2

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research