Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metabolic crosstalk regulates Porphyromonas gingivalis colonization and virulence during oral polymicrobial infection

Abstract

Many human infections are polymicrobial in origin, and interactions among community inhabitants shape colonization patterns and pathogenic potential1. Periodontitis, which is the sixth most prevalent infectious disease worldwide2, ensues from the action of dysbiotic polymicrobial communities3. The keystone pathogen Porphyromonas gingivalis and the accessory pathogen Streptococcus gordonii interact to form communities in vitro and exhibit increased fitness in vivo3,4. The mechanistic basis of this polymicrobial synergy, however, has not been fully elucidated. Here we show that streptococcal 4-aminobenzoate/para-amino benzoic acid (pABA) is required for maximal accumulation of P. gingivalis in dual-species communities. Metabolomic and proteomic data showed that exogenous pABA is used for folate biosynthesis, and leads to decreased stress and elevated expression of fimbrial adhesins. Moreover, pABA increased the colonization and survival of P. gingivalis in a murine oral infection model. However, pABA also caused a reduction in virulence in vivo and suppressed extracellular polysaccharide production by P. gingivalis. Collectively, these data reveal a multidimensional aspect to P. gingivalis–S. gordonii interactions and establish pABA as a critical cue produced by a partner species that enhances the fitness of P. gingivalis while diminishing its virulence.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Exogenous pABA enhances P. gingivalis community formation with S. gordonii.
Fig. 2: pABA increases expression of P. gingivalis effectors of community development.
Fig. 3: Trans-omics of the effect of pABA on the tetrahydrofolate metabolic pathway in P. gingivalis.
Fig. 4: Effects of pABA on P. gingivalis in vivo and expression of extracellular polysaccharide.

Similar content being viewed by others

References

  1. Murray, J. L., Connell, J. L., Stacy, A., Turner, K. H. & Whiteley, M. Mechanisms of synergy in polymicrobial infections. J. Microbiol. 52, 188–199 (2014).

    Article  PubMed  Google Scholar 

  2. Kassebaum, N. J. et al. Global burden of severe periodontitis in 1990–2010: a systematic review and meta-regression. J. Dent. Res. 93, 1045–1053 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lamont, R. J. & Hajishengallis, G. Polymicrobial synergy and dysbiosis in inflammatory disease. Trends Mol. Med. 21, 172–183 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Daep, C. A., Novak, E. A., Lamont, R. J. & Demuth, D. R. Structural dissection and in vivo effectiveness of a peptide inhibitor of Porphyromonas gingivalis adherence to Streptococcus gordonii. Infect. Immun. 79, 67–74 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Wright, C. J. et al. Microbial interactions in building of communities. Mol. Oral Microbiol. 28, 83–101 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Chawla, A. et al. Community signalling between Streptococcus gordonii and Porphyromonas gingivalis is controlled by the transcriptional regulator CdhR. Mol. Microbiol. 78, 1510–1522 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kuboniwa, M. et al. Streptococcus gordonii utilizes several distinct gene functions to recruit Porphyromonas gingivalis into a mixed community. Mol. Microbiol. 60, 121–139 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Kubota, T. et al. Production of para-aminobenzoate by genetically engineered Corynebacterium glutamicum and non-biological formation of an N-glucosyl byproduct. Metab. Eng. 38, 322–330 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Maeda, K. et al. A Porphyromonas gingivalis tyrosine phosphatase is a multifunctional regulator of virulence attributes. Mol. Microbiol. 69, 1153–1164 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kuboniwa, M. et al. Proteomics of Porphyromonas gingivalis within a model oral microbial community. BMC Microbiol. 9, 98 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hendrickson, E. L. et al. Proteomics of Streptococcus gordonii within a model developing oral microbial community. BMC Microbiol. 12, 211 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wegkamp, A., van Oorschot, W., de Vos, W. M. & Smid, E. J. Characterization of the role of para-aminobenzoic acid biosynthesis in folate production by Lactococcus lactis. Appl. Environ. Microbiol. 73, 2673–2681 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Orsomando, G. et al. Evidence for folate-salvage reactions in plants. Plant J. 46, 426–435 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Orsomando, G. et al. Plant gamma-glutamyl hydrolases and folate polyglutamates: characterization, compartmentation, and co-occurrence in vacuoles. J. Biol. Chem. 280, 28877–28884 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Pathirana, R. D., O’Brien-Simpson, N. M., Brammar, G. C., Slakeski, N. & Reynolds, E. C. Kgp and RgpB, but not RgpA, are important for Porphyromonas gingivalis virulence in the murine periodontitis model. Infect. Immun. 75, 1436–1442 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wright, C. J. et al. Characterization of a bacterial tyrosine kinase in Porphyromonas gingivalis involved in polymicrobial synergy. MicrobiologyOpen 3, 383–394 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Whitmore, S. E. & Lamont, R. J. The pathogenic persona of community-associated oral streptococci. Mol. Microbiol 81, 305–314 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Valm, A. M. et al. Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc. Natl Acad. Sci. USA 108, 4152–4157 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lamont, R. J. et al. Role of the Streptococcus gordonii SspB protein in the development of Porphyromonas gingivalis biofilms on streptococcal substrates. Microbiology 148, 1627–1636 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Li, Y. et al. Phylogenetic and functional gene structure shifts of the oral microbiomes in periodontitis patients. ISME J. 8, 1879–1891 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hashino, E. et al. Erythritol alters microstructure and metabolomic profiles of biofilm composed of Streptococcus gordonii and Porphyromonas gingivalis. Mol. Oral Microbiol. 28, 435–451 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Kuboniwa, M. et al. Quantitative detection of periodontal pathogens using real-time polymerase chain reaction with TaqMan probes. Oral Microbiol. Immunol. 19, 168–176 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Houser, J. R. et al. Controlled measurement and comparative analysis of cellular components in E. coli reveals broad regulatory changes in response to glucose starvation. PLoS Comput. Biol. 11, e1004400 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kwon, T., Choi, H., Vogel, C., Nesvizhskii, A. I. & Marcotte, E. M. MSblender: A probabilistic approach for integrating peptide identifications from multiple database search engines. J. Proteome Res. 10, 2949–2958 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ohashi, Y. et al. Depiction of metabolome changes in histidine-starved Escherichia coli by CE-TOFMS. Mol. BioSys. 4, 135–147 (2008).

    Article  CAS  Google Scholar 

  26. Yamamoto, H. et al. Statistical hypothesis testing of factor loading in principal component analysis and its application to metabolite set enrichment analysis. BMC Bioinformatics 15, 51 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hirano, T., Beck, D. A., Demuth, D. R., Hackett, M. & Lamont, R. J. Deep sequencing of Porphyromonas gingivalis and comparative transcriptome analysis of a LuxS mutant. Front. Cell. Infect. Microbiol. 2, 79 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang, Q. et al. FOXO responses to Porphyromonas gingivalis in epithelial cells. Cell. Microbiol. 17, 1605–1617 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Park, Y. et al. Short fimbriae of Porphyromonas gingivalis and their role in coadhesion with Streptococcus gordonii. Infect. Immun. 73, 3983–3989 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yilmaz, O., Watanabe, K. & Lamont, R. J. Involvement of integrins in fimbriae-mediated binding and invasion by Porphyromonas gingivalis. Cell. Microbiol. 4, 305–314 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Capestany, C. A., Tribble, G. D., Maeda, K., Demuth, D. R. & Lamont, R. J. Role of the Clp system in stress tolerance, biofilm formation, and intracellular invasion in Porphyromonas gingivalis. J. Bacteriol. 190, 1436–1446 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Moffatt-Jauregui, C. E. et al. Establishment and characterization of a telomerase immortalized human gingival epithelial cell line. J. Periodontal Res. 48, 713–721 (2013).

    CAS  PubMed  Google Scholar 

  33. Sztukowska, M. et al. The C-terminal domains of the gingipain K polyprotein are necessary for assembly of the active enzyme and expression of associated activities. Mol. Microbiol. 54, 1393–1408 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Vizcaino, J. A. et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, D447–456 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by AMED-CREST, AMED, MEXT/JSPS KAKENHI grant numbers 15H05057, and 15K20642 (M.K.), NIH grants DE012505 and DE011111 (R.J.L.), DE023193 (M.W.) DP1 OD009572 (E.M.M.) and DE014372 (M.H.), Army Research Office Grant W911NF-12–1–0390 (E.M.M.), and the Welch Foundation grant F1515 (E.M.M.).

Author information

Authors and Affiliations

Authors

Contributions

M.K., S.A.A. and A.S. performed metabolomics and community experiments. J.R.H., E.L.H., T.W. and D.A.C.B. performed proteomics experiments. Q.W. and D.P.M. performed PCR, blots, ELISAs, protease and attachment assays. Q.W., J.A.H. and H.W. performed animal experiments. M.K., M.W., A.A., H.W., E.M.M., M.H. and R.J.L. designed the study and interpreted data. M.K., M.W., A.A., M.H. and R.J.L. wrote the manuscript.

Corresponding author

Correspondence to Richard J. Lamont.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–10, Supplementary Tables 1 and 2, Supplementary Table 6

Supplementary Table 1

MS/MS identification of P. gingivalis proteins differentially regulated by pABA

Supplementary Table 3

Metabolomic profiles in P. gingivalis treated with pABA

Supplementary Table 4

Metabolites decreased by pABA-mediated suppression of PLP-dependent enzymes in P. gingivalis

Supplementary Table 5

Metabolite classification pathways

Supplementary Table 7

Raw protein spectral counts

Supplementary Table 8

Raw peptide spectral counts

Supplementary Table 9

Spectral counts of P. gingivalis treated with or without pABA normalized such that their averages are identical for identical biological replicates

Supplementary Table 10

Outlier analysis of proteomic data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuboniwa, M., Houser, J.R., Hendrickson, E.L. et al. Metabolic crosstalk regulates Porphyromonas gingivalis colonization and virulence during oral polymicrobial infection. Nat Microbiol 2, 1493–1499 (2017). https://doi.org/10.1038/s41564-017-0021-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-017-0021-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing