Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Twist-angle-tunable spin texture in WSe2/graphene van der Waals heterostructures

Abstract

Twist engineering has emerged as a powerful approach for modulating electronic properties in van der Waals heterostructures. While theoretical works have predicted the modulation of spin texture in graphene-based heterostructures by twist angle, experimental studies are lacking. Here, by performing spin precession experiments, we demonstrate tunability of the spin texture and associated spin–charge interconversion with twist angle in WSe2/graphene heterostructures. For specific twist angles, we detect a spin component radial with the electron’s momentum, in addition to the standard orthogonal component. Our results show that the helicity of the spin texture can be reversed by twist angle, highlighting the critical role of the twist angle in the spin–orbit properties of WSe2/graphene heterostructures and paving the way for the development of spin-twistronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device overview and moiré pattern determination by SHG.
Fig. 2: In-plane non-local spin precession measurements of the REE and UREE at different twist angles.
Fig. 3: Out-of-plane non-local spin precession and gate dependence of SCI.
Fig. 4: Change of helicity in the spin texture with different twist angle.
Fig. 5: Rashba angle tuned by twist angle.

Similar content being viewed by others

Data availability

Source data in the paper are available via figshare at https://doi.org/10.6084/m9.figshare.24616287. Any further data and codes used in this study are available from corresponding authors upon reasonable request.

Code availability

Source data in the paper are available via figshare at https://doi.org/10.6084/m9.figshare.24616287. Any further data and codes used in this study are available from corresponding authors upon reasonable request.

References

  1. Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).

    Article  CAS  Google Scholar 

  2. Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article  CAS  Google Scholar 

  4. Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71–76 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Lin, J. X. et al. Spin–orbit-driven ferromagnetism at half moiré filling in magic-angle twisted bilayer graphene. Science 375, 437–441 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Tschirhart, C. L. et al. Intrinsic spin Hall torque in a moiré Chern magnet. Nat. Phys. 19, 807–813 (2023).

    Article  CAS  Google Scholar 

  8. Tao, Z. et al. Giant spin Hall effect in AB-stacked MoTe2/WSe2 bilayers. Nat. Nano. 19, 28–24 (2024).

    Article  CAS  Google Scholar 

  9. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Sun, L. et al. Determining spin–orbit coupling in graphene by quasiparticle interference imaging. Nat. Commun. 14, 3771 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ingla-Aynés, J., Meijerink, R. J. & Wees, B. J. V. Eighty-eight percent directional guiding of spin currents with 90 μm relaxation length in bilayer graphene using carrier drift. Nano Lett. 16, 4825–4830 (2016).

    Article  PubMed  Google Scholar 

  12. Drögeler, M. et al. Spin lifetimes exceeding 12 ns in graphene nonlocal spin valve devices. Nano Lett. 16, 3533–3539 (2016).

    Article  PubMed  Google Scholar 

  13. Yang, H. et al. Gate-tunable spin Hall effect in an all-light-element heterostructure: graphene with copper oxide. Nano Lett. 23, 4406–4414 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Ontoso, N. et al. Unconventional charge-to-spin conversion in graphene/MoTe2 van der Waals heterostructures. Phys. Rev. Appl. 19, 014053 (2023).

    Article  CAS  Google Scholar 

  15. Ghiasi, T. S., Kaverzin, A. A., Blah, P. J. & Van Wees, B. J. Charge-to-spin conversion by the Rashba–Edelstein effect in two-dimensional van der Waals heterostructures up to room temperature. Nano Lett. 19, 5959–5966 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gmitra, M., Kochan, D. & Fabian, J. Spin–orbit coupling in hydrogenated graphene. Phys. Rev. Lett. 110, 246602 (2013).

    Article  PubMed  Google Scholar 

  17. Weeks, C., Hu, J., Alicea, J., Franz, M. & Wu, R. Engineering a robust quantum spin Hall state in graphene via adatom deposition. Phys. Rev. X 1, 021001 (2011).

    Google Scholar 

  18. Gmitra, M., Kochan, D., Högl, P. & Fabian, J. Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides. Phys. Rev. B 93, 155104 (2016).

    Article  Google Scholar 

  19. Calleja, F. et al. Spatial variation of a giant spin–orbit effect induces electron confinement in graphene on Pb islands. Nat. Phys. 11, 43–47 (2015).

    Article  CAS  Google Scholar 

  20. Safeer, C. K. et al. Reliability of spin-to-charge conversion measurements in graphene-based lateral spin valves. 2D Mater. 9, 015024 (2022).

    Article  CAS  Google Scholar 

  21. Ingla-Aynés, J. et al. Omnidirectional spin-to-charge conversion in graphene/NbSe2 van der Waals heterostructures. 2D Mater. 9, 045001 (2022).

    Article  Google Scholar 

  22. Ingla-Aynés, J., Herling, F., Fabian, J., Hueso, L. E. & Casanova, F. Electrical control of valley-Zeeman spin–orbit-coupling–induced spin precession at room temperature. Phys. Rev. Lett. 127, 047202 (2021).

    Article  PubMed  Google Scholar 

  23. Herling, F. et al. Gate tunability of highly efficient spin-to-charge conversion by spin Hall effect in graphene proximitized with WSe2. APL Mater. 8, 071103 (2020).

    Article  CAS  Google Scholar 

  24. Safeer, C. K. et al. Spin Hall effect in bilayer graphene combined with an insulator up to room temperature. Nano Lett. 20, 4573–4579 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Safeer, C. K. et al. Room-temperature spin Hall effect in graphene/MoS2 van der waals heterostructures. Nano Lett. 19, 1074–1082 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Safeer, C. K. et al. Large multidirectional spin-to-charge conversion in low-symmetry semimetal MoTe2 at room temperature. Nano Lett. 19, 8758–8766 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Benítez, L. A. et al. Tunable room-temperature spin galvanic and spin Hall effects in van der Waals heterostructures. Nat. Mater. 19, 170–175 (2020).

    Article  PubMed  Google Scholar 

  28. Pham, V. T. et al. Spin–orbit magnetic state readout in scaled ferromagnetic/heavy metal nanostructures. Nat. Electron. 3, 309–315 (2020).

    Article  CAS  Google Scholar 

  29. Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 565, 35–42 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Yang, H. et al. Two-dimensional materials prospects for non-volatile spintronic memories. Nature 606, 663–673 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Lin, C. C. et al. Spin transfer torque in a graphene lateral spin valve assisted by an external magnetic field. Nano Lett. 13, 5177–5181 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Cummings, A. W., Garcia, J. H., Fabian, J. & Roche, S. Giant spin lifetime anisotropy in graphene induced by proximity effects. Phys. Rev. Lett. 119, 206601 (2017).

    Article  PubMed  Google Scholar 

  33. Offidani, M., Milletarì, M., Raimondi, R. & Ferreira, A. Optimal charge-to-spin conversion in graphene on transition-metal dichalcogenides. Phys. Rev. Lett. 119, 196801 (2017).

    Article  PubMed  Google Scholar 

  34. Garcia, J. H., Cummings, A. W. & Roche, S. Spin Hall effect and weak antilocalization in graphene/transition metal dichalcogenide heterostructures. Nano Lett. 17, 5078–5083 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Milletarì, M., Offidani, M., Ferreira, A. & Raimondi, R. Covariant conservation laws and the spin Hall effect in Dirac–Rashba systems. Phys. Rev. Lett. 119, 246801 (2017).

    Article  PubMed  Google Scholar 

  36. Garcia, J. H., Vila, M., Cummings, A. W. & Roche, S. Spin transport in graphene/transition metal dichalcogenide heterostructures. Chem. Soc. Rev. 47, 3359–3379 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Lee, S. et al. Charge-to-spin conversion in twisted graphene/WSe2 heterostructures. Phys. Rev. B 106, 165420 (2022).

    Article  CAS  Google Scholar 

  38. Li, Y. & Koshino, M. Twist-angle dependence of the proximity spin–orbit coupling in graphene on transition-metal dichalcogenides. Phys. Rev. B 99, 075438 (2019).

    Article  CAS  Google Scholar 

  39. Naimer, T., Zollner, K., Gmitra, M. & Fabian, J. Twist-angle dependent proximity induced spin–orbit coupling in graphene/transition metal dichalcogenide heterostructures. Phys. Rev. B 104, 195156 (2021).

    Article  CAS  Google Scholar 

  40. David, A., Rakyta, P., Kormányos, A. & Burkard, G. Induced spin–orbit coupling in twisted graphene–transition metal dichalcogenide heterobilayers: twistronics meets spintronics. Phys. Rev. B 100, 085412 (2019).

    Article  CAS  Google Scholar 

  41. Veneri, A., Perkins, D. T. S., Péterfalvi, C. G. & Ferreira, A. Twist angle controlled collinear Edelstein effect in van der Waals heterostructures. Phys. Rev. B 106, L081406 (2022).

    Article  CAS  Google Scholar 

  42. Péterfalvi, C. G., David, A., Rakyta, P., Burkard, G. & Kormányos, A. Quantum interference tuning of spin–orbit coupling in twisted van der Waals trilayers. Phys. Rev. Res. 4, L022049 (2022).

    Article  Google Scholar 

  43. Bihlmayer, G., Noël, P., Vyalikh, D. V., Chulkov, E. V. & Manchon, A. Rashba-like physics in condensed matter. Nat. Rev. Phys. 4, 642–659 (2022).

    Article  Google Scholar 

  44. Calavalle, F. et al. Gate-tuneable and chirality-dependent charge-to-spin conversion in tellurium nanowires. Nat. Mater. 21, 526–532 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Camosi, L. et al. Resolving spin currents and spin densities generated by charge-spin interconversion in systems with reduced crystal symmetry. 2D Mater. 9, 035014 (2022).

    Article  CAS  Google Scholar 

  46. Li, Y. et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 13, 3329–3333 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Mennel, L., Paur, M. & Mueller, T. Second harmonic generation in strained transition metal dichalcogenide monolayers: MoS2, MoSe2, WS2, and WSe2. APL Photonics 4, 034404 (2019).

    Article  CAS  Google Scholar 

  48. You, Y., Ni, Z., Yu, T. & Shen, Z. Edge chirality determination of graphene by Raman spectroscopy. Appl. Phys. Lett. 93, 163112 (2008).

    Article  Google Scholar 

  49. Krauss, B. et al. Raman scattering at pure graphene zigzag edges. Nano Lett. 10, 4544–4548 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Zollner, K., João, S. M., Nikolić, B. K. & Fabian, J. Twist- and gate-tunable proximity spin–orbit coupling, spin relaxation anisotropy, and charge-to-spin conversion in heterostructures of graphene and transition metal dichalcogenides. Phys. Rev. B 108, 235166 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the ‘Valleytronics’ Intel Science Technology Center; from the Spanish MICIU/AEI/10.13039/501100011033 (‘Maria de Maeztu’ Units of Excellence Programme grant no. CEX2020-001038-M); from MICIU/AEI and ERDF/EU (project nos. PID2021-122511OB-I00 and PID2021-128004NB-C21); from Diputación de Gipuzkoa (project no. 2021-CIEN-000037-01); from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 955671. Z.C. acknowledges support from the ‘Juan de la Cierva’ Programme by the Spanish MICIU/AEI and European Union NextGenerationEU/PRTR (grant no. FJC2021-047257-I). H.Y. acknowledges support from NSFC 92164206 and 52261145694. B.M.-G. and M.G. acknowledge support from the ‘Ramón y Cajal’ Programme by the Spanish MICIU/AEI and European Union NextGenerationEU/PRTR (grant nos. RYC2021-034836-I and RYC2021-031705-I, respectively). CzechNanoLab project LM2023051 funded by MEYS CR is gratefully acknowledged for the financial support of the measurements at LNSM Research Infrastructure.

Author information

Authors and Affiliations

Authors

Contributions

H.Y. and F.C. conceived the study. H.Y. fabricated the samples, with help from E.D. and Z.C. H.Y. performed the electrical measurements and the data were analysed by H.Y., M.G., L.E.H. and F.C. B.M.-G. and H.Y. performed the Raman spectroscopy measurements. E.S., J.K. and P.N. performed the optical SHG experiments. All authors contributed to the discussion of the results and their interpretation. H.Y. and F.C. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Haozhe Yang or Fèlix Casanova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Ahmet Avsar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–13.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Martín-García, B., Kimák, J. et al. Twist-angle-tunable spin texture in WSe2/graphene van der Waals heterostructures. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01985-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01985-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing