Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Common cause for severe droughts in South America and marine heatwaves in the South Atlantic

Abstract

In 2013/14 eastern South America experienced one of its worst droughts. At the same time an unprecedented marine heatwave developed in the western South Atlantic. The drought was linked to suppression of the South Atlantic convergence zone and its associated rainfall, which led to water shortages in Brazil and impacted food supplies globally. Here we show from observations that such droughts and adjacent marine heatwaves have a common remote cause. Atmospheric blocking triggered by tropical convection in the Indian and Pacific oceans can cause persistent anticyclonic circulation that not only leads to severe drought but also generates marine heatwaves in the adjacent ocean. We show that increased shortwave radiation due to reduced cloud cover and reduced ocean heat loss from weaker winds are the main contributors to the establishment of marine heatwaves in the region. The proposed mechanism, which involves droughts, extreme air temperature over land and atmospheric blocking explains approximately 60% of the marine heatwave events in the western South Atlantic. We also identified an increase in frequency, duration, intensity and extension of marine heatwave events over the satellite period 1982–2016. Moreover, surface primary production was reduced during these events with implications for regional fisheries.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The 2013/14 western South Atlantic MHW event.
Fig. 2: Western South Atlantic MHW during austral summer for the period 1982–2016.
Fig. 3: Precursor of atmospheric blocking and MHWs.
Fig. 4: Mechanism of onset and decay of the 2013/2014 MHW event.
Fig. 5: Schematic representation of the forcing mechanisms of the western South Atlantic MHWs.

Similar content being viewed by others

Data availability

The SST and atmospheric data used in this work are freely available from www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html and http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/, respectively. The precipitation and OLR data are provided freely at www.esrl.noaa.gov/psd/data/gridded/. The ocean colour data are also freely available from https://oceancolor.gsfc.nasa.gov. OSCAR currents are available from https://podaac.jpl.nasa.gov/dataset/OSCAR_ L4_OC_third-deg. Surface turbulent heat fluxes from OAFlux were obtained from http://oaflux.whoi.edu/data.html. The SARAH-2 SWR data are available from https://wui.cmsaf.eu/safira/action/viewDoiDetails?acronym=SARAH_V002_01. Ocean data from ORAS4 are available from www.ecmwf.int/en/research/climate-reanalysis/ocean-reanalysis.

References

  1. Marengo, J. A. et al. Recent developments on the South American monsoon system. Int. J. Climatol. 32, 1–21 (2012).

    Article  Google Scholar 

  2. Carvalho, L. M., Jones, C. & Liebmann, B. The South Atlantic convergence zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Clim. 17, 88–108 (2004).

    Article  Google Scholar 

  3. Getirana, A. C. V. Extreme water deficit in Brazil detected from space. J. Hydrometeorol. 17, 591–599 (2015).

    Article  Google Scholar 

  4. BBC. Brazil faces surge in number of dengue fever cases BBC News www.bbc.com/news/world-latin-america-32589268 (5 May 2015).

  5. Coelho, C. A. S., Cardoso, D. H. F. & Firpo, M. A. F. Precipitation diagnostics of an exceptionally dry event in São Paulo, Brazil. Theor. Appl. Climatol. 125, 769–784 (2016).

    Article  Google Scholar 

  6. Otto, F. E. L. et al. Factors other than climate change, main drivers of 2014/15 water shortage in southeast Brazil. Bull. Am. Meteorol. Soc. 96, S35–S40 (2015).

    Article  Google Scholar 

  7. Watson, K. Drought hits Brazil’s coffee industry BBC News www.bbc.com/news/business-27623535 (30 May 2014).

  8. Coelho, C. A. S. et al. The 2014 southeast Brazil austral summer drought: regional scale mechanisms and teleconnections. Clim. Dyn. 46, 3737–3752 (2015).

    Article  Google Scholar 

  9. Seth, A., Fernandes, K. & Camargo, S. J. Two summers of São Paulo drought: origins in the western tropical Pacific. Geophys. Res. Lett. 42, 10816–10823 (2015).

    Article  Google Scholar 

  10. Rodrigues, R. R. & Woollings, T. Impact of atmospheric blocking on South America in austral summer. J. Clim. 30, 1821–1837 (2017).

    Article  Google Scholar 

  11. Sánchez-Lugo, A. South America [in “State of the Climate in 2014”]. Bull. Am. Meteorol. Soc. 96, S178–S184 (2015).

    Google Scholar 

  12. Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).

    Article  Google Scholar 

  13. Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

    Article  Google Scholar 

  14. Hobday, A. J. et al. Categorizing and naming marine heatwaves. Oceanography 31, 162–173 (2018).

    Article  Google Scholar 

  15. Sparnocchia, S., Schiano, M. E., Picco, P., Bozzano, R. & Cappelletti, A. The anomalous warming of summer 2003 in the surface layer of the Central Ligurian Sea (Western Mediterranean). Ann. Geophys. 24, 443–452 (2006).

    Article  Google Scholar 

  16. Pearce, A. F. & Feng, M. The rise and fall of the ‘marine heat wave’ off Western Australia during the summer of 2010/11. J. Mar. Syst. 112, 139–156 (2013).

    Article  Google Scholar 

  17. Chen, K., Gawarkiewicz, G. G., Lentz, S. J. & Bane, J. M. Diagnosing the warming of the Northeastern US Coastal Ocean in 2012: a linkage between the atmospheric jet stream variability and ocean response. J. Geophys. Res. Ocean 119, 218–227 (2014).

    Article  Google Scholar 

  18. Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047 (2016).

    Article  Google Scholar 

  19. Oliver, E. C. J. et al. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 8, 16101 (2017).

    Article  Google Scholar 

  20. Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    Article  Google Scholar 

  21. Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009).

    Article  Google Scholar 

  22. Cavole, L. M. et al. Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: winners, losers, and the future. Oceanography 29, 273–285 (2016).

    Article  Google Scholar 

  23. Myers, T. A., Mechoso, C. R., Cesana, G. V., DeFlorio, M. J. & Waliser, D. E. Cloud feedback key to marine heatwave off Baja California. Geophys. Res. Lett. 45, 4345–4352 (2018).

    Article  Google Scholar 

  24. Barreiro, M. et al. Modelling the role of Atlantic air–sea interaction in the impact of Madden–Julian Oscillation on South American climate. Int. J. Climatol. 39, 1104–1116 (2019).

    Article  Google Scholar 

  25. Cassou, C. Intraseasonal interaction between the Madden–Julian oscillation and the North Atlantic Oscillation. Nature 455, 523–527 (2008).

    Article  Google Scholar 

  26. Oliver, E. C. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).

    Article  Google Scholar 

  27. Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).

    Article  Google Scholar 

  28. Nieves, V., Willis, J. K. & Patzert, W. C. Recent hiatus caused by decadal shift in Indo-Pacific heating. Science 349, 532–535 (2015).

    Article  Google Scholar 

  29. Lopez, H., Dong, S., Lee, S.-K. & Campos, E. Remote influence of Interdecadal Pacific Oscillation on the South Atlantic meridional overturning circulation variability. Geophys. Res. Lett. 43, 8250–8258 (2016).

    Article  Google Scholar 

  30. Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007).

    Article  Google Scholar 

  31. Dee, D. P. et al. The ERA‐Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  32. Huffman, G. J. et al. Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeorol. 2, 36–50 (2001).

    Article  Google Scholar 

  33. Liebmann, B. & Smith, C. A. Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Am. Meteorol. Soc. 77, 1275–1277 (1996).

    Google Scholar 

  34. Kiladis, G. N. et al. A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Weather Rev. 142, 1697–1715 (2014).

    Article  Google Scholar 

  35. Hu, C., Lee, Z. & Franz, B. Chlorophyll a algorithms for oligotrophic oceans: a novel approach based on three-band reflectance difference. J. Geophys. Res. Oceans 117, C01011 (2012).

    Google Scholar 

  36. Bonjean, F. & Lagerloef, G. S. E. Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr. 32, 2938–2954 (2002).

    Article  Google Scholar 

  37. Yu, L. S. & Weller, R. A. Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Am. Meteorol. Soc. 88, 527–539 (2007).

    Article  Google Scholar 

  38. Pfeifroth, U. et al. Surface Radiation Data Set – Heliosat (SARAH) – Edition 2 (Satellite Application Facility on Climate Monitoring, 2017); https://doi.org/10.5676/EUM_SAF_CM/SARAH/V002

  39. Balmaseda, M. A., Mogensen, K. & Weaver, A. T. Evaluation of the ECMWF ocean reanalysis system ORAS4. Q. J. R. Meteorol. Soc. 139, 1132–1161 (2013).

    Article  Google Scholar 

  40. Berrisford, P., Hoskins, B. J. & Tyrlis, E. Blocking and Rossby wave breaking on the dynamical tropopause in the Southern Hemisphere. J. Atmos. Sci. 64, 2881–2898 (2007).

    Article  Google Scholar 

  41. Pelly, J. L. & Hoskins, B. J. A new perspective on blocking. J. Atmos. Sci. 60, 743–755 (2003).

    Article  Google Scholar 

  42. Bretherton, C. S., Smith, C. & Wallace, J. M. An intercomparison of methods for finding coupled patterns in climate data. J. Clim. 5, 541–560 (1992).

    Article  Google Scholar 

  43. Sardeshmukh, P. D. & Hoskins, B. J. The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci. 45, 1228–1251 (1988).

    Article  Google Scholar 

  44. Foltz, G. R., Grodsky, S. A., Carton, J. A. & McPhaden, M. J. Seasonal mixed layer heat budget of the tropical Atlantic Ocean. J. Geophys. Res. Oceans 108, 3146 (2003).

    Article  Google Scholar 

  45. Lee, T., Fukumori, I. & Tang, B. Temperature advection: internal versus external processes. J. Phys. Oceanogr. 34, 1936–1944 (2004).

    Article  Google Scholar 

  46. Trolliet, M. et al. Downwelling surface solar irradiance in the tropical Atlantic Ocean: a comparison of reanalyses and satellite-derived data sets to PIRATA measurements. Ocean Sci. 14, 1021–1056 (2018).

    Article  Google Scholar 

  47. Morel, A. & Antoine, D. Heating rate within the upper ocean in relation to its bio-optical state. J. Phys. Oceanogr. 24, 1652–1665 (1994).

    Article  Google Scholar 

  48. Sweeney, C. et al. Impacts of shortwave penetration depth on large-scale ocean circulation and heat transport. J. Phys. Oceanogr. 35, 1103–1119 (2005).

    Article  Google Scholar 

  49. Foltz, G. R., Schmid, C. & Lumpkin, R. An enhanced PIRATA data set for tropical Atlantic Ocean–atmosphere research. J. Clim. 31, 1499–1524 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

R.R.R. is supported by CNPq (no. 401873/2016-1) and CAPES (no. 88881.145866/2017-1). A.S. and A.S.T. (FT160100495) are supported by the Australian Research Council. This work is part of the research conducted by the Programmes INCT-MCII (CNPq no. 465501/2014-1 and CAPES/FAPS no. 16/2014) and Rede CLIMA (FINEP no. 01.13.0353-00). G.R.F. was supported by base funds to NOAA/AOML.

Author information

Authors and Affiliations

Authors

Contributions

The main idea was developed by R.R.R. in collaboration with A.S.T. and A.S. Most of the text was written by R.R.R., who also did the data preparations and most of the data analyses and made the figures. G.R.F. provided the temperature budget calculations. The schematic was prepared by A.S. All the authors contributed with ideas, discussed the results and implications and contributed to the text.

Corresponding author

Correspondence to Regina R. Rodrigues.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures and Tables.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, R.R., Taschetto, A.S., Sen Gupta, A. et al. Common cause for severe droughts in South America and marine heatwaves in the South Atlantic. Nat. Geosci. 12, 620–626 (2019). https://doi.org/10.1038/s41561-019-0393-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-019-0393-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing