Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Scientist engagement and the knowledge–action gap

Abstract

The combined gravity of biodiversity loss and climate change keeps increasing. As the approaching catastrophe has never looked so alarming, the amount of scientific knowledge about the bioclimatic crisis is still rising exponentially. Here we reflect on how researchers in ecology or climate science behave amid this crisis. In face of the disproportionality between how much scientists know and how little they engage, we discuss four barriers that may underlie the decoupling of scientific awareness from concrete action. We then reflect on the potency of rational thinking to trigger engagement on its own, and question whether more scientific knowledge can be the tipping point towards radical changes within society. Our observations challenge the tenet that a better understanding of what surrounds us is necessary to protect it efficiently. With the environmental cost of scientific research itself as an additional factor that must be considered, we suggest there is an urgent need for researchers to collectively reflect on their situation and decide how to redirect their actions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The knowledge hypothesis implies a correlation between scientific knowledge and the likelihood of pro-environmental behaviours.
Fig. 2: Four scientist-specific hurdles may impede engagement.
Fig. 3: Leads for transformative engagement as scientists and citizens.

Similar content being viewed by others

References

  1. 2023 on track to be the hottest year ever. What’s next? Copernicus https://climate.copernicus.eu/2023-track-be-hottest-year-ever-whats-next (24 October 2023).

  2. Friedlingstein, P. et al. Global carbon budget 2023. Earth Syst. Sci. Data 15, 5301–5369 (2023).

    Article  Google Scholar 

  3. Stoddard, I. et al. Three decades of climate mitigation: why haven’t we bent the global emissions curve? Annu. Rev. Environ. Resour. 46, 653–689 (2021).

    Article  Google Scholar 

  4. Minière, A., von Schuckmann, K., Sallée, J.-B. & Vogt, L. Robust acceleration of Earth system heating observed over the past six decades. Sci. Rep. 13, 22975 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Carbon Dioxide and Climate: A Scientific Assessment (National Academies Press, 1979).

  6. Rich, N. Losing Earth: the decade we almost stopped climate change. The New York Times (1 August 2018).

  7. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).

  8. Richardson, K. et al. Earth beyond six of nine planetary boundaries. Sci. Adv. 9, eadh2458 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article  PubMed  Google Scholar 

  10. Armstrong McKay, D. I. et al. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377, eabn7950 (2022).

    Article  PubMed  Google Scholar 

  11. Lamboll, R. D. et al. Assessing the size and uncertainty of remaining carbon budgets. Nat. Clim. Change 13, 1360–1367 (2023).

    Article  Google Scholar 

  12. Jones, N. When will global warming actually hit the landmark 1.5 °C limit?. Nature 618, 20 (2023).

    Article  PubMed  CAS  Google Scholar 

  13. Finn, C., Grattarola, F. & Pincheira-Donoso, D. More losers than winners: investigating Anthropocene defaunation through the diversity of population trends. Biol. Rev. Camb. Philos. Soc. 98, 1732–1748 (2023).

    Article  PubMed  Google Scholar 

  14. Cowie, R. H., Bouchet, P. & Fontaine, B. The Sixth Mass Extinction: fact, fiction or speculation? Biol. Rev. Camb. Philos. Soc. 97, 640–663 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).

    Article  PubMed  Google Scholar 

  16. Jaureguiberry, P. et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 8, eabm9982 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Carson, R. Silent Spring (Houghton Mifflin, 1962).

  18. Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the Anthropocene: death by a thousand cuts. Proc. Natl Acad. Sci. USA 118, e2023989118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rigal, S. et al. Farmland practices are driving bird population decline across Europe. Proc. Natl Acad. Sci. USA 120, e2216573120 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).

    Article  PubMed  CAS  Google Scholar 

  22. Lynas, M., Houlton, B. Z. & Perry, S. Greater than 99% consensus on human caused climate change in the peer-reviewed scientific literature. Environ. Res. Lett. 16, 114005 (2021).

    Article  Google Scholar 

  23. Knutti, R. Closing the knowledge-action gap in climate change. One Earth 1, 21–23 (2019).

    Article  Google Scholar 

  24. Haunschild, R., Bornmann, L. & Marx, W. Climate change research in view of bibliometrics. PLoS ONE 11, e0160393 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Grieneisen, M. L. & Zhang, M. The current status of climate change research. Nat. Clim. Change 1, 72–73 (2011).

    Article  Google Scholar 

  26. Bornmann, L., Haunschild, R. & Mutz, R. Growth rates of modern science: a latent piecewise growth curve approach to model publication numbers from established and new literature databases. Humanit Soc. Sci. Commun. 8, 224 (2021).

    Article  Google Scholar 

  27. International Year of Basic Sciences for Sustainable Development 2022 (International Science Council, 2022)

  28. Nature protection: Better methods and knowledge to improve the conservation status of EU-protected species and habitats. Horizon-europe.gouv.fr https://www.horizon-europe.gouv.fr/nature-protection-better-methods-and-knowledge-improve-conservation-status-eu-protected-species-and (accessed 17 January 2024).

  29. Comprendre les pôles et les glaciers pour mieux les protéger CNRS https://www.cnrs.fr/fr/cnrsinfo/comprendre-les-poles-et-les-glaciers-pour-mieux-les-proteger (24 November 2023).

  30. Theissinger, K. et al. How genomics can help biodiversity conservation. Trends Genet. 39, 545–559 (2023).

    Article  PubMed  CAS  Google Scholar 

  31. Miller, J. D. Scientific literacy: a conceptual and empirical review. Daedalus 112, 29–48 (1983).

    Google Scholar 

  32. Lee, T. M., Markowitz, E. M., Howe, P. D., Ko, C.-Y. & Leiserowitz, A. A. Predictors of public climate change awareness and risk perception around the world. Nat. Clim. Change 5, 1014–1020 (2015).

    Article  Google Scholar 

  33. Douenne, T. & Fabre, A. French attitudes on climate change, carbon taxation and other climate policies. Ecol. Econ. 169, 106496 (2020).

    Article  Google Scholar 

  34. Sarewitz, D. Does climate change knowledge really matter? WIREs Clim. Change 2, 475–481 (2011).

    Article  Google Scholar 

  35. Descola, P. Beyond nature and culture. Proc. Br. Acad. 139, 137–155 (2006).

  36. Reiners, W. A., Reiners, D. S. & Lockwood, J. A. Traits of a good ecologist: what do ecologists think? Ecosphere 4, art86 (2013).

    Article  Google Scholar 

  37. Racimo, F. et al. The biospheric emergency calls for scientists to change tactics. eLife 11, e83292 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Urai, A. E. & Kelly, C. Rethinking academia in a time of climate crisis. eLife 12, e84991 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dablander, F. et al. Climate change engagement of scientists. Nat. Clim. Change https://doi.org/10.1038/s41558-024-02091-2 (2024).

  40. Tollefson, J. Top climate scientists are sceptical that nations will rein in global warming. Nature 599, 22–24 (2021).

    Article  PubMed  CAS  Google Scholar 

  41. Becker, H. S. Notes on the concept of commitment. Am. J. Sociol. 66, 32–40 (1960).

    Article  Google Scholar 

  42. Morrison, T. H. et al. Radical interventions for climate-impacted systems. Nat. Clim. Change 12, 1100–1106 (2022).

    Article  Google Scholar 

  43. Lamb, W. F. et al. Discourses of climate delay. Glob. Sustain. 3, e17 (2020).

    Article  Google Scholar 

  44. Gifford, R. The dragons of inaction: psychological barriers that limit climate change mitigation and adaptation. Am. Psychol. 66, 290–302 (2011).

    Article  PubMed  Google Scholar 

  45. Poliakoff, E. & Webb, T. L. What factors predict scientists’ intentions to participate in public engagement of science activities? Sci. Commun. 29, 242–263 (2007).

    Article  Google Scholar 

  46. Philippe, H. Less is more: decreasing the number of scientific conferences to promote economic degrowth. Trends Genet. 24, 265–267 (2008).

    Article  PubMed  CAS  Google Scholar 

  47. Rappaport, A. & Creighton, S. Degrees That Matter: Climate Change and the University (The MIT Press, 2007).

  48. Artico, D. et al. “Beyond being analysts of doom”: scientists on the frontlines of climate action. Front. Sustain. https://doi.org/10.3389/frsus.2023.1155897 (2023).

  49. Isopp, B. Scientists who become activists: are they crossing a line? J. Sci. Commun. https://doi.org/10.22323/2.14020303 (2015).

  50. Boykoff, M. & Oonk, D. Evaluating the perils and promises of academic climate advocacy. Clim. Change 163, 27–41 (2020).

    Article  Google Scholar 

  51. Entradas, M., Marcelino, J., Bauer, M. W. & Lewenstein, B. Public communication by climate scientists: what, with whom and why? Clim. Change 154, 69–85 (2019).

    Article  Google Scholar 

  52. Gardner, C. J., Thierry, A., Rowlandson, W. & Steinberger, J. K. From publications to public actions: the role of universities in facilitating academic advocacy and activism in the climate and ecological emergency. Front. Sustain. https://doi.org/10.3389/frsus.2021.679019 (2021).

  53. Borgermann, N., Schmidt, A. & Dobbelaere, J. Preaching water while drinking wine: why universities must boost climate action now. One Earth 5, 18–21 (2022).

    Article  Google Scholar 

  54. Gardner, C. J. & Wordley, C. F. R. Scientists must act on our own warnings to humanity. Nat. Ecol. Evol. 3, 1271–1272 (2019).

    Article  PubMed  Google Scholar 

  55. Green, J. F. Less talk, more walk: why climate change demands activism in the academy. Daedalus 149, 151–162 (2020).

    Article  Google Scholar 

  56. Oreskes, N. What is the social responsibility of climate scientists? Daedalus 149, 33–45 (2020).

    Article  Google Scholar 

  57. Dablander, F., Sachisthal, M. S. M. & Haslbeck, J. Going beyond research: climate actions by climate and non-climate researchers. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/5fqtr (2024).

  58. Singh, G. G. et al. A more social science: barriers and incentives for scientists engaging in policy. Front. Ecol. Environ. 12, 161–166 (2014).

    Article  Google Scholar 

  59. Carbou, G. & Sébastien, L. Les discours d’inaction climatique dans la communauté scientifique. Écologie Politique 67, 71–91 (2023).

    Google Scholar 

  60. Besley, J. C., Dudo, A., Yuan, S. & Lawrence, F. Understanding scientists’ willingness to engage. Sci. Commun. 40, 559–590 (2018).

    Article  Google Scholar 

  61. Pidgeon, N. & Fischhoff, B. The role of social and decision sciences in communicating uncertain climate risks. Nat. Clim. Change 1, 35–41 (2011).

    Article  Google Scholar 

  62. Stamenkovic, P. Facts and objectivity in science. Interdiscip. Sci. Rev. 48, 277–298 (2023).

    Article  Google Scholar 

  63. Whitney, K. Tangled up in knots: an emotional ecology of field science. Emot., Space Soc. 6, 100–107 (2013).

    Article  Google Scholar 

  64. Weber, M. Politics as a Vocation (Oxford Univ. Press, 1946).

  65. Stengers, I. Another look: relearning to laugh. Hypatia 15, 41–54 (2000).

    Google Scholar 

  66. Reiss, J. & Sprenger, J. Scientific Objectivity. in The Stanford Encyclopedia of Philosophy (ed. Zalta, E. N.) (Metaphysics Research Lab, 2020).

  67. Graves, J. L., Kearney, M., Barabino, G. & Malcom, S. Inequality in science and the case for a new agenda. Proc. Natl Acad. Sci. USA 119, e2117831119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Haraway, D. Situated knowledges: the science question in feminism and the privilege of partial perspective. Fem. Stud. 14, 575–599 (1988).

    Article  Google Scholar 

  69. Haraway, D. J. Primate Visions: Gender, Race, and Nature in the World of Modern Science (Routledge, 1989).

  70. Longino, H. E. Science as Social Knowledge: Values and Objectivity in Scientific Inquiry (Princeton Univ. Press, 1990).

  71. Ruphy, S. Rôle des valeurs en science: contributions de la philosophie féministe des sciences. Écologie Politique 51, 41–54 (2015).

    Article  Google Scholar 

  72. D’Ignazio, C. & Klein, L. Introduction: Why Data Science Needs Feminism. Data Feminism https://data-feminism.mitpress.mit.edu/pub/frfa9szd (2020).

  73. Kotcher, J. E., Myers, T. A., Vraga, E. K., Stenhouse, N. & Maibach, E. W. Does engagement in advocacy hurt the credibility of scientists? results from a randomized national survey experiment. Environ. Commun. 11, 415–429 (2017).

    Article  Google Scholar 

  74. Beall, L., Myers, T. A., Kotcher, J. E., Vraga, E. K. & Maibach, E. W. Controversy matters: impacts of topic and solution controversy on the perceived credibility of a scientist who advocates. PLoS ONE 12, e0187511 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Cologna, V., Knutti, R., Oreskes, N. & Siegrist, M. Majority of German citizens, US citizens and climate scientists support policy advocacy by climate researchers and expect greater political engagement. Environ. Res. Lett. 16, 024011 (2021).

    Article  Google Scholar 

  76. Foote, E. Circumstances affecting the heat of the Sun’s rays. Am. J. Sci. Arts 22, 383–384 (1856).

    Google Scholar 

  77. Arrhenius, S. XXXI. On the influence of carbonic acid in the air upon the temperature of the ground. Lond. Edinb. Dublin Philos. Mag. J. Sci. 41, 237–276 (1896).

    Article  CAS  Google Scholar 

  78. Manabe, S. & Wetherald, R. T. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci. 24, 241–259 (1967).

    Article  CAS  Google Scholar 

  79. Keeling, C. D. et al. Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus 28, 538–551 (1976).

    Article  CAS  Google Scholar 

  80. Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    Article  PubMed  CAS  Google Scholar 

  81. Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).

    Article  PubMed  CAS  Google Scholar 

  82. Whitmarsh, L., Capstick, S., Moore, I., Köhler, J. & Le Quéré, C. Use of aviation by climate change researchers: structural influences, personal attitudes, and information provision. Glob. Environ. Change 65, 102184 (2020).

    Article  Google Scholar 

  83. Higham, J. & Font, X. Decarbonising academia: confronting our climate hypocrisy. J. Sustain. Tour. 28, 1–9 (2020).

    Article  Google Scholar 

  84. Kadykalo, A. N. et al. Bridging research and practice in conservation. Conserv. Biol. 35, 1725–1737 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gardner, C. J. & Bullock, J. M. In the climate emergency, conservation must become survival ecology. Front. Conserv. Sci. https://doi.org/10.3389/fcosc.2021.659912 (2021).

  86. Cvitanovic, C., Hobday, A. J., van Kerkhoff, L. & Marshall, N. A. Overcoming barriers to knowledge exchange for adaptive resource management; the perspectives of Australian marine scientists. Mar. Policy 52, 38–44 (2015).

    Article  Google Scholar 

  87. Toomey, A. H. Why facts don’t change minds: Insights from cognitive science for the improved communication of conservation research. Biol. Conserv. 278, 109886 (2023).

    Article  Google Scholar 

  88. Toomey, A. H., Knight, A. T. & Barlow, J. Navigating the space between research and implementation in conservation. Conserv. Lett. 10, 619–625 (2017).

    Article  Google Scholar 

  89. Robinson, J. G. Conservation biology and real-world conservation. Conserv. Biol. 20, 658–669 (2006).

    Article  PubMed  Google Scholar 

  90. Tree, I. Wilding (Picador, 2019).

  91. Molnár, Z. et al. Social justice for traditional knowledge holders will help conserve Europe’s nature. Biol. Conserv. 285, 110190 (2023).

    Article  Google Scholar 

  92. Blanc, G. & Morisson, H. The Invention of Green Colonialism (Polity, 2022).

  93. Miriti, M. N., Rawson, A. J. & Mansfield, B. The history of natural history and race: decolonizing human dimensions of ecology. Ecol. Appl. 33, e2748 (2023).

    Article  PubMed  Google Scholar 

  94. Trisos, C. H., Auerbach, J. & Katti, M. Decoloniality and anti-oppressive practices for a more ethical ecology. Nat. Ecol. Evol. 5, 1205–1212 (2021).

    Article  PubMed  Google Scholar 

  95. Kauppi, P. & Sedjo, R. Technological and Economic Potential of Options to Enhance, Maintain, and Manage Biological Carbon Reservoirs and Geo-engineering (IPCC, 2001).

  96. Fournier, T. & Lepiller, O. Se nourrir de promesses. Socio 12, 73–95 (2019).

  97. Hickel, J. & Kallis, G. Is green growth possible? N. Political Econ. 25, 469–486 (2020).

    Article  Google Scholar 

  98. Dillet, B. & Hatzisavvidou, S. Beyond technofix: thinking with Epimetheus in the anthropocene. Contemp. Polit. Theory 21, 351–372 (2022).

    Article  Google Scholar 

  99. Sadler-Smith, E. & Akstinaite, V. Human hubris, anthropogenic climate change, and an environmental ethic of humility. Organ. Environ. 35, 446–467 (2022).

    Article  Google Scholar 

  100. Brigandt, I. & Love, A. Reductionism in Biology. In The Stanford Encyclopedia of Philosophy (eds. Zalta, E. N. & Nodelman, U.) (Metaphysics Research Lab, 2023).

  101. Weinberg, R. A. Coming full circle—from endless complexity to simplicity and back again. Cell 157, 267–271 (2014).

    Article  PubMed  CAS  Google Scholar 

  102. Casadevall, A. & Fang, F. C. Specialized science. Infect. Immun. 82, 1355–1360 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Rodríguez-Hernández, C. F., Cascallar, E. & Kyndt, E. Socio-economic status and academic performance in higher education: a systematic review. Educ. Res. Rev. 29, 100305 (2020).

    Article  Google Scholar 

  104. Gendron, Y. Constituting the academic performer: the spectre of superficiality and stagnation in academia. Eur. Account. Rev. 17, 97–127 (2008).

    Article  Google Scholar 

  105. Vitales, H. M. M. Foucault and beyond: from sovereignty power to contemporary biopolitics. Mabini Rev. 9, 161–178 (2020).

    Google Scholar 

  106. Lemaitre, B. Science, narcissism and the quest for visibility. FEBS J. 284, 875–882 (2017).

    Article  PubMed  CAS  Google Scholar 

  107. Blanchard, M., Bouchet-Valat, M., Cartron, D., Greffion, J. & Gros, J. Concerned yet polluting: a survey on French research personnel and climate change. PLOS Clim. 1, e0000070 (2022).

    Article  Google Scholar 

  108. Verplanken, B. & Whitmarsh, L. Habit and climate change. Curr. Opin. Behav. Sci. 42, 42–46 (2021).

    Article  Google Scholar 

  109. Masson, T. & Fritsche, I. We need climate change mitigation and climate change mitigation needs the ‘we’: a state-of-the-art review of social identity effects motivating climate change action. Curr. Opin. Behav. Sci. 42, 89–96 (2021).

    Article  Google Scholar 

  110. Cialdini, R. B. & Jacobson, R. P. Influences of social norms on climate change-related behaviors. Curr. Opin. Behav. Sci. 42, 1–8 (2021).

    Article  Google Scholar 

  111. Venghaus, S., Henseleit, M. & Belka, M. The impact of climate change awareness on behavioral changes in Germany: changing minds or changing behavior? Energ. Sustain Soc. 12, 8 (2022).

    Article  Google Scholar 

  112. Chang, E. H. et al. The mixed effects of online diversity training. Proc. Natl Acad. Sci. USA 116, 7778–7783 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 50, 179–211 (1991).

    Article  Google Scholar 

  114. Ecker, U. K. H. et al. The psychological drivers of misinformation belief and its resistance to correction. Nat. Rev. Psychol. 1, 13–29 (2022).

    Article  Google Scholar 

  115. Bristow, W. Enlightenment. In The Stanford Encyclopedia of Philosophy (eds. Zalta, E. N. & Nodelman, U.) (Metaphysics Research Lab, 2023).

  116. Hornsey, M. J., Harris, E. A., Bain, P. G. & Fielding, K. S. Meta-analyses of the determinants and outcomes of belief in climate change. Nat. Clim. Change 6, 622–626 (2016).

    Article  Google Scholar 

  117. Comby, J.-B. Dépolitisation du problème climatique: réformisme et rapports de classe. Idées Econ. Soc. 190, 20–27 (2017).

    Google Scholar 

  118. Longuet-Higgins, C. For goodness sake. Nature 312, 204 (1984).

    Article  Google Scholar 

  119. Philippe, H. In Décroissance Versus Développement Durable. Débats Pour la Suite du Monde 166–186 (Écosociété, 2011).

  120. Merchant, C. The Death of Nature: Women, Ecology and the Scientific Revolution (Harper & Row, 1980).

  121. Raffoul, A. W. Listen to the science! Which science? Regenerative research for times of planetary crises. Front. Sustain. https://doi.org/10.3389/frsus.2023.1115238 (2023).

  122. Ureta, S., Barandiaran, J., Salazar, M. & Torralbo, C. Strength out of weakness: Rethinking scientific engagement with the ecological crisis as strategic action. Elementa 11, 00072 (2023).

  123. Thierry, A., Horn, L., von Hellermann, P. & Gardner, C. J. “No research on a dead planet”: preserving the socio-ecological conditions for academia. Front. Educ. https://doi.org/10.3389/feduc.2023.1237076 (2023).

  124. Glavovic, B. C., Smith, T. F. & White, I. The tragedy of climate change science. Clim. Dev. 14, 829–833 (2022).

    Article  Google Scholar 

  125. Festinger, L. Cognitive dissonance. Sci. Am. 207, 93–106 (1962).

    Article  PubMed  CAS  Google Scholar 

  126. Jacob, F. Evolution and tinkering. Science 196, 1161–1166 (1977).

    Article  PubMed  CAS  Google Scholar 

  127. Capstick, S. et al. Civil disobedience by scientists helps press for urgent climate action. Nat. Clim. Change 12, 773–774 (2022).

    Article  Google Scholar 

  128. Nordhagen, S., Calverley, D., Foulds, C., O’Keefe, L. & Wang, X. Climate change research and credibility: balancing tensions across professional, personal, and public domains. Clim. Change 125, 149–162 (2014).

    Article  Google Scholar 

  129. Attari, S. Z., Krantz, D. H. & Weber, E. U. Statements about climate researchers’ carbon footprints affect their credibility and the impact of their advice. Clim. Change 138, 325–338 (2016).

    Article  Google Scholar 

  130. Cologna, V. et al. Trust in scientists and their role in society across 67 countries. Preprint at OSF Preprints https://doi.org/10.31219/osf.io/6ay7s (2024).

  131. Cornish, F. et al. Participatory action research. Nat. Rev. Methods Prim. 3, 34 (2023).

    Article  CAS  Google Scholar 

  132. Barnaud, C. & Van Paassen, A. Equity, power games, and legitimacy: dilemmas of participatory natural resource management. Ecol. Soc. 18, 21 (2013).

  133. Richards, J. “Precious” metals: the case for treating metals as irreplaceable. J. Clean. Prod. 14, 324–333 (2006).

    Article  Google Scholar 

  134. Vlasceanu, M. et al. Addressing climate change with behavioral science: a global intervention tournament in 63 countries. Sci. Adv. 10, eadj5778 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Barragan-Jason, G., Loreau, M., de Mazancourt, C., Singer, M. C. & Parmesan, C. Psychological and physical connections with nature improve both human well-being and nature conservation: a systematic review of meta-analyses. Biol. Conserv. 277, 109842 (2023).

    Article  Google Scholar 

  136. Nielsen, K. S. et al. Realizing the full potential of behavioural science for climate change mitigation. Nat. Clim. Change https://doi.org/10.1038/s41558-024-01951-1 (2024).

  137. Morel Darleux, C. Là où le feu et l’ours (Libertalia, 2021).

  138. Ben-Ari, T. How research can steer academia towards a low-carbon future. Nat. Rev. Phys. 5, 551–552 (2023).

    Article  Google Scholar 

  139. Macfarlane, A. R. et al. A call for funding bodies to influence the reduction of environmental impacts in remote scientific fieldwork. Front. Sustain. https://doi.org/10.3389/frsus.2024.1338660 (2024).

  140. Ivanova, D. et al. Quantifying the potential for climate change mitigation of consumption options. Environ. Res. Lett. 15, 093001 (2020).

    Article  CAS  Google Scholar 

  141. Rae, C. L., Farley, M., Jeffery, K. J. & Urai, A. E. Climate crisis and ecological emergency: why they concern (neuro)scientists, and what we can do. Brain Neurosci. Adv. 6, 23982128221075430 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Vidal Valero, M. Outcry as scientists sanctioned for climate protest. Nature 614, 604–605 (2023).

    PubMed  CAS  Google Scholar 

  143. Grossman, D. Scientists under arrest: the researchers taking action over climate change. Nature 626, 710–712 (2024).

    Article  PubMed  CAS  Google Scholar 

  144. Zacharakis, A. L. & Meyer, G. D. A lack of insight: do venture capitalists really understand their own decision process? J. Bus. Venturing 13, 57–76 (1998).

    Article  Google Scholar 

  145. Transition bas carbone: un plan ambitieux pour le CNRS. CNRS https://www.cnrs.fr/fr/cnrsinfo/transition-bas-carbone-un-plan-ambitieux-pour-le-cnrs (14 November 2022).

  146. Sarabipour, S. et al. Changing scientific meetings for the better. Nat. Hum. Behav. 5, 296–300 (2021).

    Article  PubMed  Google Scholar 

  147. Wynes, S., Donner, S. D., Tannason, S. & Nabors, N. Academic air travel has a limited influence on professional success. J. Clean. Prod. 226, 959–967 (2019).

    Article  Google Scholar 

  148. Le Quéré, C. et al. Towards a Culture of Low-Carbon Research for the 21st Century (Tyndall Centre for Climate Change Research, 2015).

  149. Moran, D. et al. Quantifying the potential for consumer-oriented policy to reduce European and foreign carbon emissions. Clim. Policy 20, S28–S38 (2020).

    Article  Google Scholar 

  150. Moran, D. et al. Carbon footprints of 13 000 cities. Environ. Res. Lett. 13, 064041 (2018).

    Article  Google Scholar 

  151. Heede, R. Tracing anthropogenic carbon dioxide and methane emissions to fossil fuel and cement producers, 1854–2010. Clim. Change 122, 229–241 (2014).

    Article  CAS  Google Scholar 

  152. Garnett, E. E. & Balmford, A. The vital role of organizations in protecting climate and nature. Nat. Hum. Behav. 6, 319–321 (2022).

    Article  PubMed  Google Scholar 

  153. Swain, D. Climate researchers need support to become scientist-communicators. Nature 624, 9 (2023).

    Article  PubMed  CAS  Google Scholar 

  154. Glover, A., Strengers, Y. & Lewis, T. The unsustainability of academic aeromobility in Australian universities. Sustainability Sci. Pract. Policy 13, 1–12 (2017).

    Article  Google Scholar 

  155. Bonnéry, S. LAHIRE Bernard (dir.). Enfances de classe. De l’inégalité parmi les enfants. Paris: Éd. du Seuil, 2019, 1232 p. Rev. française de. pédagogie 205, 122–124 (2018).

    Article  Google Scholar 

  156. Lenton, T. M. et al. Operationalising positive tipping points towards global sustainability. Glob. Sustainability 5, e1 (2022).

    Article  Google Scholar 

  157. Nielsen, K. S., Nicholas, K. A., Creutzig, F., Dietz, T. & Stern, P. C. The role of high-socioeconomic-status people in locking in or rapidly reducing energy-driven greenhouse gas emissions. Nat. Energy 6, 1011–1016 (2021).

    Article  Google Scholar 

  158. Barros, B. & Wilk, R. The outsized carbon footprints of the super-rich. Sustainabilit Sci. Pract. Policy 17, 316–322 (2021).

    Article  Google Scholar 

  159. Attari, S. Z., Krantz, D. H. & Weber, E. U. Climate change communicators’ carbon footprints affect their audience’s policy support. Clim. Change 154, 529–545 (2019).

    Article  CAS  Google Scholar 

  160. Brown, M. B. Review of Roger S. Pielke, Jr., The Honest Broker: Making Sense of Science in Policy and Politics. Minerva 46, 485–489 (2008).

    Article  Google Scholar 

  161. Latter, B. & Capstick, S. Climate emergency: UK universities’ declarations and their role in responding to climate change. Front. Sustain. https://doi.org/10.3389/frsus.2021.660596 (2021).

  162. Knödlseder, J. et al. Estimate of the carbon footprint of astronomical research infrastructures. Nat. Astron 6, 503–513 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the TULIP Laboratory of Excellence (ANR-10-LABX-41) and S.J. was supported by the Agence Nationale de la Recherche (ANR-19-CE02-0016). We warmly thank all who have accepted to read and discuss this paper in the months preceding its publication.

Author information

Authors and Affiliations

Authors

Contributions

Positionality statement: L.D. is a 27-year-old PhD student in ecology and evolution and intends to depart from academia afterwards. S.J. is a 36-year-old permanent CNRS researcher in ecology and evolution, specialized in phenotypic plasticity and dispersal. H.P. is a 59-year-old permanent CNRS researcher in the field of phylogenomics, but has been working on the topic of scientific degrowth for 15 years. Both Staffan and Hervé have children. All three of them identify as males, live in France and do not belong to a racialized minority. They regularly take part in activism, but do not feel sufficiently engaged. All three of them deem that tackling the bioclimatic crisis is of greater importance than accumulating more knowledge. Their research has been funded by public agencies for the past 10 years at least.

Corresponding author

Correspondence to Léonard Dupont.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Charlie Gardner, Andrew Kadykalo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dupont, L., Jacob, S. & Philippe, H. Scientist engagement and the knowledge–action gap. Nat Ecol Evol (2024). https://doi.org/10.1038/s41559-024-02535-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-024-02535-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing