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Natural capital investments in China 
undermined by reclamation for cropland

Lingqiao Kong    1, Tong Wu1,2, Yi Xiao1, Weihua Xu    1, Xiaobiao Zhang1, 
Gretchen C. Daily    2,3 & Zhiyun Ouyang    1 

Globally, rising food demand has caused widespread biodiversity and 
ecosystem services loss, prompting growing efforts in ecological protection 
and restoration. However, these efforts have been significantly undercut 
by further reclamation for cropland. Focusing on China, the world’s largest 
grain producer, we found that at the national level from 2000 to 2015, 
reclamation for cropland undermined gains in wildlife habitat and the 
ecosystem services of water retention, sandstorm prevention, carbon 
sequestration and soil retention by 113.8%, 63.4%, 52.5%, 29.0% and 10.2%, 
respectively. To achieve global sustainability goals, conflicts between 
inefficient reclamation for cropland and natural capital investment need to 
be alleviated.

Population growth, rising food demand and rapid, large-scale urbaniza-
tion have driven cropland encroachment of natural ecosystems across 
the world, leading to profound losses of biodiversity and terrestrial 
ecosystem services1–3. Moreover, the shift of cropping systems to mar-
ginal lands is causing further negative impacts4,5. Growing concerns 
about these impacts have prompted the worldwide implementation 
of ecological restoration programmes to increase the provision of 
ecosystem services for human well-being6.

Since the year 2000, China has made substantial, world-leading 
investments in mitigating land degradation and restoring ecosystem 
services7,8. This has occurred through large-scale transformations of 
cropland into grasslands and forests, which have led to significant 
improvements in important ecosystem services7,9,10. However, com-
ing from the other direction, extensive reclamation for cropland has 
caused grave losses in these same services—a fact not well recognized or 
quantified in the existing literature. Here, we temporally and spatially 
assess the impacts of reclamation for cropland on vital ecosystems 
and their services in China, the world’s most populous and largest 
grain-producing country, from 2000 to 2015. This study shows the 
extent and pattern of cropland reclamation-induced reversals in natu-
ral capital investment at the national level.

Based on data for the years 2000–2015 from the national ecosys-
tem assessments, we mapped the biophysical supply of four key eco-
system regulating services—water retention, soil retention, sandstorm 

prevention and carbon sequestration—as well as potential habitat 
for wildlife, at a spatial resolution of 90 × 90 m2 (refs. 9,11). We then 
quantified the relative importance of each pixel in regard to supply of 
ecosystem services using an integrated index that classifies all pixels 
into one of four levels of importance: ‘vital’, ‘important’, ‘moderate’ and 
‘general’ (ref. 9). This was done to identify the importance of ecosys-
tems that had been reclaimed into cropland. We obtained the loss–gain 
ratio of each ecosystem service and analysed the different types of 
reclamation-induced change based on climatic conditions, terrain, 
soil, food production and ecosystem service supply.

Results
Loss of vital ecosystems by reclamation for cropland
Over the study period, 21,215 km2 of forest and shrub, 25,579 km2 of 
grassland and 12,278 km2 of wetland were converted to cropland in 
China. We found that loss of natural ecosystems was concentrated in 
those areas most critical in regard to ecosystem regulating services 
and biodiversity, with vital and important ecosystems, respectively, 
accounting for 58.1% and 26.8% of the total reclaimed area (Fig. 1) (for 
ecosystem importance classification definitions, see Methods and 
Supplementary Table 1).

Reclamation for cropland was most intense in the ecologically vital 
or fragile areas of northern, eastern and southern China, including the 
Sanjiang Plains, Songnen Plains, Tarim Basin, Junggar Basin, the hills 
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northwestern China (Fig. 2b); (2) areas providing a large supply of car-
bon sequestration and wildlife habitat, with a relatively arid climate and 
high soil organic matter content in newly reclaimed land and boasting 
high grain yield, but that experienced large losses in biodiversity, water 
retention and carbon sequestration; these areas were located primarily 
in the wetlands of northeastern China (Fig. 2c); and (3) areas providing 
large supplies of primary ecosystem regulating services and wildlife 
habitat, with a humid climate and high slopes for newly reclaimed land; 
these areas experienced large losses of ecosystem services and were 
primarily located in the mountainous terrain of southern and south-
western China, which also covers biodiversity hotspots (Fig. 2d). The 
remaining areas (Fig. 2e,f) underwent relatively low loss of biodiversity 
and ecosystem services due to ecological restoration. However, as a 
general pattern, we found that impacts were greater where the supply 
of ecosystem services was greater and the climate wetter, as well as with 
increasing slope of newly reclaimed cropland (corresponding mainly 
to areas in eastern and southern China; Fig. 2e).

China’s total crop production increased by 34.5% between 2000 
and 2015, but we found that newly reclaimed cropland contributed 
only 9.8% to the total increase. This shows that the increase in crop pro-
duction during this period was primarily due to improved production 
efficiency rather than cropland expansion. Most new croplands were 
of poor quality and were less suitable for crop production5, while most 
of the cropland lost was of high productivity. For example, there has 
been a substantial decline in the quality of newly reclaimed cropland 
in northern China12.

The economic inefficacy of reclamation for cropland in China 
can, in part, be attributed to biophysical and geographic constraints, 
which will become more restrictive with climate change. Climatic, topo-
graphical and soil fertility conditions determine a given landscape’s 

of southern Fujian and the lower reaches of the Yellow River Basin. 
Ecologically important regions that received substantial ecosystem 
protection and restoration investments over the past two decades, but 
where reclamation for cropland was also widespread and scattered, 
included the Changbai Mountain, Loess Plateau, Wuling Mountains, 
the tropical forests of southern Yunnan and China’s southeast coastal 
wetlands. Across these regions, reclamation for cropland significantly 
undercut gains in wildlife habitat, water retention, sandstorm preven-
tion, carbon sequestration and soil retention. For example, the Sanjiang 
and Songnen Plains are key areas in regard to China’s food production 
(especially cereal crops), but they also have rich wetland ecosystems 
that are important habitats for migratory birds.

Undermining of wildlife habitat and ecosystem services
At the national level, we quantified the loss of ecosystem services due to 
reclamation for cropland as reversal of restoration-related gains from 
2000 to 2015. Over these 15 years, 25,138 km2 of potential habitat for 
nationally protected plants and animals, 3.0 billion m3 of water reten-
tion capacity, 28.0 million tons of sandstorm prevention capacity,  
18.1 million tons of carbon sequestration capacity and 19.4 million 
tons of soil retention capacity were lost. As a percentage of the gains 
in these ecosystem services from ecological restoration efforts over 
the same period, the corresponding losses were 113.8%, 63.4%, 52.5%, 
29.0% and 10.2% (Fig. 2).

These counteracting losses due to reclamation for cropland 
corres pond to three primary area types: (1) areas providing a large 
portion of the sandstorm prevention service and wildlife habitat, 
but also with an arid climate, low soil organic matter content and low 
grain yield; these areas experienced the largest loss of restoration 
gains in ecosystem services and were typically in marginal lands in 
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suitability for cultivation, and we found that recent reclamation for 
cropland in China had mostly occurred in locations where such fac-
tors militate against expansion. While >85% of existing cropland was 
distributed in humid and semihumid areas, new croplands from 2000 
to 2015 were mostly (52.2%) distributed in arid and semi-arid areas, 
of which 65.6% was in arid areas (Extended Data Fig. 1). In particular, 
adverse climatic conditions greatly restricted the productivity of newly 
reclaimed cropland in northern China12. Additionally, reclamation dur-
ing the study period expanded over land that had, on average, 21.0% 
higher slope than existing cropland (Extended Data Fig. 2). This reduces 

water retention capacity and increases the risk of soil erosion, flooding 
and disastrous landslides. Finally, the soil fertility of newly reclaimed 
cropland tended to be much lower than that of existing cropland: the 
proportion of land with <1.5% soil organic matter was 70% greater 
(Extended Data Fig. 3).

Discussion
This study has shown that efforts made in ecological protection and res-
toration have been significantly undermined by further reclamation for 
cropland. In the coming decades, secular trends of income growth and 
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for cropland across China from 2000 to 2015. a–f, Blue indicates gains  
from ecosystem protection and restoration, and red indicates losses from 
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representing areas providing a large supply of carbon sequestration, wildlife 
habitat and high grain yield, but that experienced large losses in biodiversity 
and ecosystem services; d, the third cluster, representing areas providing 
high ecosystem regulating services and biodiversity, with a humid climate and 
high slopes for newly reclaimed land, experienced large losses of ecosystem 

services; e, the fourth cluster, representing areas underwent relatively low loss of 
biodiversity and ecosystem services due to ecological restoration, with a humid 
climate; f, the fifth cluster, representing areas underwent low loss of biodiversity 
and ecosystem service. The histogram below each rosette summarizes gains 
and losses for each cluster. WH, proportion of wildlife habitat; WR, capacity for 
water retention; SP, capacity for sandstorm prevention; CS, capacity for carbon 
sequestration; SR, capacity for soil retention; RWH, reduction in wildlife habitat 
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urbanization will continue to drive rising food demand, both in China 
and across the world1. This will increase pressures on crop production 
to meet food security concerns. If inefficient reclamation for cropland 
continues, its negative ecological impacts will significantly undercut 
returns from natural capital investment and exert a further drag on 
agricultural production2,3. Furthermore, these impacts will gradually 
worsen over time. Strict measures should be taken to protect vital eco-
systems, increase the ecological restoration of croplands in marginal 
and fragile landscapes and curb inefficient agricultural expansion by 
transitioning to sustainable intensification. To effect this transition, 
key policies could include these presented below.

Identification of crucial regions for ecosystem services
More precise spatial analysis of the distribution of major ecosystem 
services, such as provision of wildlife habitat, water retention, sand-
storm prevention, carbon sequestration and soil retention, is needed 
to better identify areas for ecosystem protection and restoration. This 
can then inform land-use policies such as China’s ecological protec-
tion redlines, national parks and nature reserves, all of which aim to 
rigorously protect vital ecosystems from reclamation for cropland 
and other deleterious forms of development11.

Ecosystem restoration of croplands in marginal, biodiverse 
and fragile landscapes
Ecosystem restoration should target existing marginal croplands, par-
ticularly in areas with important ecosystem services, and in fragile 
landscapes, which include places with (1) endangered and endemic 
species; (2) water supply sources; (3) wetlands serving as migratory bird 
habitats; (4) sloping lands at risk from erosion; and (5) desertified land 
that could be the source of sandstorms. Biodiverse areas suitable for 
planting crops should be strictly protected and those that have already 
been reclaimed—such as the Sanjiang and Songnen Plains, plains in the 
middle and lower Yangtze River Basin and coastal wetlands—should 
be focal points for the protection and restoration of wildlife habitat. 
More generally, large-scale initiatives such as the Grain-to-Green pro-
gramme should be enhanced and further incorporated into national 
programmes. For instance, the new Key Protection and Restoration 
Project for Major Ecosystems aims to improve ecosystem quality and 
service provision in degraded lands over the period 2021–2035, with 
investments totalling over US$400 billion13,14.

Increasing crop yields through sustainable intensification
The world’s agricultural biomass can more than meet future food 
demand without additional cropland expansion, through higher crop-
ping intensity15. Rather than reclaiming fragile and biodiverse areas, 
there is great potential to increase production through sustainable 
intensification16. This could include crop variety improvement17, irriga-
tion system upgrades, soil fertility improvement and better field man-
agement practices for tillage regimes and crop rotation. For example, 
yields of rice, maize and wheat increased by 9.9%, 28.2% and 44.3%, 
respectively, in China from 2000 to 2015 due to such advances. Finally, 
high-quality cropland, especially for grain production, must be better 
protected from urbanization and industrialization. All efforts should 
be taken to break the connection between reclamation for cropland 
and natural ecosystem conversion.

Modern agriculture is among the primary drivers of wildlife habitat 
loss, environmental pollution and climate change. More than 50 years 
after the ‘green revolution’ enabled a major increase in food production 
worldwide, it is time to undergo another transformation of agricul-
ture: an ecological revolution to harmonize food production with the 
protection and enhancement of biodiversity and other ecosystem ser-
vices. Despite the negative consequences of reclamation for cropland  
globally, there have also been many examples of adaptive management 
achieving ‘win-win’ outcomes in China and elsewhere. For instance, 
natural rubber production and improvemens in key ecosystem services 

such as water retention, soil retention and carbon sequestration have 
been realized through sustainable intensification18. Other studies have 
found that food production and carbon sequestration can be jointly 
promoted in croplands through soil quality improvements and related 
management practices19,20. Additionally, natural forests in agricultural 
landscapes can benefit biodiversity maintenance while improving crop 
production by up to 20% (refs. 21,22). Nonetheless, intensification 
should be undertaken carefully to ensure its sustainability. Studies 
have found that, without proper attention to underlying ecological 
processes, increasing cropping intensities can put biodiversity at 
significant risk2,23.

The challenge of balancing ecological conservation and agricul-
tural production will probably become more acute as China places 
greater emphasis on food security. Similar trends can be found in other 
countries, including advanced economies with ample arable land such 
as the United States4. What this suggests about global trends in the 
relationship between agricultural production and ecological conser-
vation, and between food security and environmental sustainability, 
merits further research.

Methods
Assessments of ecosystem service and biodiversity changes
We estimated the biophysical supply of four key ecosystem regulating 
services—water retention, soil retention, sandstorm prevention and 
carbon sequestration—in China in 2000 and 2015. The data came from 
the national ecosystem assessments in the years 2000–2015. Water 
retention (soil retention, sandstorm prevention) refers to water (soil 
and sand) retained in ecosystems within a certain period (1 year in the 
case of this study).

Water retention was estimated using the water balance equation. 
In this model, the capacity of water retention is the difference between 
the amount of precipitation and the sum of runoff and evapotranspira-
tion. Soil retention was measured by the universal soil loss equation, 
indicating the difference between potential and actual soil erosion in 
ecosystems. The sandstorm prevention service was mapped using the 
revised wind erosion equation. Carbon sequestration refers to carbon 
sequestered by terrestrial ecosystems. By examining the dynamics 
of biomass carbon storage in China’s forest, grassland and wetland 
ecosystems, average annual carbon sequestration was estimated. The 
detailed methods for estimation of ecosystem services analysed here 
were taken from Ouyang et al.9, and are detailed in the Methods section 
of Supplementary Information. Supplementary Table 2 shows the data 
sources for parameters.

Wildlife habitat supports biodiversity, and here we quantify the 
potential of habitat to support biodiversity and their relative impor-
tance. We selected threatened species from the IUCN Red List or China’s 
Red List as indicator species, including categories of critically endan-
gered, endangered and vulnerable species. The list finally selected 
contains a total of 1,534 species, including 955 plants, 152 mammals, 
127 birds, 177 amphibians and 123 reptiles. First, we collected informa-
tion on their geographic distribution and then refined the potential 
habitat for each species based on specific distribution area, elevational 
range and vegetation. To quantify the relative importance of wildlife 
habitat, we set different weights based on the endangered level of the 
species and summed weighted potential habitats for each taxon. We 
normalized summed values separately using the minimum–maxi-
mum normalization method. We used the maximum value of each 
pixel among the five taxon layers to generate the overall importance 
index map for habitat. The detailed methods and data sources used in 
this part can be found in the study by Xu et al.11 and are detailed in the 
Methods section of Supplementary Information.

We estimated the losses in each ecosystem regulating service 
capacity (ESl) and wildlife habitat (WHl), where natural ecosystems 
(that is, forest, shrubland, grassland and wetland) were converted to 
cropland, as well as the gains in each ecosystem regulating service 
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capacity (ESg) and wildlife habitat (WHg) where cropland was converted 
to natural ecosystems. The loss–gain ratios of each ecosystem regulat-
ing service (lg_rES) and wildlife habitat (lg_rWH) due to reclamation for 
cropland were calculated, respectively, as follows:

lg_rES =
ESl
ESg

× 100%

and

lg_rWH = WHl
WHg

× 100%.

Land-cover classification images of China at 30 m resolution for 2000 
and 2015 (ref. 24) were used to identify different ecosystem types. Classi-
fication images were derived from the environment and disaster monitor-
ing and forecasting images of small satellite constellation (HJ-1A/B) and 
Landsat OLI (resolution 30 m), then through object-oriented multiscale 
segmentation and decision tree procedures supported by a classification 
sample database. Land cover was categorized into forest, shrubland, 
grassland, wetland, cropland, urban land, desert and bare land. The eco-
system classification system used in this study is shown in Supplementary 
Table 3. A total of 118,316 independent ground survey samples obtained 
through random sampling were used for data accuracy verification. The 
average accuracy of the eight first-level categories was 93.6%, and that of 
of the 42 third-level categories was 87.7%.

To reveal the clustering patterns of multifactorial characteristics 
of the negative impacts of reclamation for cropland, we selected 15 vari-
ables. These reflected reclamation extent and impacts on ecosystem 
services and biodiversity, regional ecological conditions, climate, soil and 
terrain conditions and food production efficiency for multivariate cluster 
analysis. The input data included: (1) the capacities for water retention, 
soil retention, sandstorm prevention and carbon sequestration; (2) the 
proportion of wildlife habitat; (3) grain yield in the year 2015; (4) annual 
precipitation, average slope, average soil organic matter content and 
area of newly reclaimed cropland between 2000 and 2015; and (5) corres-
ponding declines in the five ecosystem services between 2000 and 2015.

Incorporating the acquisition unit of grain yield data, k-means 
cluster analysis was performed at the provincial scale. Input factors 
were processed by minimum–maximum normalization to normalize 
data. The elbow method was used to determine cluster number. We 
used rosette diagrams to represent the variables for each cluster and 
calculated the total loss–gain ratio for the corresponding provinces of 
each type, revealing differences in typical types under varied ecological  
and agricultural conditions. The loss–gain ratio of each cluster was 
calculated as follows:

lg_ri_ES =
∑n

j=1ESlj
∑n

j=1ESg j
× 100%

and

lg_ri_WH =
∑n

j=1WHlj

∑n
j=1WHg j

× 100%

where lg_ri_ES and lg_ri_WH are, respectively, the loss–gain ratios of each 
regulating service and wildlife habitat of cluster i; ESlj  and WHlj  are, 
respectively, the losses of each ecosystem regulating service capacity 
and wildlife habitat where natural ecosystems (that is, forest, shrub-
land, grassland and wetland) were converted to cropland in province 
j of cluster i; and ESg j  and WHg j  are, respectively, the increases in  
each ecosystem regulating service capacity and wildlife habitat where 
cropland was converted to natural ecosystems.

Assessment of ecosystem service importance
We used an integrated index proposed by Ouyang et al.9 to quantify 
the relative importance of each pixel in regard to provision of eco-
system services and biodiversity. First, we ranked the importance 
of each pixel regarding the provision of a single service, service 
by service. For example, to identify critical areas for soil retention 
we classified all pixels into one of four levels of importance: vital, 
important, moderate and general. The classification procedures 
were: (1) calculate the soil retention of each pixel; (2) sort all pixels 
by soil retention capacity in descending order and then calculate the 
cumulative proportion of soil retention across pixels; (3) assign vital 
to those pixels with cumulative proportion ~0–50%, important to 
those with cumulative proportion ~50–75%, moderate to those with 
cumulative proportion ~75–90% and general to those with cumulative 
proportion ~90–100%.

Thereafter, the importance of each service and wildlife habitat 
provision was synthesized into the integrated index of ecosystem 
importance. We applied the maximum value method whereby the 
index value equals the highest importance value of any service in each 
pixel. Thus, a pixel was scored important if it was important for any 
single service, in accordance with the assumption that this indicates 
the irreplaceability of each ecosystem service.

Intensity of reclamation for cropland on vital ecosystems
To understand how intensely reclamation for cropland impacts natural 
ecosystems of varying importance level, we first assessed the impor-
tance of ecosystem services and biodiversity across China in the year 
2000 and then calculated the proportion of cropland encroachment 
on ecosystems for all importance levels from 2000 to 2015 according 
to the following formula:

Pi =
∑n

j=1Xij × Aj

Ar
× 100%

where Pi is the proportion of cropland encroaching on ecosystems of 
importance level i (i = 1 (general), 2 (moderate), 3 (important), 4 (vital)). 
Aj is the area of the pixel j. If the importance level of the pixel was level 
i and it was converted from natural ecosystem to cropland between 
2000 and 2015, we set Xij to 1, otherwise it was set to 0. Ar is the total 
area of newly reclaimed cropland in China.

To spatialize the intensity of reclamation for cropland on vital  
ecosystems, we divided the whole country into grids of 10 × 10 km2 
cells, calculated the proportion of vital ecosystems converted to  
cropland in each grid cell and then spatialized this proportion. For each 
grid cell we chose the ecosystem service with the largest vital area as  
the leading service (for example, soil retention, water retention, sand-
storm prevention, carbon sequestration or biodiversity).

Crop production and its changes
China’s provincial-level crop production data for 2000 and 2015  
were taken from the China Rural Statistical Yearbook and the China 
Agriculture Yearbook (Supplementary Fig. 1), including those for rice, 
wheat, corn, soybeans and potatoes, among others. Crop yield was 
calculated using the following equation:

GYPUAi =
TGYi
Aci

where GYPUAi represents the crop yield of province i, TGYi repre-
sents the total crop production of province i and Aci represents the  
area of cropland in province i. We calculated the increase in crop  
production due to reclamation for cropland using the following 
equation:

IGYRi = GYPUAi2015 × ANTCi
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where IGYRi represents the increase in crop production due to reclama-
tion for cropland in province i, GYPUAi2015  represents the crop yield  
of province i in 2015 and ANTCi  represents the area of natural eco-
systems converted to cropland between 2000 and 2015 in province i.

We then estimated the contribution rate of reclamation for crop-
land to crop production increase using the following equation:

Rc =
∑n

i=1IGYRi

∑n
i=1(TGY2015 i − TGY2000 i)

× 100%

where Rc represents the contribution rate of reclamation to crop  
production increase and TGY2000i  and TGY2015i  represent total crop 
production in 2000 and 2015, respectively, in province i; n represents 
the number of provinces.

Suitability of newly reclaimed cropland
We compared the suitability for planting crops in newly reclaimed 
cropland between the years 2000 to 2015 and in the original croplands 
of 2000 based on: (1) the distribution of wet and dry zones in China 
(Supplementary Fig. 2), namely arid, semi-arid, humid and semihumid 
zones; for each zone we calculated the areas and proportions of original 
and newly reclaimed cropland (Extended Data Fig. 1). (2) We then cal-
culated the average slope for both original and newly reclaimed crop-
land across the whole country and in areas with different slope ranges 
(Extended Data Fig. 2 and Supplementary Fig. 3). (3) We calculated the 
areas and proportions of original and newly reclaimed cropland with 
different ranges of soil organic matter content (Extended Data Fig. 3 
and Supplementary Fig. 4).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data that support the findings of this study are available at the Science 
Data Bank (https://doi.org/10.57760/sciencedb.09940).
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Extended Data Fig. 1 | Proportions of original cropland and newly reclaimed cropland in arid and humid zones. The proportions of original cropland from 2000 
and those of newly reclaimed cropland between 2000 and 2015 in different arid and humid zones of China were analyzed.
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Extended Data Fig. 2 | Slope levels of original cropland and newly reclaimed cropland. The average slope levels of original cropland from 2000 and those of newly 
reclaimed cropland between 2000 and 2015 were analyzed.

http://www.nature.com/natecolevol


Nature Ecology & Evolution

Brief Communication https://doi.org/10.1038/s41559-023-02198-3

Extended Data Fig. 3 | Proportions of original cropland and newly reclaimed cropland in different levels of soil organic matter content. The proportions of 
original cropland from 2000 and those of newly reclaimed cropland between 2000 and 2015 in different levels of soil organic matter content were analyzed.
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