Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-chromophore single-molecule photocatalyst for the production of dihydrogen using low-energy light

Subjects

Abstract

Single-chromophore single-molecule photocatalysts for the conversion and storage of solar energy into chemical bonds are rare, inefficient and do not use significant portions of the visible spectrum. Here we show a new, air-stable bimetallic scaffold that acts as a single-chromophore photocatalyst for hydrogen-gas generation and operates with irradiation wavelengths that span the ultraviolet to the red/near-infrared. Irradiation in acidic solutions that contain an electron donor results in the catalytic production of hydrogen with 170 ± 5 turnovers in 24 hours and an initial rate of 28 turnovers per hour. The catalysis proceeds through two stepwise excited-state redox events—atypical of the currently known homogeneous photocatalysis—and features the storage of multiple redox equivalents on a dirhodium catalyst enabled by low-energy light.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of structures 1–3.
Fig. 2: Electronic absorption spectrum of 1.
Fig. 3: Hydrogen gas produced on the irradiation of complex 1 with red light over a period of 24 h.
Fig. 4: Mechanistic study of the reactivity of the catalytic intermediate, the one-electron reduced 1, [1]1−, in DMF in the presence of the electron donor BNAH (0.2 M).
Fig. 5: Proposed mechanism of the photocatalytic H2 production by 1.

Similar content being viewed by others

Data availability

All the data supporting the findings of this study are available from the corresponding author upon reasonable request. Crystallographic data for structure 1 reported in this article has been deposited at the Cambridge Crystallographic Data Centre under deposition number CCDC 1871363. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Gust, D., Moore, T. A. & Moore, A. L. Solar fuels via artificial photosynthesis. Acc. Chem. Res. 42, 1890–1898 (2009).

    CAS  PubMed  Google Scholar 

  2. Yano, J. & Yachandra, V. Mn4Ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem. Rev. 114, 4175–4205 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zeitler, K. Photoredox catalysis with visible light. Angew. Chem. Int. Ed. 48, 9785–9789 (2009).

    CAS  Google Scholar 

  4. Yuan, Y. J. et al. Hydrogen photogeneration promoted by efficient electron transfer from iridium sensitizers to colloidal MoS2 catalysts. Sci. Rep. 4, 4045 (2014).

    PubMed  PubMed Central  Google Scholar 

  5. Mirkovic, T. et al. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev. 117, 249–293 (2017).

    CAS  PubMed  Google Scholar 

  6. Cui, X., Li, W., Ryabchuk, P., Junge, K. & Beller, M. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal. 1, 385–397 (2018).

    CAS  Google Scholar 

  7. Li, X. et al. Noncovalent assembly of a metalloporphyrin and an iron hydrogenase active-site model: photo-induced electron transfer and hydrogen generation. J. Phys. Chem. B 112, 8198–8202 (2008).

    CAS  PubMed  Google Scholar 

  8. Lazarides, T. et al. Making hydrogen from water using a homogeneous system without noble metals. J. Am. Chem. Soc. 131, 9192–9194 (2009).

    CAS  PubMed  Google Scholar 

  9. Kowacs, T. et al. Subtle changes to peripheral ligands enable high turnover numbers for photocatalytic hydrogen generation with supramolecular photocatalysts. Inorg. Chem. 55, 2685–2690 (2016).

    CAS  PubMed  Google Scholar 

  10. Zhang, P. et al. Homogeneous photocatalytic production of hydrogen from water by a bioinspired [Fe2S2] catalyst with high turnover numbers. Dalton Trans. 39, 1204–1206 (2010).

    CAS  PubMed  Google Scholar 

  11. Streich, D. et al. High-turnover photochemical hydrogen production catalyzed by a model complex of the [FeFe]-hydrogenase active site. Chem. Eur. J. 16, 60–63 (2010).

    CAS  PubMed  Google Scholar 

  12. Miyake, Y. et al. Design and synthesis of diphosphine ligands bearing an osmium(ii) bis(terpyridyl) moiety as a light harvesting unit: application to photocatalytic production of dihydrogen. Organometallics 28, 5240–5243 (2009).

    CAS  Google Scholar 

  13. Cline, E. D., Adamson, S. E. & Bernhard, S. Homogeneous catalytic system for photoinduced hydrogen production utilizing iridium and rhodium complexes. Inorg. Chem. 47, 10378–10388 (2008).

    CAS  PubMed  Google Scholar 

  14. Du, P., Schneider, J., Luo, G., Brennessel, W. W. & Eisenberg, R. Visible light-driven hydrogen production from aqueous protons catalyzed by molecular cobaloxime catalysts. Inorg. Chem. 48, 4952–4962 (2009).

    CAS  PubMed  Google Scholar 

  15. Yu, S. et al. Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots. Nat. Commun. 9, 4009 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. McNamara, W. R. et al. A cobalt–dithiolene complex for the photocatalytic and electrocatalytic reduction of protons. J. Am. Chem. Soc. 133, 15368–15371 (2011).

    CAS  PubMed  Google Scholar 

  17. Beiler, A. M., Khusnutdinova, D., Jacob, S. I. & Moore, G. F. Solar hydrogen production using molecular catalysts immobilized on gallium phosphide(111) A and (111)B polymer-modified photocathodes. ACS Appl. Mater. Interfaces 8, 10038–10047 (2016).

    CAS  PubMed  Google Scholar 

  18. Ma, Y. et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987–10043 (2014).

    CAS  PubMed  Google Scholar 

  19. Breton, K. R., Bonn, A. G. & Miller, A. J. M. Molecular photoelectrocatalysts for light-driven hydrogen production. ACS Energy Lett. 3, 1128–1136 (2018).

    Google Scholar 

  20. Chambers, M. B., Kurtz, D. A., Pitman, C. L., Brennaman, M. K. & Miller, A. J. M. Efficient photochemical dihydrogen generation initiated by a bimetallic self-quenching mechanism. J. Am. Chem. Soc. 138, 13509–13512 (2016).

    CAS  PubMed  Google Scholar 

  21. Caspar, J. V. & Meyer, T. J. Application of the energy gap law to nonradiative, excited-state decay. J. Phys. Chem. 87, 952–957 (1983).

    CAS  Google Scholar 

  22. Rousset, E., Chartrand, D., Ciofini, I., Marvaud, V. & Hanan, G. S. Red-light-driven photocatalytic hydrogen evolution using a ruthenium quaterpyridine complex. Chem. Commun. 51, 9261–9264 (2015).

    CAS  Google Scholar 

  23. Tsuji, Y., Yamamoto, K., Yamauchi, K. & Sakai, K. Near-infrared-light-driven hydrogen evolution from water using a polypyridyl triruthenium photosensitizer. Angew. Chem. Int. Ed. 57, 208–212 (2018).

    CAS  Google Scholar 

  24. Sayre, H. J., Millet, A., Dunbar, K. R. & Turro, C. Photocatalytic H2 production by dirhodium(ii,ii) photosensitizers with red light. Chem. Commun. 54, 8332–8334 (2018).

    CAS  Google Scholar 

  25. Kobayashi, M., Masaoka, S. & Sakai, K. Photoinduced hydrogen evolution from water based on a Z-scheme photosynthesis by a simple platinum(ii) terpyridine derivative. Angew. Chem. Int. Ed. 51, 7431–7434 (2012).

    CAS  Google Scholar 

  26. Yamamoto, K., Kitamoto, K., Yamauchi, K. & Sakai, K. Pt(ii)-catalyzed photosynthesis for H2 evolution cycling between singly and triply reduced species. Chem. Commun. 51, 14516–14519 (2015).

    CAS  Google Scholar 

  27. Hawecker, J. & Lehn, J.-M. & Ziessel, R. Efficient photochemical reduction of CO2 to CO by visible light irradiation of systems containing Re(bipy)(CO)3X or Ru(bipy)3 2+–Co2+ combinations as homogeneous catalysts. Chem. Commun. 1983, 536–538 (1983).

    Google Scholar 

  28. Wang, W., Rauchfuss, T. B., Bertini, L. & Zampella, G. Unsensitized photochemical hydrogen production catalyzed by diiron hydrides. J. Am. Chem. Soc. 134, 4525–4528 (2012).

  29. Manbeck, G. F. et al. Hydricity, electrochemistry, and excited-state chemistry of Ir complexes for CO2 reduction. Faraday Discuss. 198, 301–317 (2017).

    CAS  PubMed  Google Scholar 

  30. Garg, K. et al. Strinking differences in properties of geometric isomers of [Ir(tpy)(ppy)H]+: Experimental and computational studies of their hydricities, interaction with CO2, and photochemistry. Angew. Chem. Int. Ed. 54, 14128–14132 (2015).

    CAS  PubMed  Google Scholar 

  31. Sato, S., Morikawa, T., Kajino, T. & Ishitani, O. A highly efficient mononuclear iridium complex photocatalyst for CO2 reduction under visible light. Angew. Chem. Int. Ed. 52, 988–992 (2013).

    CAS  Google Scholar 

  32. Huckaba, A. J. et al. A mononuclear tungsten photocatalyst for H2 production. ACS Catal. 8, 4828–4847 (2018).

    Google Scholar 

  33. Okazaki, R. & Masaoka, S. & Sakai, K. Photo-hydrogen-evolving activity of chloro(terpyridine)platinum(ii): a single-component molecular photocatalyst. Dalton Trans. 2009, 6127–6133 (2009).

    Google Scholar 

  34. Ogawa, M., Ajayakumar, G., Masaoka, S., Kraatz, H.-B. & Sakai, K. Platinum(ii)-based hydrogen-evolving catalysts linked to multipendant viologen acceptors: experimental and DFT indications for bimolecular pathways. Chem. Eur. J. 17, 1148–1162 (2011).

    CAS  PubMed  Google Scholar 

  35. Kitamoto, K. & Sakai, K. Pigment–acceptor–catalyst triads for photochemical hydrogen evolution. Angew. Chem. Int. Ed. 126, 4706–4710 (2014).

    Google Scholar 

  36. Lin, S., Kitamoto, K., Ozawa, H. & Sakai, K. Improved photocatalytic hydrogen evolution driven by chloro(terpyridine)platinum(ii) derivatives tethered to a single pendant viologen acceptor. Dalton Trans. 45, 10643–10654 (2016).

    CAS  PubMed  Google Scholar 

  37. Kitamoto, K. & Sakai, K. Photochemical H2 evolution from water catalyzed by dichloro(diphenylbipyridine)platinum(ii) derivative tethered to multiple viologen acceptors. Chem. Commun. 52, 1385–1388 (2016).

    CAS  Google Scholar 

  38. Gray, H. B. & Maverick, A. W. Solar chemistry of metal complexes. Science 214, 1201–1205 (1981).

    CAS  PubMed  Google Scholar 

  39. Heyduk, A. F. & Nocera, D. G. Hydrogen produced from hydrohalic acid solutions by a two-electron mixed-valence photocatalyst. Science 293, 1639–1641 (2001).

    CAS  PubMed  Google Scholar 

  40. Elgrishi, N., Teets, T. S., Chambers, M. B. & Nocera, D. G. Stability-enhanced hydrogen-evolving dirhodium photocatalysts through ligand modification. Chem. Commun. 48, 9474–9476 (2012).

    CAS  Google Scholar 

  41. Powers, D. C., Hwang, S. J., Zheng, S. L. & Nocera, D. G. Halide-bridged binuclear HX-splitting catalysts. Inorg. Chem. 53, 9122–9128 (2014).

    CAS  PubMed  Google Scholar 

  42. Li, Z., Leed, N. A., Dickson-Karn, N. M., Dunbar, K. R. & Turro, C. Directional charge transfer and highly reducing and oxidizing excited states of new dirhodium(ii,ii) complexes: potential applications in solar energy conversion. Chem. Sci. 5, 727–737 (2014).

    CAS  Google Scholar 

  43. Whittemore, T. J. et al. New Rh2(ii,ii) complexes for solar energy applications: panchromatic absorption and excited-state reactivity. J. Am. Chem. Soc. 139, 14724–14732 (2017).

    CAS  PubMed  Google Scholar 

  44. Whittemore, T. J. et al. Tunable Rh2(ii,ii) light absorbers as excited-state electron donors and acceptors accessible with red/near-infrared irradiation. J. Am. Chem. Soc. 140, 5161–5170 (2018).

    CAS  PubMed  Google Scholar 

  45. Byrnes, M. J. et al. Observation of 1MLCT and 3MLCT excited states in quadruply bonded Mo2 and W2 complexes. J. Am. Chem. Soc. 127, 17343–17352 (2005).

    CAS  PubMed  Google Scholar 

  46. Burdzinski, G. T. et al. The remarkable influence of M2δ to thienyl π conjugation in oligothiophenes incorporating MM quadruple bonds. Proc. Natl Acad. Sci. USA 105, 15247–15252 (2008).

    CAS  PubMed  Google Scholar 

  47. Chisholm, M. H., Gustafson, T. L. & Turro, C. Photophysical properties of MM quadruply bonded complexes supported by carboxylate ligands, MM = Mo2, MoW, or W2. Acc. Chem. Res. 46, 529–538 (2013).

    CAS  PubMed  Google Scholar 

  48. Van der Veen, A. M., Cannizzo, A., van Mourik, F., Vlcek, A. & Chergui, M. Vibrational relaxation and intersystem crossing of binuclear metal complexes in solution. J. Am. Chem. Soc. 133, 305–315 (2011).

    PubMed  Google Scholar 

  49. Steigman, A. E., Rice, S. F., Gray, H. B. & Miskowski, V. M. Electronic spectroscopy of d 8–d 8 diplatinum complexes. 1A2u(dσ* → ), 3Eu(d xz,d yz → ), and 3,1B2u(* → \(d_{x^2-y^2}\)) excited states of Pt2(P2O5H2)4 4−. Inorg. Chem. 26, 1112–1116 (1987).

    Google Scholar 

  50. Montalti, M., Credi, A., Prodi, L. & Gandolfi, M. T. Handbook of Photochemistry 3rd edn Ch. 7 (CRC, 2006).

  51. Felton, G. A. N., Glass, R. S., Lichtenbergerm, D. L. & Evans, D. H. Iron-only hydrogenase mimics. Thermodynamic aspects of the use of electrochemistry to evaluate catalytic efficiency for hydrogen generation. Inorg. Chem. 45, 9181–9184 (2006).

    CAS  PubMed  Google Scholar 

  52. White, T. W., Witt, S. E., Li, Z., Dunbar, K. R. & Turro, C. New Rh2(ii,ii) architecture for the catalytic reduction of H+. Inorg. Chem. 54, 10042–10048 (2015).

    CAS  PubMed  Google Scholar 

  53. Beatty, J. W. & Stephenson, C. R. J. Amine functionalization via oxidative photoredox catalysis: methodology development and complex molecule synthesis. Acc. Chem. Res. 48, 1474–1484 (2015).

  54. Pellegrin, Y. & Odobel, F. Sacrificial electron donor reagents for solar fuel production. C. R. Chim. 20, 283–295 (2017).

  55. Sigal, I. S., Mann, K. R. & Gray, H. B. Solar energy storage reactions. Thermal and photochemical redox reactions of polynuclear rhodium isocyanide complexes. J. Am. Chem. Soc. 102, 7252–7256 (1980).

    CAS  Google Scholar 

  56. Mann, K. et al. Solar energy storage. Production of hydrogen by 546-nm irradiation of a dinuclear rhodium(i) complex in acidic aqueous solution. J. Am. Chem. Soc. 99, 5525–5526 (1977).

    CAS  Google Scholar 

  57. Jasimuddin, S., Fukuju, K., Otsuki, J. & Sakai, K. Photocatalytic hydrogen production from water in self-assembled supramolecular iridium–cobalt systems. Chem. Commun. 46, 8466–8468 (2010).

    CAS  Google Scholar 

  58. Nomrowski, J. & Wenger, O. S. Exploiting potential inversion for photoinduced multielectron transfer and accumulation of redox equivalents in a molecular heptad. J. Am. Chem. Soc. 140, 5343–5346 (2018).

    CAS  PubMed  Google Scholar 

  59. O’Neil, M. P. et al. Picosecond optical switching based on biphotonic excitation of an electron donor–acceptor–donor molecule. Science 257, 63–65 (1992).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Support from the Department of Energy, Office of Science, Office of Basic Energy Sciences (DE-SC0020243) and The Ohio State University for partial support of this work and acknowledge A. Co for her invaluable insights regarding the electrochemical results, W. Kender for discussions on the mechanistic details and the Center for Chemical and Biophysical Dynamics (CCBD) for use of the ultrafast laser facility.

Author information

Authors and Affiliations

Authors

Contributions

T.J.W. conceptualized the molecule, synthesized and characterized 1, performed investigations, which included the transient absorption and photocatalysis experiments, co-investigated the mechanistic model and drafted the manuscript. C.X. investigated the electrochemical properties and also performed photocatalysis experiments, co-investigated the mechanistic model and reviewed and edited the results, J.H. validated electronic absorption experiments and synthesized additional material of the target complex. J.C.G. collected the crystallographic data. C.T. supervised the project, aided in the experimental and mechanistic design, acquired funding and developed and edited the manuscript.

Corresponding author

Correspondence to C. Turro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Methods and Supplementary data; Supplementary Tables 1–3 and Figs. 1–25.

Crystallographic data

CIF for 1; CCDC reference 1871363.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whittemore, T.J., Xue, C., Huang, J. et al. Single-chromophore single-molecule photocatalyst for the production of dihydrogen using low-energy light. Nat. Chem. 12, 180–185 (2020). https://doi.org/10.1038/s41557-019-0397-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-019-0397-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing