Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

A guide to studying mitochondria transfer

Mitochondria can shuttle between adjacent cells or travel to distant organs by breaking away from the parent cell and entering the circulation. Here, we briefly review the state of research into mitochondria transfer, and discuss a methodological framework for studying the process.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Methodologies for establishing mitochondria transfer mechanisms.

References

  1. Rustom, A., Saffrich, R., Markovic, I., Walther, P. & Gerdes, H. H. Science 303, 1007–1010 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Spees, J. L., Olson, S. D., Whitney, M. J. & Prockop, D. J. Proc. Natl Acad. Sci. USA 103, 1283–1288 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu, Z., Sun, Y., Qi, Z., Cao, L. & Ding, S. Cell Biosci. 12, 66 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Crewe, C. et al. Cell Metab. 33, 1853–1868.e1811 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Soubannier, V. et al. Curr. Biol. 22, 135–141 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Rosina, M. et al. Cell Metab. 34, 533–548.e512 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Todkar, K. et al. Nat. Commun. 12, 1971 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. D’Acunzo, P. et al. Sci. Adv. 7, eabe5085 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Borcherding, N. & Brestoff, J. R. Nature https://doi.org/10.1038/s41586-023-06537-z (2023).

  10. Konari, N., Nagaishi, K., Kikuchi, S. & Fujimiya, M. Sci. Rep. 9, 5184 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yao, Y. et al. Stem Cell Rep. 11, 1120–1135 (2018).

    Article  CAS  Google Scholar 

  12. Hayakawa, K. et al. Nature 535, 551–555 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Borcherding, N. et al. Cell Metab. 34, 1499–1513.e1498 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nicolas-Avila, J. A. et al. Cell 183, 94–109.e123 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Brestoff, J. R. et al. Cell Metab. 33, 270–282.e278 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Zhao, Z., Wijerathne, H., Godwin, A. K. & Soper, S. A. Extracell. Vesicles Circ. Nucl. Acids 2, 80–103 (2021).

    CAS  PubMed  Google Scholar 

  17. Jiang, L. et al. Sci. Rep. 7, 14444 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Perry, S. W., Norman, J. P., Barbieri, J., Brown, E. B. & Gelbard, H. A. Biotechniques 50, 98–115 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mistry, J. J. et al. Proc. Natl Acad. Sci. USA 116, 24610–24619 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Saha, T. et al. Nat. Nanotechnol. 17, 98–106 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Marlein, C. R. et al. Blood 130, 1649–1660 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Song, A. J. & Palmiter, R. D. Trends Genet. 34, 333–340 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liang, W. et al. Nat. Commun. 14, 5031 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bukoreshtliev, N. V. et al. FEBS Lett. 583, 1481–1488 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Song, X. et al. Int. J. Mol. Sci. 21, https://doi.org/10.3390/ijms21062122 (2020).

Download references

Acknowledgements

S.T. and C.C. and are supported by the National Institutes of Health (NIH) (grant R00-DK122019) and the American Heart Association (23IPA1054013). J.R.B. is supported by the NIH Office of the Director (DP5 OD028125) and Burroughs Wellcome Fund (CAMS 1019648).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jonathan Robert Brestoff or Clair Crewe.

Ethics declarations

Competing interests

J.R.B. has pending and issued patents related to mitochondria transfer and obesity; has been a consultant for DeciBio and Flagship Pioneering within the past 12 months; receives royalties from Springer Nature; and is on the Scientific Advisory Board for LUCA Science.

Peer review

Peer review information

Nature Cell Biology thanks Martin Picard, Carlos Moraes and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiash, S., Brestoff, J.R. & Crewe, C. A guide to studying mitochondria transfer. Nat Cell Biol 25, 1551–1553 (2023). https://doi.org/10.1038/s41556-023-01246-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-023-01246-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing