Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Meta-analysis of the make-up and properties of in vitro models of the healthy and diseased blood–brain barrier

Abstract

In vitro models of the human blood–brain barrier (BBB) are increasingly used to develop therapeutics that can cross the BBB for treating diseases of the central nervous system. Here we report a meta-analysis of the make-up and properties of transwell and microfluidic models of the healthy BBB and of BBBs in glioblastoma, Alzheimer’s disease, Parkinson’s disease and inflammatory diseases. We found that the type of model, the culture method (static or dynamic), the cell types and cell ratios, and the biomaterials employed as extracellular matrix are all crucial to recapitulate the low permeability and high expression of tight-junction proteins of the BBB, and to obtain high trans-endothelial electrical resistance. Specifically, for models of the healthy BBB, the inclusion of endothelial cells and pericytes as well as physiological shear stresses (~10–20 dyne cm–2) are necessary, and when astrocytes are added, astrocytes or pericytes should outnumber endothelial cells. We expect this meta-analysis to facilitate the design of increasingly physiological models of the BBB.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Healthy and disease BBB anatomy, cells and features in the CNS.
Fig. 2: Mechanical property and materials of brain tissue including the BBB.
Fig. 3: Cell sources and models for in vitro BBB modelling.
Fig. 4: Model-type-based meta-analyses of BBB models from 1999 to 2024.
Fig. 5: Cell combination, cell ratio and materials-based meta-analyses of BBB models from 1999 to 2024.
Fig. 6: Disease BBB model meta-analyses based on model type and materials.
Fig. 7: BBB model meta-analyses of tight-junction protein expression based on model type, cell combination and materials.
Fig. 8: Proposed engineering design of healthy and disease BBB models based on the meta-analyses.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. All data generated during the study, including source data for the figures, are available from figshare with the identifier https://doi.org/10.6084/m9.figshare.24480850 (ref. 356). Source data are provided with this paper.

References

  1. Muchlinski, M. N., Hemingway, H. W., Pastor, J., Omstead, K. M. & Burrows, A. M. How the brain may have shaped muscle anatomy and physiology: a preliminary study. Anat. Rec. 301, 528–537 (2018).

    Article  CAS  Google Scholar 

  2. Begley, D. J. & Brightman, M. W. Structural and functional aspects of the blood–brain barrier. Prog. Drug Res. 61, 39–78 (2003).

    PubMed  CAS  Google Scholar 

  3. Duvernoy, H., Delon, S. & Vannson, J. L. The vascularization of the human cerebellar cortex. Brain Res. Bull. 11, 419–480 (1983).

    Article  PubMed  CAS  Google Scholar 

  4. Abbott, N. J. Astrocyte-endothelial interactions and blood–brain barrier permeability. J. Anat. 200, 629–638 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Stern, L. & Gautier, R. Recherches Sur Le Liquide CÉphalo-Rachidien: I.–Les Rapports Entre Le Liquide CÉphalo-Rachidien et la Circulation Sanguine. Arch. Int. Physiol. 17, 138–192 (1921).

    CAS  Google Scholar 

  6. He, Q. et al. Towards improvements for penetrating the blood–brain barrier—recent progress from a material and pharmaceutical perspective. Cells 7, 24 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stamatovic, S. M., Keep, R. F. & Andjelkovic, A. V. Brain endothelial cell–cell junctions: how to ‘open’ the blood brain barrier. Curr. Neuropharmacol. 6, 179–192 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Daneman, R. & Prat, A. The blood–brain barrier. Cold Spring Harb. Perspect. Biol. 7, a020412 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang, W. et al. Differential expression of receptors mediating receptor-mediated transcytosis (RMT) in brain microvessels, brain parenchyma and peripheral tissues of the mouse and the human. Fluids Barriers CNS 17, 47 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Thomsen, M. S., Routhe, L. J. & Moos, T. The vascular basement membrane in the healthy and pathological brain. J. Cereb. Blood Flow Metab. 37, 3300–3317 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mathiisen, T. M., Lehre, K. P., Danbolt, N. C. & Ottersen, O. P. The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58, 1094–1103 (2010).

    Article  PubMed  Google Scholar 

  12. Bylicky, M. A., Mueller, G. P. & Day, R. M. Mechanisms of endogenous neuroprotective effects of astrocytes in brain injury. Oxid. Med. Cell. Longev. 2018, 6501031 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kang, R. et al. The dual role of microglia in blood–brain barrier dysfunction after stroke. Curr. Neuropharmacol. 18, 1237–1249 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wang, W.-Y., Tan, M.-S., Yu, J.-T. & Tan, L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann. Transl. Med. 3, 136 (2015).

    PubMed  PubMed Central  Google Scholar 

  15. Sharif, Y. et al. Blood brain barrier: a review of its anatomy and physiology in health and disease. Clin. Anat. 31, 812–823 (2018).

    Article  PubMed  Google Scholar 

  16. Archie, S. R., Al Shoyaib, A. & Cucullo, L. Blood–brain barrier dysfunction in CNS disorders and putative therapeutic targets: an overview. Pharmaceutics 13, 1779 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Schwartzbaum, J. A., Fisher, J. L., Aldape, K. D. & Wrensch, M. Epidemiology and molecular pathology of glioma. Nat. Clin. Pract. Neurol. 2, 494–503 (2006).

    Article  PubMed  Google Scholar 

  18. Marenco-Hillembrand, L. et al. Trends in glioblastoma: outcomes over time and type of intervention: a systematic evidence based analysis. J. Neurooncol. 147, 297–307 (2020).

    Article  PubMed  Google Scholar 

  19. Alifieris, C. & Trafalis, D. T. Glioblastoma multiforme: pathogenesis and treatment. Pharmacol. Ther. 152, 63–82 (2015).

    Article  PubMed  CAS  Google Scholar 

  20. Mariotto, A. B., Yabroff, K. R., Shao, Y., Feuer, E. J. & Brown, M. L. Projections of the cost of cancer care in the United States: 2010–2020. J. Natl Cancer Inst. 103, 117–128 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Greenberg, D., Earle, C., Fang, C. H., Eldar-Lissai, A. & Neumann, P. J. When is cancer care cost-effective? A systematic overview of cost-utility analyses in oncology. J. Natl Cancer Inst. 102, 82–88 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Arvanitis, C. D., Ferraro, G. B. & Jain, R. K. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat. Rev. Cancer 20, 26–41 (2020).

    Article  PubMed  CAS  Google Scholar 

  23. Mo, F., Pellerino, A., Soffietti, R. & Rudà, R. Blood–brain barrier in brain tumors: biology and clinical relevance. Int. J. Mol. Sci. 22, 12654 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Wiranowska, M., Gonzalvo, A. A., Saporta, S., Gonzalez, O. B. & Prockop, L. D. Evaluation of blood–brain barrier permeability and the effect of interferon in mouse glioma model. J. Neurooncol. 14, 225–236 (1992).

    Article  PubMed  CAS  Google Scholar 

  25. Sarkaria, J. N. et al. Is the blood–brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro Oncol. 20, 184–191 (2017).

    Article  PubMed Central  Google Scholar 

  26. de Vries, N. A., Beijnen, J. H., Boogerd, W. & van Tellingen, O. Blood–brain barrier and chemotherapeutic treatment of brain tumors. Expert Rev. Neurother. 6, 1199–1209 (2006).

    Article  PubMed  Google Scholar 

  27. Gooch, C. L., Pracht, E. & Borenstein, A. R. The burden of neurological disease in the United States: a summary report and call to action. Ann. Neurol. 81, 479–484 (2017).

    Article  PubMed  Google Scholar 

  28. Jayam Trouth, A., Dabi, A., Solieman, N., Kurukumbi, M. & Kalyanam, J. Myasthenia gravis: a review. Autoimmune Dis. 2012, 874680 (2012).

    PubMed  PubMed Central  Google Scholar 

  29. Kapasi, A. & Schneider, J. A. Vascular contributions to cognitive impairment, clinical Alzheimer’s disease, and dementia in older persons. Biochim. Biophys. Acta 1862, 878–886 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Sagare, A. P., Bell, R. D. & Zlokovic, B. V. Neurovascular dysfunction and faulty amyloid β-peptide clearance in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2, a011452 (2012).

  31. Zlokovic, B. V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci. 12, 723–738 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Al-Bachari, S., Naish, J. H., Parker, G. J. M., Emsley, H. C. A. & Parkes, L. M. Blood–brain barrier leakage is increased in Parkinson’s disease. Front. Physiol. 11, 593026 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ortiz, G. G. et al. Role of the blood–brain barrier in multiple sclerosis. Arch. Med. Res. 45, 687–697 (2014).

    Article  PubMed  CAS  Google Scholar 

  34. Neurological Disorders: Public Health Challenges (World Health Organization, 2006).

  35. Feigin, V. L. et al. Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 16, 877–897 (2017).

    Article  Google Scholar 

  36. Zhao, Z., Nelson, A. R., Betsholtz, C. & Zlokovic, B. V. Establishment and dysfunction of the blood–brain barrier. Cell 163, 1064–1078 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Sweeney, M. D., Sagare, A. P. & Zlokovic, B. V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 14, 133–150 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Cummings, J. L., Tong, G. & Ballard, C. Treatment combinations for Alzheimer’s disease: current and future pharmacotherapy options. J. Alzheimers Dis. 67, 779–794 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Aquilonius, S.-M. & Nyholm, D. Development of new levodopa treatment strategies in Parkinson’s disease—from bedside to bench to bedside. Ups. J. Med. Sci. 122, 71–77 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sarkar, S., Raymick, J. & Imam, S. Neuroprotective and therapeutic strategies against Parkinson’s disease: recent perspectives. Int. J. Mol. Sci. 17, 904 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hauser, S. L. & Cree, B. A. C. Treatment of multiple sclerosis: a review. Am. J. Med. 133, 1380–1390.e2 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Sicotte, N. L. & Renner, B. in Brain Mapping (ed. Toga, A. W.) 913–916 (Academic Press, 2015).

  43. Galea, I. The blood–brain barrier in systemic infection and inflammation. Cell. Mol. Immunol. 18, 2489–2501 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Varatharaj, A. & Galea, I. The blood–brain barrier in systemic inflammation. Brain Behav. Immun. 60, 1–12 (2017).

    Article  PubMed  CAS  Google Scholar 

  45. Qin, L. H., Huang, W., Mo, X. A., Chen, Y. L. & Wu, X. H. LPS induces occludin dysregulation in cerebral microvascular endothelial cells via MAPK signaling and augmenting MMP-2 levels. Oxid. Med. Cell. Longev. 2015, 120641 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Erikson, K. et al. Brain tight junction protein expression in sepsis in an autopsy series. Crit. Care 24, 385 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Varga, Z. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 395, 1417–1418 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Rouleau, N., Murugan, N. J. & Kaplan, D. L. Functional bioengineered models of the central nervous system. Nat. Rev. Bioeng. 1, 252–270 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Murphy, M. P. & LeVine, H. 3rd Alzheimer’s disease and the amyloid-beta peptide. J. Alzheimers Dis. 19, 311–323 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lim, E. W. et al. Amyloid-β and Parkinson’s disease. J. Neurol. 266, 2605–2619 (2019).

    Article  PubMed  CAS  Google Scholar 

  51. Stefanis, L. α-Synuclein in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2, a009399 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Twohig, D. & Nielsen, H. M. α-synuclein in the pathophysiology of Alzheimer’s disease. Mol. Neurodegener. 14, 23 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lubetzki, C. & Stankoff, B. Demyelination in multiple sclerosis. Handb. Clin. Neurol. 122, 89–99 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rosińska, S. & Gavard, J. Tumor vessels fuel the fire in glioblastoma. Int. J. Mol. Sci. 22, 6514 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kalaria, R. N. & Hedera, P. Differential degeneration of the cerebral microvasculature in Alzheimer’s disease. Neuroreport 6, 477–480 (1995).

    Article  PubMed  CAS  Google Scholar 

  56. Zlokovic, B. V. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178–201 (2008).

    Article  PubMed  CAS  Google Scholar 

  57. Liu, C. C., Liu, C. C., Kanekiyo, T., Xu, H. & Bu, G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol. 9, 106–118 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Farrer, L. A. et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278, 1349–1356 (1997).

    Article  PubMed  CAS  Google Scholar 

  59. van der Goes, A. et al. Reactive oxygen species enhance the migration of monocytes across the blood–brain barrier in vitro. FASEB J. 15, 1852–1854 (2001).

    Article  PubMed  Google Scholar 

  60. van der Goes, A. et al. Reactive oxygen species are required for the phagocytosis of myelin by macrophages. J. Neuroimmunol. 92, 67–75 (1998).

    Article  PubMed  Google Scholar 

  61. van Meeteren, M. E., Hendriks, J. J. A., Dijkstra, C. D. & van Tol, E. A. F. Dietary compounds prevent oxidative damage and nitric oxide production by cells involved in demyelinating disease. Biochem. Pharmacol. 67, 967–975 (2004).

    Article  PubMed  Google Scholar 

  62. Hendriks, J. J., Teunissen, C. E., de Vries, H. E. & Dijkstra, C. D. Macrophages and neurodegeneration. Brain Res. Brain Res. Rev. 48, 185–195 (2005).

    Article  PubMed  CAS  Google Scholar 

  63. Plate, K. H., Scholz, A. & Dumont, D. J. Tumor angiogenesis and anti-angiogenic therapy in malignant gliomas revisited. Acta Neuropathol. 124, 763–775 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hardee, M. E. & Zagzag, D. Mechanisms of glioma-associated neovascularization. Am. J. Pathol. 181, 1126–1141 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016)

    Article  CAS  Google Scholar 

  66. Lukes, A., Mun-Bryce, S., Lukes, M. & Rosenberg, G. A. Extracellular matrix degradation by metalloproteinases and central nervous system diseases. Mol. Neurobiol. 19, 267–284 (1999).

    Article  PubMed  CAS  Google Scholar 

  67. Sixt, M. et al. Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood–brain barrier in experimental autoimmune encephalomyelitis. J. Cell Biol. 153, 933–946 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Tilling, T. et al. Expression and adhesive properties of basement membrane proteins in cerebral capillary endothelial cell cultures. Cell Tissue Res. 310, 19–29 (2002).

    Article  PubMed  CAS  Google Scholar 

  69. Agrawal, S. et al. Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J. Exp. Med. 203, 1007–1019 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Lam, D. et al. Tissue-specific extracellular matrix accelerates the formation of neural networks and communities in a neuron-glia co-culture on a multi-electrode array. Sci. Rep. 9, 4159 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Linka, K. et al. Unraveling the local relation between tissue composition and human brain mechanics through machine learning. Front. Bioeng. Biotechnol. 9, 704738 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Yin, W. et al. Identification of collagen genes related to immune infiltration and epithelial-mesenchymal transition in glioma. Cancer Cell Int. 21, 276 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Motegi, H., Kamoshima, Y., Terasaka, S., Kobayashi, H. & Houkin, K. Type 1 collagen as a potential niche component for CD133-positive glioblastoma cells. Neuropathology 34, 378–385 (2014).

    Article  PubMed  CAS  Google Scholar 

  74. Lau, L. W., Cua, R., Keough, M. B., Haylock-Jacobs, S. & Yong, V. W. Pathophysiology of the brain extracellular matrix: a new target for remyelination. Nat. Rev. Neurosci. 14, 722–729 (2013).

    Article  PubMed  CAS  Google Scholar 

  75. Sorokin, L., Girg, W., Göpfert, T., Hallmann, R. & Deutzmann, R. Expression of novel 400-kDa laminin chains by mouse and bovine endothelial cells. Eur. J. Biochem. 223, 603–610 (1994).

    Article  PubMed  CAS  Google Scholar 

  76. Armulik, A. et al. Pericytes regulate the blood–brain barrier. Nature 468, 557–561 (2010).

    Article  PubMed  CAS  Google Scholar 

  77. Xu, L., Nirwane, A. & Yao, Y. Basement membrane and blood–brain barrier. Stroke Vasc. Neurol. 4, 78–82 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Baeten, K. M. & Akassoglou, K. Extracellular matrix and matrix receptors in blood–brain barrier formation and stroke. Dev. Neurobiol. 71, 1018–1039 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Hohenester, E. & Yurchenco, P. D. Laminins in basement membrane assembly. Cell Adh. Migr. 7, 56–63 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Tilling, T., Korte, D., Hoheisel, D. & Galla, H. J. Basement membrane proteins influence brain capillary endothelial barrier function in vitro. J. Neurochem. 71, 1151–1157 (1998).

    Article  PubMed  CAS  Google Scholar 

  81. Zucco, F. et al. An inter-laboratory study to evaluate the effects of medium composition on the differentiation and barrier function of Caco-2 cell lines. Altern. Lab. Anim. 33, 603–618 (2005).

    Article  PubMed  CAS  Google Scholar 

  82. Srinivasan, B. et al. TEER measurement techniques for in vitro barrier model systems. J. Lab. Autom. 20, 107–126 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Sarelius, I. H. & Glading, A. J. Control of vascular permeability by adhesion molecules. Tissue Barriers 3, e985954 (2015).

    Article  PubMed  Google Scholar 

  84. Benarroch, E. E. Extracellular matrix in the CNS. Neurology 85, 1417–1427 (2015).

    Article  PubMed  Google Scholar 

  85. Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Herculano-Houzel, S. The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3, 31 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Herculano-Houzel, S. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc. Natl Acad. Sci. USA 109, 10661–10668 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Wang, J. & Milner, R. Fibronectin promotes brain capillary endothelial cell survival and proliferation through alpha5beta1 and alphavbeta3 integrins via MAP kinase signalling. J. Neurochem. 96, 148–159 (2006).

    Article  PubMed  CAS  Google Scholar 

  89. Miroshnikova, Y. A. et al. Tissue mechanics promote IDH1-dependent HIF1α-tenascin C feedback to regulate glioblastoma aggression. Nat. Cell Biol. 18, 1336–1345 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Chauvet, D. et al. In vivo measurement of brain tumor elasticity using intraoperative shear wave elastography. Ultraschall Med. 37, 584–590 (2016).

    PubMed  CAS  Google Scholar 

  91. Stewart, D. C., Rubiano, A., Dyson, K. & Simmons, C. S. Mechanical characterization of human brain tumors from patients and comparison to potential surgical phantoms. PLoS ONE 12, e0177561 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kihan, P., Lonsberry, G. E., Gearing, M., Levey, A. I. & Desai, J. P. Viscoelastic properties of human autopsy brain tissues as biomarkers for Alzheimer’s diseases. IEEE Trans. Biomed. Eng. 66, 1705–1713 (2019).

    Article  Google Scholar 

  93. Streitberger, K.-J. et al. Brain viscoelasticity alteration in chronic-progressive multiple sclerosis. PLoS ONE 7, e29888 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Seo, Y. J., Cho, W. H., Kang, D. W. & Cha, S. H. Extraneural metastasis of glioblastoma multiforme presenting as an unusual neck mass. J. Korean Neurosurg. Soc. 51, 147–150 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ferrer, V. P., Moura Neto, V. & Mentlein, R. Glioma infiltration and extracellular matrix: key players and modulators. Glia 66, 1542–1565 (2018).

    Article  PubMed  Google Scholar 

  96. Wang, C. et al. Decellularized brain extracellular matrix slice glioblastoma culture model recapitulates the interaction between cells and the extracellular matrix without a nutrient–oxygen gradient interference. Acta Biomater. 158, 132–150 (2023).

    Article  PubMed  CAS  Google Scholar 

  97. Hall, C. M., Moeendarbary, E. & Sheridan, G. K. Mechanobiology of the brain in ageing and Alzheimer’s disease. Eur. J. Neurosci. 53, 3851–3878 (2021).

    Article  PubMed  CAS  Google Scholar 

  98. Dowden, H. & Munro, J. Trends in clinical success rates and therapeutic focus. Nat. Rev. Drug Discov. 18, 495–496 (2019).

    Article  PubMed  CAS  Google Scholar 

  99. Green, S. B. Can animal data translate to innovations necessary for a new era of patient-centred and individualised healthcare? Bias in preclinical animal research. BMC Med. Ethics 16, 53 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Mak, I. W., Evaniew, N. & Ghert, M. Lost in translation: animal models and clinical trials in cancer treatment. Am. J. Transl. Res. 6, 114–118 (2014).

    PubMed  PubMed Central  Google Scholar 

  101. Freeman, M. W. & Dervan, A. P. The path from bench to bedside: considerations before starting the journey. J. Investig. Med. 59, 746–751 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kaitin, K. I. Translational research and the evolving landscape for biomedical innovation. J. Investig. Med. 60, 995–998 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Gribkoff, V. K. & Kaczmarek, L. K. The need for new approaches in CNS drug discovery: why drugs have failed, and what can be done to improve outcomes. Neuropharmacology 120, 11–19 (2017).

    Article  PubMed  CAS  Google Scholar 

  104. Zushin, P.-J. H., Mukherjee, S. & Wu, J. C. FDA Modernization Act 2.0: transitioning beyond animal models with human cells, organoids, and AI/ML-based approaches. J. Clin. Invest.133, e175824 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Pardridge, W. M. The blood–brain barrier: bottleneck in brain drug development. NeuroRx 2, 3–14 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Davis, M. E. Glioblastoma: overview of disease and treatment. Clin. J. Oncol. Nurs. 20, S2–S8 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Shamul, J. G. et al. Verteporfin-loaded anisotropic poly(beta-amino ester)-based micelles demonstrate brain cancer-selective cytotoxicity and enhanced pharmacokinetics. Int. J. Nanomed. 14, 10047–10060 (2019).

    Article  CAS  Google Scholar 

  108. Shah, S. R. et al. Verteporfin-loaded polymeric microparticles for intratumoral treatment of brain cancer. Mol. Pharm. 16, 1433–1443 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Flemming, A. Targeting the root of cancer relapse. Nat. Rev. Drug Discov. 14, 165 (2015).

    Article  PubMed  Google Scholar 

  110. Clevers, H. The cancer stem cell: premises, promises and challenges. Nat. Med. 17, 313–319 (2011).

    Article  PubMed  CAS  Google Scholar 

  111. Parodi, A. et al. Established and emerging strategies for drug delivery across the blood–brain barrier in brain cancer. Pharmaceutics 11, 245 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Goldstein, G. W., Wolinsky, J. S., Csejtey, J. & Diamond, I. Isolation of metabolically active capillaries from rat brain. J. Neurochem. 25, 715–717 (1975).

    Article  PubMed  CAS  Google Scholar 

  113. Dehouck, M.-P., Méresse, S., Delorme, P., Fruchart, J.-C. & Cecchelli, R. An easier, reproducible, and mass-production method to study the blood–brain barrier in vitro. J. Neurochem. 54, 1798–1801 (1990).

    Article  PubMed  CAS  Google Scholar 

  114. Crone, C. & Olesen, S. P. Electrical resistance of brain microvascular endothelium. Brain Res. 241, 49–55 (1982).

    Article  PubMed  CAS  Google Scholar 

  115. Smith, Q. R. & Rapoport, S. I. Cerebrovascular permeability coefficients to sodium, potassium, and chloride. J. Neurochem. 46, 1732–1742 (1986).

    Article  PubMed  CAS  Google Scholar 

  116. Arthur, F. E., Shivers, R. R. & Bowman, P. D. Astrocyte-mediated induction of tight junctions in brain capillary endothelium: an efficient in vitro model. Brain Res. 433, 155–159 (1987).

    Article  PubMed  CAS  Google Scholar 

  117. Beck, D. W., Vinters, H. V., Hart, M. N. & Cancilla, P. A. Glial cells influence polarity of the blood–brain barrier. J. Neuropathol. Exp. Neurol. 43, 219–224 (1984).

    Article  PubMed  CAS  Google Scholar 

  118. Janzer, R. C. & Raff, M. C. Astrocytes induce blood–brain barrier properties in endothelial cells. Nature 325, 253–257 (1987).

    Article  PubMed  CAS  Google Scholar 

  119. Raub, T. J. Signal transduction and glial cell modulation of cultured brain microvessel endothelial cell tight junctions. Am. J. Physiol. 271, C495–C503 (1996).

    Article  PubMed  CAS  Google Scholar 

  120. Siddharthan, V., Kim, Y. V., Liu, S. & Kim, K. S. Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells. Brain Res. 1147, 39–50 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Yamagata, K. et al. Astrocyte-conditioned medium induces blood–brain barrier properties in endothelial cells. Clin. Exp. Pharmacol. Physiol. 24, 710–713 (1997).

    Article  PubMed  CAS  Google Scholar 

  122. Nakagawa, S. et al. A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem. Int. 54, 253–263 (2009).

    Article  PubMed  CAS  Google Scholar 

  123. Thomsen, L. B., Burkhart, A. & Moos, T. A triple culture model of the blood–brain barrier using porcine brain endothelial cells, astrocytes and pericytes. PLoS ONE 10, e0134765 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  124. DeStefano, J. G., Jamieson, J. J., Linville, R. M. & Searson, P. C. Benchmarking in vitro tissue-engineered blood–brain barrier models. Fluids Barriers CNS 15, 32 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Watase, K. & Zoghbi, H. Y. Modelling brain diseases in mice: the challenges of design and analysis. Nat. Rev. Genet. 4, 296–307 (2003).

    Article  PubMed  CAS  Google Scholar 

  126. Patabendige, A., Skinner, R. A., Morgan, L. & Joan Abbott, N. A detailed method for preparation of a functional and flexible blood–brain barrier model using porcine brain endothelial cells. Brain Res. 1521, 16–30 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Helms, H. C. & Brodin, B. in Cerebral Angiogenesis: Methods and Protocols (ed. Milner, R.) 365–382 (Springer, 2014).

  128. Abbott, N. J., Dolman, D. E. M., Drndarski, S. & Fredriksson, S. M. in Astrocytes: Methods and Protocols (ed. Milner, R.) 415–430 (Humana Press, 2012).

  129. Daneman, R., Zhou, L., Kebede, A. A. & Barres, B. A. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468, 562–566 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Hatherell, K., Couraud, P.-O., Romero, I. A., Weksler, B. & Pilkington, G. J. Development of a three-dimensional, all-human in vitro model of the blood–brain barrier using mono-, co-, and tri-cultivation Transwell models. J. Neurosci. Methods 199, 223–229 (2011).

    Article  PubMed  Google Scholar 

  131. Butt, A. M., Jones, H. C. & Abbott, N. J. Electrical resistance across the blood–brain barrier in anaesthetized rats: a developmental study. J. Physiol. 429, 47–62 (1990).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Jamieson, J. J., Searson, P. C. & Gerecht, S. Engineering the human blood–brain barrier in vitro. J. Biol. Eng. 11, 37 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  133. He, Y., Yao, Y., Tsirka Stella, E. & Cao, Y. Cell-culture models of the blood–brain barrier. Stroke 45, 2514–2526 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Hellinger, E. et al. Comparison of brain capillary endothelial cell-based and epithelial (MDCK-MDR1, Caco-2, and VB-Caco-2) cell-based surrogate blood–brain barrier penetration models. Eur. J. Pharm. Biopharm. 82, 340–351 (2012).

    Article  PubMed  CAS  Google Scholar 

  135. Untucht, C. et al. An optimized in vitro blood–brain barrier model reveals bidirectional transmigration of African trypanosome strains. Microbiology 157, 2933–2941 (2011).

    Article  PubMed  CAS  Google Scholar 

  136. Ruck, T., Bittner, S., Epping, L., Herrmann, A. M. & Meuth, S. G. Isolation of primary murine brain microvascular endothelial cells. J. Vis. Exp. https://doi.org/10.3791/52204 (2014).

  137. Winkler, E. A., Sagare, A. P. & Zlokovic, B. V. The pericyte: a forgotten cell type with important implications for Alzheimer’s disease? Brain Pathol. 24, 371–386 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Rushing, G. & Ihrie, R. A. Neural stem cell heterogeneity through time and space in the ventricular-subventricular zone. Front. Biol. 11, 261–284 (2016).

    Article  Google Scholar 

  139. Zhu, X., Bergles, D. E. & Nishiyama, A. NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135, 145–157 (2008).

    Article  PubMed  CAS  Google Scholar 

  140. Birbrair, A. et al. Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res. Ther. 5, 122 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Neal, E. H. et al. A simplified, fully defined differentiation scheme for producing blood–brain barrier endothelial cells from human iPSCs. Stem Cell Rep. 12, 1380–1388 (2019).

    Article  CAS  Google Scholar 

  142. Engle, S. J., Blaha, L. & Kleiman, R. J. Best practices for translational disease modeling using human iPSC-derived neurons. Neuron 100, 783–797 (2018).

    Article  PubMed  CAS  Google Scholar 

  143. Stebbins, M. J. et al. Human pluripotent stem cell-derived brain pericyte-like cells induce blood–brain barrier properties. Sci. Adv. 5, eaau7375 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Soubannier, V. et al. Characterization of human iPSC-derived astrocytes with potential for disease modeling and drug discovery. Neurosci. Lett. 731, 135028 (2020).

  145. Miller, J. S. The billion cell construct: will three-dimensional printing get us there? PLoS Biol. 12, e1001882 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Ribecco-Lutkiewicz, M. et al. A novel human induced pluripotent stem cell blood–brain barrier model: applicability to study antibody-triggered receptor-mediated transcytosis. Sci. Rep. 8, 1873 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Weber, C. M. et al. Induced pluripotent stem cell-derived cells model brain microvascular endothelial cell glucose metabolism. Fluids Barriers CNS 19, 98 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Canfield, S. G. et al. An isogenic neurovascular unit model comprised of human induced pluripotent stem cell-derived brain microvascular endothelial cells, pericytes, astrocytes, and neurons. Fluids Barriers CNS 16, 25 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Canfield, S. G. et al. An isogenic blood–brain barrier model comprising brain endothelial cells, astrocytes, and neurons derived from human induced pluripotent stem cells. J. Neurochem. 140, 874–888 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Jamieson, J. J., Linville, R. M., Ding, Y. Y., Gerecht, S. & Searson, P. C. Role of iPSC-derived pericytes on barrier function of iPSC-derived brain microvascular endothelial cells in 2D and 3D. Fluids Barriers CNS 16, 15 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Faal, T. et al. Induction of mesoderm and neural crest-derived pericytes from human pluripotent stem cells to study blood–brain barrier interactions. Stem Cell Rep. 12, 451–460 (2019).

    Article  CAS  Google Scholar 

  152. Korn, J., Christ, B. & Kurz, H. Neuroectodermal origin of brain pericytes and vascular smooth muscle cells. J. Comp. Neurol. 442, 78–88 (2002).

    Article  PubMed  Google Scholar 

  153. Etchevers, H. C., Vincent, C., Le Douarin, N. M. & Couly, G. F. The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development 128, 1059–1068 (2001).

    Article  PubMed  CAS  Google Scholar 

  154. Reyahi, A. et al. Foxf2 is required for brain pericyte differentiation and development and maintenance of the blood–brain barrier. Dev. Cell 34, 19–32 (2015).

    Article  PubMed  CAS  Google Scholar 

  155. Lippmann, E. S. et al. Derivation of blood–brain barrier endothelial cells from human pluripotent stem cells. Nat. Biotechnol. 30, 783–791 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Kurosawa, T. et al. Expression and functional characterization of drug transporters in brain microvascular endothelial cells derived from human induced pluripotent stem cells. Mol. Pharm. 15, 5546–5555 (2018).

    Article  PubMed  CAS  Google Scholar 

  157. Trojanowski, J. Q., Goedert, M., Iwatsubo, T. & Lee, V. M. Y. Fatal attractions: abnormal protein aggregation and neuron death in Parkinson’s disease and Lewy body dementia. Cell Death Differ. 5, 832–837 (1998).

    Article  PubMed  CAS  Google Scholar 

  158. Crews, L., Tsigelny, I., Hashimoto, M. & Masliah, E. Role of synucleins in Alzheimer’s disease. Neurotox. Res. 16, 306–317 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Cho, C. F. et al. Blood–brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents. Nat. Commun. 8, 15623 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Nzou, G. et al. Human cortex spheroid with a functional blood brain barrier for high-throughput neurotoxicity screening and disease modeling. Sci. Rep. 8, 7413 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Leite, P. E. C. et al. Suitability of 3D human brain spheroid models to distinguish toxic effects of gold and poly-lactic acid nanoparticles to assess biocompatibility for brain drug delivery. Part. Fibre Toxicol. 16, 22 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    Article  PubMed  CAS  Google Scholar 

  163. Fang, G., Chen, Y.-C., Lu, H. & Jin, D. Advances in spheroids and organoids on a chip. Adv. Funct. Mater. 33, 2215043 (2023).

    Article  CAS  Google Scholar 

  164. Bernas, M. J. et al. Establishment of primary cultures of human brain microvascular endothelial cells to provide an in vitro cellular model of the blood–brain barrier. Nat. Protoc. 5, 1265–1272 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Navone, S. E. et al. Isolation and expansion of human and mouse brain microvascular endothelial cells. Nat. Protoc. 8, 1680–1693 (2013).

    Article  PubMed  CAS  Google Scholar 

  166. Hoarau-Véchot, J., Rafii, A., Touboul, C. & Pasquier, J. Halfway between 2D and animal models: are 3D cultures the ideal tool to study cancer–microenvironment interactions? Int. J. Mol. Sci. 19, 181 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  167. He, Y., Yao, Y., Tsirka, S. E. & Cao, Y. Cell-culture models of the blood–brain barrier. Stroke 45, 2514–2526 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Urich, E. et al. Multicellular self-assembled spheroidal model of the blood brain barrier. Sci. Rep. 3, 1500 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Suarez-Meade, P. et al. SARS-CoV2 entry factors are expressed in primary human glioblastoma and recapitulated in cerebral organoid models. J. Neurooncol. 161, 67–76 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Ruiz-Garcia, H., Alvarado-Estrada, K., Schiapparelli, P., Quinones-Hinojosa, A. & Trifiletti, D. M. Engineering three-dimensional tumor models to study glioma cancer stem cells and tumor microenvironment. Front. Cell. Neurosci. 14, 558381 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Watanabe, F. et al. Patient-derived organoids recapitulate glioma-intrinsic immune program and progenitor populations of glioblastoma. PNAS Nexus 3, pgae051 (2024).

  172. Watanabe, F. et al. Modeling of aryl hydrocarbon receptor pathway intrinsic immunometabolic role using glioblastoma stem cells and patient-derived organoids. Preprint at bioRxiv https://doi.org/10.1101/2022.03.17.484756 (2022).

  173. Karmirian, K. et al. in Alzheimer’s Disease: Methods and Protocols (ed. Chun, J.) 135–158 (Springer, 2023).

  174. Huang, S., Zhang, Z., Cao, J., Yu, Y. & Pei, G. Chimeric cerebral organoids reveal the essentials of neuronal and astrocytic APOE4 for Alzheimer’s tau pathology. Signal Transduct. Target. Ther. 7, 176 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Lee, H. K. et al. Three dimensional human neuro-spheroid model of Alzheimer’s disease based on differentiated induced pluripotent stem cells. PLoS ONE 11, e0163072 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Yan, Y. et al. Modeling neurodegenerative microenvironment using cortical organoids derived from human stem cells. Tissue Eng. A 24, 1125–1137 (2018).

    Article  CAS  Google Scholar 

  177. Gustavsson, N., Savchenko, E., Klementieva, O. & Roybon, L. The intracellular milieu of Parkinson’s disease patient brain cells modulates alpha-synuclein protein aggregation. Acta Neuropathol. Commun. 9, 153 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Queiroz, V. C. et al. Development of scaffold-free spheroids overexpressing alpha-synuclein in human neuroblastoma SH-SY5Y as a model of Parkinson’s disease. Cytotherapy 23, 10–11 (2021).

    Article  Google Scholar 

  179. Song, L. et al. Functionalization of brain region-specific spheroids with isogenic microglia-like cells. Sci. Rep. 9, 11055 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Kong, W. et al. Neuropilin-1 mediates SARS-CoV-2 infection of astrocytes in brain organoids, inducing inflammation leading to dysfunction and death of neurons. mBio 13, e02308–e02322 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Ao, Z. et al. Tubular human brain organoids to model microglia-mediated neuroinflammation. Lab Chip 21, 2751–2762 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Pham, M. T. et al. Generation of human vascularized brain organoids. Neuroreport 29, 588–593 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Ham, O., Jin, Y. B., Kim, J. & Lee, M. O. Blood vessel formation in cerebral organoids formed from human embryonic stem cells. Biochem. Biophys. Res. Commun. 521, 84–90 (2020).

    Article  PubMed  CAS  Google Scholar 

  184. Cakir, B. et al. Engineering of human brain organoids with a functional vascular-like system. Nat. Methods 16, 1169–1175 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Shi, Y. et al. Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biol. 18, e3000705 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Sun, X.-Y. et al. Generation of vascularized brain organoids to study neurovascular interactions. eLife 11, e76707 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Pérez-López, A., Torres-Suárez, A. I., Martín-Sabroso, C. & Aparicio-Blanco, J. An overview of in vitro 3D models of the blood–brain barrier as a tool to predict the in vivo permeability of nanomedicines. Adv. Drug Deliv. Rev. 196, 114816 (2023).

    Article  PubMed  Google Scholar 

  188. Basehore, S. E. et al. Laminar flow on endothelial cells suppresses eNOS O-GlcNAcylation to promote eNOS activity. Circ. Res. 129, 1054–1066 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Cucullo, L. et al. Immortalized human brain endothelial cells and flow-based vascular modeling: a marriage of convenience for rational neurovascular studies. J. Cereb. Blood Flow Metab. 28, 312–328 (2008).

    Article  PubMed  CAS  Google Scholar 

  190. Stanness, K. A. et al. Morphological and functional characterization of an in vitro blood–brain barrier model. Brain Res. 771, 329–342 (1997).

    Article  PubMed  CAS  Google Scholar 

  191. Cucullo, L., Hossain, M., Puvenna, V., Marchi, N. & Janigro, D. The role of shear stress in blood-brain barrier endothelial physiology. BMC Neurosci. 12, 40 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Naik, P. & Cucullo, L. In vitro blood–brain barrier models: current and perspective technologies. J. Pharm. Sci. 101, 1337–1354 (2012).

    Article  PubMed  CAS  Google Scholar 

  193. Abbott, N. J., Rönnbäck, L. & Hansson, E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci. 7, 41–53 (2006).

    Article  PubMed  CAS  Google Scholar 

  194. MacVicar, B. A. & Newman, E. A. Astrocyte regulation of blood flow in the brain. Cold Spring Harb. Perspect. Biol. 7, a020388 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Deli, M. A., Abrahám, C. S., Kataoka, Y. & Niwa, M. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell. Mol. Neurobiol. 25, 59–127 (2005).

    Article  PubMed  Google Scholar 

  196. Anfuso, C. D. et al. Endothelial cell-pericyte cocultures induce PLA2 protein expression through activation of PKCα and the MAPK/ERK cascade. J. Lipid Res. 48, 782–793 (2007).

    Article  PubMed  CAS  Google Scholar 

  197. Vandenhaute, E. et al. Modelling the neurovascular unit and the blood-brain barrier with the unique function of pericytes. Curr. Neurovasc. Res. 8, 258–269 (2011).

    Article  PubMed  CAS  Google Scholar 

  198. Xue, Q. et al. A novel brain neurovascular unit model with neurons, astrocytes and microvascular endothelial cells of rat. Int. J. Biol. Sci. 9, 174–189 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Lippmann, E. S., Weidenfeller, C., Svendsen, C. N. & Shusta, E. V. Blood-brain barrier modeling with co-cultured neural progenitor cell-derived astrocytes and neurons. J. Neurochem. 119, 507–520 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Agarwal, P. et al. Microfluidics enabled bottom-up engineering of 3D vascularized tumor for drug discovery. ACS Nano 11, 6691–6702 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Campisi, M. et al. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials 180, 117–129 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Prabhakarpandian, B. et al. SyM-BBB: a microfluidic blood brain barrier model. Lab Chip 13, 1093–1101 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Booth, R. & Kim, H. Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab Chip 12, 1784–1792 (2012).

    Article  PubMed  CAS  Google Scholar 

  204. Cho, H. et al. Three-dimensional blood-brain barrier model for in vitro studies of neurovascular pathology. Sci. Rep. 5, 15222 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Brown, J. A. et al. Recreating blood-brain barrier physiology and structure on chip: a novel neurovascular microfluidic bioreactor. Biomicrofluidics 9, 054124 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Wang, J. D., Khafagy, E.-S., Khanafer, K., Takayama, S. & ElSayed, M. E. H. Organization of endothelial cells, pericytes, and astrocytes into a 3D microfluidic in vitro model of the blood–brain barrier. Mol. Pharm. 13, 895–906 (2016).

    Article  PubMed  CAS  Google Scholar 

  207. Shin, Y. et al. Blood–brain barrier dysfunction in a 3D in vitro model of Alzheimer’s disease. Adv. Sci. 6, 1900962 (2019).

    Article  CAS  Google Scholar 

  208. Seo, S., Nah, S.-Y., Lee, K., Choi, N. & Kim, H. N. Triculture model of in vitro BBB and its application to study BBB-associated chemosensitivity and drug delivery in glioblastoma. Adv. Funct. Mater. 32, 2106860 (2022).

    Article  CAS  Google Scholar 

  209. Adjei-Sowah, E. A. et al. Investigating the interactions of glioma stem cells in the perivascular niche at single-cell resolution using a microfluidic tumor microenvironment model. Adv. Sci. 9, 2201436 (2022).

    Article  CAS  Google Scholar 

  210. Gilbertson, R. J. & Rich, J. N. Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat. Rev. Cancer 7, 733–736 (2007).

    Article  PubMed  CAS  Google Scholar 

  211. Xu, H. et al. A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors. Sci. Rep. 6, 36670 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Truong, D. et al. A three-dimensional (3D) organotypic microfluidic model for glioma stem cells – vascular interactions. Biomaterials 198, 63–77 (2019).

    Article  PubMed  CAS  Google Scholar 

  213. Strech, D. & Dirnagl, U. 3Rs missing: animal research without scientific value is unethical. BMJ Open Sci. 3, bmjos-2018-000048 (2019).

  214. NC3RS Guidelines: Non-human Primate Accommodation, Care And Use 2nd edn (NC3Rs, 2017).

  215. Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 9, 203–214 (2010).

    Article  PubMed  CAS  Google Scholar 

  216. Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Rice, J. Animal models: not close enough. Nature 484, S9 (2012).

    Article  PubMed  Google Scholar 

  218. van der Worp, H. B. et al. Can animal models of disease reliably inform human studies? PLoS Med. 7, e1000245 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Griffith, L. G. & Swartz, M. A. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7, 211–224 (2006).

    Article  PubMed  CAS  Google Scholar 

  220. Ridky, T. W., Chow, J. M., Wong, D. J. & Khavari, P. A. Invasive three-dimensional organotypic neoplasia from multiple normal human epithelia. Nat. Med. 16, 1450–1455 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Hotary, K. B. et al. Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell 114, 33–45 (2003).

    Article  PubMed  CAS  Google Scholar 

  222. Zeng, H. et al. Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell 149, 483–496 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Linville, R. M. & Searson, P. C. Next-generation in vitro blood–brain barrier models: benchmarking and improving model accuracy. Fluids Barriers CNS 18, 56 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Wianny, F., Kennedy, H. & Dehay, C. Bridging the gap between mechanics and genetics in cortical folding: ECM as a major driving force. Neuron 99, 625–627 (2018).

    Article  PubMed  CAS  Google Scholar 

  227. Long, K. R. et al. Extracellular matrix components HAPLN1, lumican, and collagen I cause hyaluronic acid-dependent folding of the developing human neocortex. Neuron 99, 702–719.e6 (2018).

    Article  PubMed  CAS  Google Scholar 

  228. Pokhilko, A. et al. Global proteomic analysis of extracellular matrix in mouse and human brain highlights relevance to cerebrovascular disease. J. Cereb. Blood Flow Metab. 41, 2423–2438 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Wolman, M. et al. Evaluation of the dye-protein tracers in pathophysiology of the blood-brain barrier. Acta Neuropathol. 54, 55–61 (1981).

    Article  PubMed  CAS  Google Scholar 

  230. Vigh, J. P. et al. Transendothelial electrical resistance measurement across the blood-brain barrier: a critical review of methods. Micromachines 12, 685 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Gerhartl, A. et al. Hydroxyethylstarch (130/0.4) tightens the blood-brain barrier in vitro. Brain Res. 1727, 146560 (2020).

    Article  PubMed  CAS  Google Scholar 

  232. Torres, R., Pizarro, L., Csendes, A., García, C. & Lagos, N. GTX 2/3 epimers permeate the intestine through a paracellular pathway. J. Toxicol. Sci. 32, 241–248 (2007).

    Article  PubMed  CAS  Google Scholar 

  233. Matter, K. & Balda, M. S. Functional analysis of tight junctions. Methods 30, 228–234 (2003).

    Article  PubMed  CAS  Google Scholar 

  234. Zhang, S. et al. The barrier and interface mechanisms of the brain barrier, and brain drug delivery. Brain Res. Bull. 190, 69–83 (2022).

    Article  PubMed  CAS  Google Scholar 

  235. Seelig, A. The role of size and charge for blood–brain barrier permeation of drugs and fatty acids. J. Mol. Neurosci. 33, 32–41 (2007).

    Article  PubMed  CAS  Google Scholar 

  236. Sivandzade, F. & Cucullo, L. In-vitro blood-brain barrier modeling: a review of modern and fast-advancing technologies. J. Cereb. Blood Flow Metab. 38, 1667–1681 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Santa-Maria, A. R. et al. in Physiology, Pharmacology and Pathology of the Blood-Brain Barrier (eds Cader, Z. & Neuhaus, W.) 187–204 (Springer, 2022).

  238. Zobel, K., Hansen, U. & Galla, H. J. Blood-brain barrier properties in vitro depend on composition and assembly of endogenous extracellular matrices. Cell Tissue Res. 365, 233–245 (2016).

    Article  PubMed  CAS  Google Scholar 

  239. Helms, H. C. et al. In vitro models of the blood–brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J. Cereb. Blood Flow Metab. 36, 862–890 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Bhalerao, A. et al. In vitro modeling of the neurovascular unit: advances in the field. Fluids Barriers CNS 17, 22 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Lee, C. S. & Leong, K. W. Advances in microphysiological blood-brain barrier (BBB) models towards drug delivery. Curr. Opin. Biotechnol. 66, 78–87 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Offeddu, G. S. et al. An on-chip model of protein paracellular and transcellular permeability in the microcirculation. Biomaterials 212, 115–125 (2019).

    Article  PubMed  CAS  Google Scholar 

  243. Le Joncour, V., Karaman, S. & Laakkonen, P. M. Predicting in vivo payloads delivery using a blood-brain tumor-barrier in a dish. J. Vis. Exp. https://doi.org/10.3791/59384 (2019).

  244. Shah, B. & Dong, X. Current status of in vitro models of the blood-brain barrier. Curr. Drug Deliv. 19, 1034–1046 (2022).

    Article  PubMed  CAS  Google Scholar 

  245. Nag, S. Morphology and properties of brain endothelial cells. Methods Mol. Biol. 686, 3–47 (2011).

    Article  PubMed  CAS  Google Scholar 

  246. Cabezas, R. et al. Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease. Front. Cell. Neurosci. 8, 211 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Simard, M., Arcuino, G., Takano, T., Liu, Q. S. & Nedergaard, M. Signaling at the gliovascular interface. J. Neurosci. 23, 9254–9262 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Kacem, K., Lacombe, P., Seylaz, J. & Bonvento, G. Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study. Glia 23, 1–10 (1998).

    Article  PubMed  CAS  Google Scholar 

  249. Iadecola, C. & Nedergaard, M. Glial regulation of the cerebral microvasculature. Nat. Neurosci. 10, 1369–1376 (2007).

    Article  PubMed  CAS  Google Scholar 

  250. Al Ahmad, A., Taboada, C. B., Gassmann, M. & Ogunshola, O. O. Astrocytes and pericytes differentially modulate blood-brain barrier characteristics during development and hypoxic insult. J. Cereb. Blood Flow Metab. 31, 693–705 (2011).

    Article  PubMed  Google Scholar 

  251. Kadry, H., Noorani, B. & Cucullo, L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 17, 69 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  252. von Bartheld, C. S. Myths and truths about the cellular composition of the human brain: a review of influential concepts. J. Chem. Neuroanat. 93, 2–15 (2018).

    Article  Google Scholar 

  253. Dorrier, C. E., Jones, H. E., Pintarić, L., Siegenthaler, J. A. & Daneman, R. Emerging roles for CNS fibroblasts in health, injury and disease. Nat. Rev. Neurosci. 23, 23–34 (2022).

    Article  PubMed  CAS  Google Scholar 

  254. Bahney, J. & von Bartheld, C. S. The cellular composition and glia–neuron ratio in the spinal cord of a human and a nonhuman primate: comparison with other species and brain regions. Anat. Rec. 301, 697–710 (2018).

    Article  Google Scholar 

  255. Vatine, G. D. et al. Human iPSC-derived blood-brain barrier chips enable disease modeling and personalized medicine applications. Cell Stem Cell 24, 995–1005.e6 (2019).

    Article  PubMed  CAS  Google Scholar 

  256. Perrière, N. et al. A functional in vitro model of rat blood–brain barrier for molecular analysis of efflux transporters. Brain Res. 1150, 1–13 (2007).

    Article  PubMed  Google Scholar 

  257. Pediaditakis, I. et al. A microengineered Brain-Chip to model neuroinflammation in humans. iScience 25, 104813 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  258. Park, T.-E. et al. Hypoxia-enhanced Blood-Brain Barrier Chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat. Commun. 10, 2621 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Linville, R. M. et al. Human iPSC-derived blood-brain barrier microvessels: validation of barrier function and endothelial cell behavior. Biomaterials 190-191, 24–37 (2019).

    Article  PubMed  CAS  Google Scholar 

  260. Appelt-Menzel, A. et al. Establishment of a human blood-brain barrier co-culture model mimicking the neurovascular unit using induced pluri- and multipotent stem cells. Stem Cell Rep. 8, 894–906 (2017).

    Article  CAS  Google Scholar 

  261. Wang, Y. I., Abaci, H. E. & Shuler, M. L. Microfluidic blood–brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol. Bioeng. 114, 184–194 (2017).

    Article  PubMed  CAS  Google Scholar 

  262. Wuest, D. M. & Lee, K. H. Optimization of endothelial cell growth in a murine in vitro blood–brain barrier model. Biotechnol. J. 7, 409–417 (2012).

    Article  PubMed  CAS  Google Scholar 

  263. Kim, J. et al. Manufactured tissue-to-tissue barrier chip for modeling the human blood–brain barrier and regulation of cellular trafficking. Lab Chip 23, 2990–3001 (2023).

    Article  PubMed  CAS  Google Scholar 

  264. Jeong, S. et al. A three-dimensional arrayed microfluidic blood–brain barrier model with integrated electrical sensor array. IEEE Trans. Biomed. Eng. 65, 431–439 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Brown, T. D. et al. A microfluidic model of human brain (μHuB) for assessment of blood brain barrier. Bioeng. Transl. Med. 4, e10126 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Li, G. et al. Permeability of endothelial and astrocyte cocultures: in vitro blood–brain barrier models for drug delivery studies. Ann. Biomed. Eng. 38, 2499–2511 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Lyu, Z. et al. A neurovascular-unit-on-a-chip for the evaluation of the restorative potential of stem cell therapies for ischaemic stroke. Nat. Biomed. Eng. 5, 847–863 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  268. Huang, K. et al. A hybrid nanofiber/paper cell culture platform for building a 3D blood–brain barrier model. Small Methods 5, 2100592 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  269. Kim, W. et al. Simplified in vitro 3D co-culture-based blood-brain barrier model using transwell. Biochem. Biophys. Res. Commun. 620, 63–68 (2022).

    Article  PubMed  CAS  Google Scholar 

  270. Vandenhaute, E. et al. Adapting coculture in vitro models of the blood–brain barrier for use in cancer research: maintaining an appropriate endothelial monolayer for the assessment of transendothelial migration. Lab. Invest. 96, 588–598 (2016).

    Article  PubMed  CAS  Google Scholar 

  271. Cecchelli, R. et al. In vitro model for evaluating drug transport across the blood–brain barrier. Adv. Drug Deliv. Rev. 36, 165–178 (1999).

    Article  PubMed  CAS  Google Scholar 

  272. Lee, S., Chung, M., Lee, S.-R. & Jeon, N. L. 3D brain angiogenesis model to reconstitute functional human blood–brain barrier in vitro. Biotechnol. Bioeng. 117, 748–762 (2020).

    Article  PubMed  CAS  Google Scholar 

  273. Bang, S. et al. A low permeability microfluidic blood-brain barrier platform with direct contact between perfusable vascular network and astrocytes. Sci. Rep. 7, 8083 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Wei, W., Cardes, F., Hierlemann, A. & Modena, M. M. 3D in vitro blood-brain-barrier model for investigating barrier insults. Adv. Sci. 10, 2205752 (2023).

    Article  CAS  Google Scholar 

  275. Jeffery, A. F., Churchward, M. A., Mushahwar, V. K., Todd, K. G. & Elias, A. L. Hyaluronic acid-based 3D culture model for in vitro testing of electrode biocompatibility. Biomacromolecules 15, 2157–2165 (2014).

    Article  PubMed  CAS  Google Scholar 

  276. Shibata, K., Terazono, H., Hattori, A. & Yasuda, K. Collagen micro-flow channels as an forin vitroblood-brain barrier model. Jpn. J. Appl. Phys. 47, 5208–5211 (2008).

    Article  CAS  Google Scholar 

  277. Stone, N. L., England, T. J. & O’Sullivan, S. E. A novel transwell blood brain barrier model using primary human cells. Front. Cell. Neurosci. 13, 230 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  278. Wevers, N. R. et al. A perfused human blood–brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport. Fluids Barriers CNS 15, 23 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  279. Sellgren, K. L., Hawkins, B. T. & Grego, S. An optically transparent membrane supports shear stress studies in a three-dimensional microfluidic neurovascular unit model. Biomicrofluidics 9, 061102 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Cox, A. et al. Evolution of nanoparticle protein corona across the blood–brain barrier. ACS Nano 12, 7292–7300 (2018).

    Article  PubMed  CAS  Google Scholar 

  281. Tian, X., Brookes, O. & Battaglia, G. Pericytes from mesenchymal stem cells as a model for the blood-brain barrier. Sci. Rep. 7, 39676 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  282. Setiadi, A. F. et al. IL-17A is associated with the breakdown of the blood-brain barrier in relapsing-remitting multiple sclerosis. J. Neuroimmunol. 332, 147–154 (2019).

    Article  PubMed  CAS  Google Scholar 

  283. Kim, J. A. et al. Collagen-based brain microvasculature model in vitro using three-dimensional printed template. Biomicrofluidics 9, 024115 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Adriani, G., Ma, D., Pavesi, A., Kamm, R. D. & Goh, E. L. K. A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood–brain barrier. Lab Chip 17, 448–459 (2017).

    Article  PubMed  CAS  Google Scholar 

  285. Aisenbrey, E. A. & Murphy, W. L. Synthetic alternatives to matrigel. Nat. Rev. Mater. 5, 539–551 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  286. Rui, V., Richard, J. F., Alessandro, C. & Marguerite, N.-A. Fibrin(ogen) in human disease: both friend and foe. Haematologica 105, 284–296 (2020).

    Article  Google Scholar 

  287. Conforti, P. et al. Fibrinogen regulates lesion border-forming reactive astrocyte properties after vascular damage. Glia 70, 1251–1266 (2022).

    Article  PubMed  CAS  Google Scholar 

  288. Schachtrup, C. et al. Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-beta after vascular damage. J. Neurosci. 30, 5843–5854 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  289. Tjakra, M. et al. Overview of crosstalk between multiple factor of transcytosis in blood brain barrier. Front. Neurosci. 13, 1436 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Yang, A. C. et al. Physiological blood–brain transport is impaired with age by a shift in transcytosis. Nature 583, 425–430 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  291. Erickson, M. A. & Banks, W. A. Transcellular routes of blood–brain barrier disruption. Exp. Biol. Med. 247, 788–796 (2022).

    Article  CAS  Google Scholar 

  292. Park, J. S. et al. Establishing co-culture blood–brain barrier models for different neurodegeneration conditions to understand its effect on BBB integrity. Int. J. Mol. Sci. 24, 5283 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  293. Pediaditakis, I. et al. Modeling alpha-synuclein pathology in a human brain-chip to assess blood-brain barrier disruption. Nat. Commun. 12, 5907 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  294. Cai, P. et al. New blood–brain barrier models using primary Parkinson’s disease rat brain endothelial cells and astrocytes for the development of central nervous system drug delivery systems. ACS Chem. Neurosci. 12, 3829–3837 (2021).

    Article  PubMed  CAS  Google Scholar 

  295. Skene, N. G. & Grant, S. G. Identification of vulnerable cell types in major brain disorders using single cell transcriptomes and expression weighted cell type enrichment. Front. Neurosci. 10, 16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  296. Kwon, E. et al. Analyzing the changes in the brain material properties after a mild traumatic brain injury—a pilot study. Eng. Rep. 3, e12332 (2021).

    Article  Google Scholar 

  297. Murphy, M. C. et al. Decreased brain stiffness in Alzheimer’s disease determined by magnetic resonance elastography. J. Magn. Reson. Imaging 34, 494–498 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  298. Wolf, K. J., Chen, J., Coombes, J. D., Aghi, M. K. & Kumar, S. Dissecting and rebuilding the glioblastoma microenvironment with engineered materials. Nat. Rev. Mater. 4, 651–668 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  299. Bowman, G. L. et al. Blood-brain barrier breakdown, neuroinflammation, and cognitive decline in older adults. Alzheimers Dement. 14, 1640–1650 (2018).

    Article  PubMed  Google Scholar 

  300. Sarkaria, J. N. et al. Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro Oncol. 20, 184–191 (2018).

    Article  PubMed  CAS  Google Scholar 

  301. Pitz, M. W., Desai, A., Grossman, S. A. & Blakeley, J. O. Tissue concentration of systemically administered antineoplastic agents in human brain tumors. J. Neurooncol. 104, 629–638 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  302. Kim, J. H., Kim, J. H., Yu, Y. S., Kim, D. H. & Kim, K. W. Recruitment of pericytes and astrocytes is closely related to the formation of tight junction in developing retinal vessels. J. Neurosci. Res. 87, 653–659 (2009).

    Article  PubMed  CAS  Google Scholar 

  303. Gardner, T. W. et al. Astrocytes increase barrier properties and ZO-1 expression in retinal vascular endothelial cells. Invest. Ophthalmol. Vis. Sci. 38, 2423–2427 (1997).

    PubMed  CAS  Google Scholar 

  304. Huang, H., He, X. & Yarmush, M. L. Advanced technologies for the preservation of mammalian biospecimens. Nat. Biomed. Eng. 5, 793–804 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  305. Herland, A. et al. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood-brain barrier on a chip. PLoS ONE 11, e0150360 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  306. Hawkins, R. A., O’Kane, R. L., Simpson, I. A. & Viña, J. R. Structure of the blood–brain barrier and its role in the transport of amino acids. J. Nutr. 136, 218S–226S (2006).

    Article  PubMed  CAS  Google Scholar 

  307. Kim, S. et al. Human bone marrow-derived mesenchymal stem cells play a role as a vascular pericyte in the reconstruction of human BBB on the angiogenesis microfluidic chip. Biomaterials 279, 121210 (2021).

    Article  PubMed  CAS  Google Scholar 

  308. Hajal, C. et al. Engineered human blood–brain barrier microfluidic model for vascular permeability analyses. Nat. Protoc. 17, 95–128 (2022).

    Article  PubMed  CAS  Google Scholar 

  309. Takano, T. et al. Astrocyte-mediated control of cerebral blood flow. Nat. Neurosci. 9, 260–267 (2006).

    Article  PubMed  CAS  Google Scholar 

  310. Winkelman, M. A. & Dai, G. Bioengineered perfused human brain microvascular networks enhance neural progenitor cell survival, neurogenesis, and maturation. Sci. Adv. 9, eaaz9499 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  311. Garcia-Polite, F. et al. Pulsatility and high shear stress deteriorate barrier phenotype in brain microvascular endothelium. J. Cereb. Blood Flow Metab. 37, 2614–2625 (2017).

    Article  PubMed  CAS  Google Scholar 

  312. Kamiya, A., Bukhari, R. & Togawa, T. Adaptive regulation of wall shear stress optimizing vascular tree function. Bull. Math. Biol. 46, 127–137 (1984).

    Article  PubMed  CAS  Google Scholar 

  313. Ozturk, M. S. et al. High-resolution tomographic analysis of in vitro 3D glioblastoma tumor model under long-term drug treatment. Sci. Adv. 6, eaay7513 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  314. Cui, H., Nowicki, M., Fisher, J. P. & Zhang, L. G. 3D bioprinting for organ regeneration. Adv. Healthc. Mater. 6, 1601118 (2017).

    Article  Google Scholar 

  315. Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014).

    Article  PubMed  CAS  Google Scholar 

  316. Gopinathan, J. & Noh, I. Recent trends in bioinks for 3D printing. Biomater. Res. 22, 11 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  317. Urbanczyk, M., Layland, S. L. & Schenke-Layland, K. The role of extracellular matrix in biomechanics and its impact on bioengineering of cells and 3D tissues. Matrix Biol. 85-86, 1–14 (2020).

    Article  PubMed  CAS  Google Scholar 

  318. Reinhard, J., Brösicke, N., Theocharidis, U. & Faissner, A. The extracellular matrix niche microenvironment of neural and cancer stem cells in the brain. Int. J. Biochem. Cell Biol. 81, 174–183 (2016).

    Article  PubMed  CAS  Google Scholar 

  319. Potjewyd, G., Moxon, S., Wang, T., Domingos, M. & Hooper, N. M. Tissue engineering 3D neurovascular units: a biomaterials and bioprinting perspective. Trends Biotechnol. 36, 457–472 (2018).

    Article  PubMed  CAS  Google Scholar 

  320. Heinrich, M. A. et al. 3D-bioprinted mini-brain: a glioblastoma model to study cellular interactions and therapeutics. Adv. Mater. 31, 1806590 (2019).

    Article  Google Scholar 

  321. Xu, T. et al. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27, 3580–3588 (2006).

    PubMed  CAS  Google Scholar 

  322. Tse, C. et al. Inkjet printing Schwann cells and neuronal analogue NG108-15 cells. Biofabrication 8, 015017 (2016).

    Article  PubMed  Google Scholar 

  323. Faulkner-Jones, A. et al. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication 7, 044102 (2015).

    Article  PubMed  Google Scholar 

  324. Ouyang, L. et al. Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation. Biofabrication 7, 044101 (2015).

    Article  PubMed  Google Scholar 

  325. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  PubMed  CAS  Google Scholar 

  326. Mouw, J. K., Ou, G. & Weaver, V. M. Extracellular matrix assembly: a multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 15, 771–785 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  327. Bellail, A. C., Hunter, S. B., Brat, D. J., Tan, C. & Van Meir, E. G. Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int. J. Biochem. Cell Biol. 36, 1046–1069 (2004).

    Article  PubMed  CAS  Google Scholar 

  328. Agarwal, P. et al. One-step microfluidic generation of pre-hatching embryo-like core–shell microcapsules for miniaturized 3D culture of pluripotent stem cells. Lab Chip 13, 4525–4533 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  329. Zhao, S. et al. Coaxial electrospray of liquid core–hydrogel shell microcapsules for encapsulation and miniaturized 3D culture of pluripotent stem cells. Integr. Biol. 6, 874–884 (2014).

    Article  CAS  Google Scholar 

  330. Zhao, S. et al. Bioengineering of injectable encapsulated aggregates of pluripotent stem cells for therapy of myocardial infarction. Nat. Commun. 7, 13306 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  331. Xu, J. et al. Bioinspired 3D culture in nanoliter hyaluronic acid-rich core-shell hydrogel microcapsules isolates highly pluripotent human iPSCs. Small 17, 2102219 (2021).

    Article  CAS  Google Scholar 

  332. BRAIN Initiative Cell Census Network (BICCN). A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 598, 86–102 (2021).

  333. Sokolova, V. et al. Transport of ultrasmall gold nanoparticles (2 nm) across the blood–brain barrier in a six-cell brain spheroid model. Sci. Rep. 10, 18033 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  334. Liu, R. et al. Glymphatic system and subsidiary pathways drive nanoparticles away from the brain. Research 2022, 9847612 (2022).

  335. Banerjee, S. & Bhat, M. A. Neuron-glial interactions in blood-brain barrier formation. Annu. Rev. Neurosci. 30, 235–258 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  336. Ransohoff, R. M. & El Khoury, J. Microglia in health and disease. Cold Spring Harb. Perspect. Biol. 8, a020560 (2015).

    Article  PubMed  Google Scholar 

  337. Haruwaka, K. et al. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat. Commun. 10, 5816 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  338. Lu, T. M. et al. Pluripotent stem cell-derived epithelium misidentified as brain microvascular endothelium requires ETS factors to acquire vascular fate. Proc. Natl Acad. Sci. USA 118, e2016950118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  339. Zainel, A., Mitchell, H. & Sadarangani, M. Bacterial meningitis in children: neurological complications, associated risk factors, and prevention. Microorganisms 9, 535 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  340. Anil, A. & Banerjee, A. Pneumococcal encounter with the blood-brain barrier endothelium. Front. Cell. Infect. Microbiol. 10, 590682 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  341. Shepro, D. & Morel, N. M. L. Pericyte physiology. FASEB J. 7, 1031–1038 (1993).

    Article  PubMed  CAS  Google Scholar 

  342. Pardridge, W. M. Blood-brain barrier biology and methodology. J. Neurovirol. 5, 556–569 (1999).

    Article  PubMed  CAS  Google Scholar 

  343. von Bartheld, C. S., Bahney, J. & Herculano-Houzel, S. The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J. Comp. Neurol. 524, 3865–3895 (2016).

    Article  Google Scholar 

  344. Alajangi, H. K. et al. Blood–brain barrier: emerging trends on transport models and new-age strategies for therapeutics intervention against neurological disorders. Mol. Brain 15, 49 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  345. Löscher, W. & Potschka, H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2, 86–98 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  346. Worzfeld, T. & Schwaninger, M. Apicobasal polarity of brain endothelial cells. J. Cereb. Blood Flow Metab. 36, 340–362 (2016).

    Article  PubMed  CAS  Google Scholar 

  347. Kim, J. et al. Fungal brain infection modelled in a human-neurovascular-unit-on-a-chip with a functional blood–brain barrier. Nat. Biomed. Eng. 5, 830–846 (2021).

    Article  PubMed  Google Scholar 

  348. Wang, P. et al. Blood–brain barrier injury and neuroinflammation induced by SARS-CoV-2 in a lung–brain microphysiological system. Nat. Biomed. Eng. 8, 1053–1068 (2024).

    Article  PubMed  CAS  Google Scholar 

  349. Qazi, M. A., Bakhshinyan, D. & Singh, S. K. Deciphering brain tumor heterogeneity, one cell at a time. Nat. Med. 25, 1474–1476 (2019).

    Article  PubMed  CAS  Google Scholar 

  350. Tirosh, I. & Suvà, M. L. Tackling the many facets of glioblastoma heterogeneity. Cell Stem Cell 26, 303–304 (2020).

    Article  PubMed  CAS  Google Scholar 

  351. Duara, R. & Barker, W. Heterogeneity in Alzheimer’s disease diagnosis and progression rates: implications for therapeutic trials. Neurotherapeutics 19, 8–25 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  352. Habes, M. et al. Disentangling heterogeneity in Alzheimer’s disease and related dementias using data-driven methods. Biol. Psychiatry 88, 70–82 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  353. Albrecht, F. et al. Unraveling Parkinson’s disease heterogeneity using subtypes based on multimodal data. Parkinsonism Relat. Disord. 102, 19–29 (2022).

    Article  PubMed  Google Scholar 

  354. Kaiser, S. et al. A proteogenomic view of Parkinson’s disease causality and heterogeneity. npj Parkinsons Dis. 9, 24 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  355. Booth, R. & Kim, H. Permeability analysis of neuroactive drugs through a dynamic microfluidic in vitro blood–brain barrier model. Ann. Biomed. Eng. 42, 2379–2391 (2014).

    Article  PubMed  CAS  Google Scholar 

  356. Shamul, J. G. & He, X. Dataset for ‘Meta-analysis of the make-up and properties of in vitro models of the healthy and diseased blood–brain barrier’. figshare https://doi.org/10.6084/m9.figshare.24480850 (2024).

Download references

Acknowledgements

This work was partially supported by grants from the University of Maryland Brain and Behavior Institute, the National Cancer Institute (NCI)–University of Maryland Partnership for Integrative Cancer Research Program, and the NCI (R01CA279815). BioRender (Biorender.com) was used to produce part of the illustrations in Figs. 13.

Author information

Authors and Affiliations

Authors

Contributions

X.H. conceived this project and supervised the data analysis, presentation, interpretation and manuscript writing. J.G.S. gathered meta-data, performed statistical analyses, generated figures, and wrote and revised the manuscript drafts. Z.W., H.G., W.O., A.M.W. and D.P.M.-G. generated/edited figures, tables or video. S.G., A.M.C. and A.Q.-H. edited the manuscript.

Corresponding authors

Correspondence to Alfredo Quiñones-Hinojosa or Xiaoming He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Seung-Woo Cho and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Transwell insert pore size and material-based analyses.

a, Normalized permeability values of reported co-culture transwell BBB models versus pore size, with respect to (that is, normalized by) the corresponding EC mono-culture models. b, Normalized TEER values of reported co-culture transwell BBB models versus pore size, with respect to (that is, normalized by) the corresponding EC mono-culture models. c, Normalized permeability values of reported co-culture transwell BBB models versus insert materials, with respect to (that is, normalized by) the corresponding EC mono-culture models. d, Normalized TEER values of reported co-culture transwell BBB models versus insert materials, with respect to (that is, normalized by) the corresponding EC mono-culture models. For c-d, statistical analyses were performed using one-way ANOVA with post hoc Tukey’s multiple comparisons tests. There is no statistical significance between any of the groups in c-d. In each panel, every unfilled, hollow circle represents a different, non-outlier data set of the listed model/co-culture conditions. Every filled, solid circle represents an outlier which was not included in any statistical analysis. Error bars represent standard error of the mean. In a-b, a line of best fit is shown together with the line equation and goodness of fit (R2).

Source data

Extended Data Fig. 2 Tracer molecule type and molecular-weight-based analysis.

a, Absolute permeability values of reported EC mono-culture transwell and microfluidic BBB models grouped by tracer type used in the permeability measurement. b, Absolute permeability values of reported EC mono-culture transwell and microfluidic BBB models versus molecular weight of dextran used in the permeability measurement. For a, statistical analyses were performed using one-way ANOVA with post hoc Tukey’s multiple comparisons tests. There is no statistical significance between any of the groups in a. In each panel, every unfilled, hollow circle represents a different, non-outlier data set of the listed model/co-culture conditions. Every filled, solid circle represents an outlier which was not included in any statistical analysis. Error bars represent standard error of the mean. In b, a line of best fit is shown together with the line equation and goodness of fit (R2).

Source data

Extended Data Fig. 3 Cell-ratio-based meta-analyses.

a, Normalized permeability values of bi-culture (pericyte and EC) BBB models versus ratio groups of pericyte (X) to EC (1). Each ratio group represents a range of pericyte (X) to EC ratios (1). b, Normalized permeability values of bi-culture (astrocyte and EC) BBB models versus ratio groups of astrocyte (X) to EC (1). Each ratio group represents a range of astrocyte (X) to EC ratios (1). c, Normalized permeability values of tri-culture (pericyte, astrocyte, and EC) BBB models versus ratio groups of pericyte and astrocyte altogether (X) to EC (1). Each ratio group represents a range of pericyte and astrocyte altogether (X) to EC ratios (1). d, Normalized permeability values of tri-culture (pericyte, astrocyte, and EC) BBB models versus ratio groups of astrocyte (X) to pericyte (1) from these models, with respect to (that is, normalized by) the corresponding EC mono-culture models. For a-c, statistical analyses were performed using one-way ANOVA with post hoc Tukey’s multiple comparisons tests. There is no statistical significance between any of the groups. In b, the dark color-filled, solid circle represents an outlier which was not included in the statistical analysis. In each panel, every unfilled, hollow circle represents a different, non-outlier data set of the listed model/co-culture. For data sets with n < 3, the violin was omitted and only the data points were plotted. For the violin plots in a-c, the coarsely-dashed, thicker line in each violin represents the median (50th percentile) of the data set, and the upper and lower more finely-dashed, thinner lines represent the upper (75th percentile) and lower (25th percentile) quartiles of the data set, respectively. In d, a line of best fit is shown together with the line equation and goodness of fit (R2). NP and NA refer to the number of pericyte (P) and astrocyte (A), respectively. The ranges of NP > NA and NA > NP are shaded in different colors in d.

Source data

Extended Data Fig. 4 A survey of the make-up, permeability value, and engineering tool used for BBB model fabrication.

The make-up includes extracellular matrix (ECM) materials, and cell types. NA represents ‘not applicable’ due to a lack of this data in the specific work.

Supplementary information

Supplementary Information

Supplementary notes, tables, references and video caption.

Reporting Summary

Peer Review File

Supplementary Video 1

3D reconstruction of 7 Tesla (7 T) MRI illustrating cortical structures.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamul, J.G., Wang, Z., Gong, H. et al. Meta-analysis of the make-up and properties of in vitro models of the healthy and diseased blood–brain barrier. Nat. Biomed. Eng (2024). https://doi.org/10.1038/s41551-024-01250-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-024-01250-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing