Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comparison of three congruent patient-specific cell types for the modelling of a human genetic Schwann-cell disorder

Abstract

Patient-specific human-induced pluripotent stem cells (hiPSCs) hold great promise for the modelling of genetic disorders. However, these cells display wide intra- and interindividual variations in gene expression, which makes distinguishing true-positive and false-positive phenotypes challenging. Data from hiPSC phenotypes and human embryonic stem cells (hESCs) harbouring the same disease mutation are also lacking. Here, we report a comparison of the molecular, cellular and functional characteristics of three congruent patient-specific cell types—hiPSCs, hESCs and direct-lineage-converted cells—derived from currently available differentiation and direct-reprogramming technologies for use in the modelling of Charcot−Marie−Tooth 1A, a human genetic Schwann-cell disorder featuring a 1.4 Mb chromosomal duplication. We find that the chemokines C−X−C motif ligand chemokine-1 (CXCL1) and macrophage chemoattractant protein-1 (MCP1) are commonly upregulated in all three congruent models and in clinical patient samples. The development of congruent models of a single genetic disease using somatic cells from a common patient will facilitate the search for convergent phenotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Directed differentiation and prospective isolation of Schwann cells from hESCs.
Fig. 2: Modelling CMT1A with human Schwann cells from patient-derived hiPSCs.
Fig. 3: Development of congruent CMT1A disease models by employing different cell-fate manipulating methods.
Fig. 4: Validation of the converged CMT1A phenotype from congruent Schwann-cell models.
Fig. 5: Association between PMP22 gene dosage and inflammatory signatures.

Similar content being viewed by others

Data availability

All data supporting the results of this study are available within the Article and the Supplementary Information. RNA sequencing data from CMT1A and control hESC−SCPs, hiPSC−SCPs and hiNC−Schwann cells have been uploaded to GEO under accession code GSE85598.

References

  1. Park, I. H. et al. Disease-specific induced pluripotent stem cells. Cell 134, 877–886 (2008).

    Article  CAS  Google Scholar 

  2. Lee, G. et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461, 402–406 (2009).

    Article  CAS  Google Scholar 

  3. Mertens, J. et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 17, 705–718 (2015).

    Article  CAS  Google Scholar 

  4. van Paassen, B. W. et al. PMP22 related neuropathies: Charcot-Marie-Tooth disease type 1A and hereditary neuropathy with liability to pressure palsies. Orphanet J. Rare Dis. 9, 38 (2014).

    Article  Google Scholar 

  5. Robaglia-Schlupp, A. et al. PMP22 overexpression causes dysmyelination in mice. Brain 125, 2213–2221 (2002).

    Article  CAS  Google Scholar 

  6. Passage, E. et al. Ascorbic acid treatment corrects the phenotype of a mouse model of Charcot-Marie-Tooth disease. Nat. Med. 10, 396–401 (2004).

    Article  CAS  Google Scholar 

  7. Burns, J. et al. Ascorbic acid for Charcot-Marie-Tooth disease type 1A in children: a randomised, double-blind, placebo-controlled, safety and efficacy trial. Lancet Neurol. 8, 537–544 (2009).

    Article  CAS  Google Scholar 

  8. Verhamme, C. et al. Oral high dose ascorbic acid treatment for one year in young CMT1A patients: a randomised, double-blind, placebo-controlled Phase II trial. BMC Med. 7, 70 (2009).

    Article  Google Scholar 

  9. Pareyson, D. et al. Ascorbic acid in Charcot-Marie-Tooth disease type 1A (CMT-TRIAAL and CMT-TRAUK): a double-blind randomised trial. Lancet Neurol. 10, 320–328 (2011).

    Article  CAS  Google Scholar 

  10. Micallef, J. et al. Effect of ascorbic acid in patients with Charcot-Marie-Tooth disease type 1A: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 8, 1103–1110 (2009).

    Article  CAS  Google Scholar 

  11. Lewis, R. A. et al. High-dosage ascorbic acid treatment in Charcot-Marie-Tooth disease type 1A: results of a randomized, double-masked, controlled trial. JAMA Neurol. 70, 981–987 (2013).

    Article  Google Scholar 

  12. Suter, U. et al. Regulation of tissue-specific expression of alternative peripheral myelin protein-22 (PMP22) gene transcripts by two promoters. J. Biol. Chem. 269, 25795–25808 (1994).

    CAS  PubMed  Google Scholar 

  13. Heine, W., Conant, K., Griffin, J. W. & Hoke, A. Transplanted neural stem cells promote axonal regeneration through chronically denervated peripheral nerves. Exp. Neurol. 189, 231–240 (2004).

    Article  CAS  Google Scholar 

  14. Fu, S. Y. & Gordon, T. Contributing factors to poor functional recovery after delayed nerve repair: prolonged denervation. J. Neurosci. 15, 3886–3895 (1995).

    Article  CAS  Google Scholar 

  15. Katona, I. et al. PMP22 expression in dermal nerve myelin from patients with CMT1A. Brain 132, 1734–1740 (2009).

    Article  Google Scholar 

  16. Akdis, M. et al. Interleukins, from 1 to 37, and interferon-gamma: receptors, functions, and roles in diseases. J. Allergy Clin. Immunol. 127, 701–721 (2011).

    Article  CAS  Google Scholar 

  17. Turner, M. D., Nedjai, B., Hurst, T. & Pennington, D. J. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta 1843, 2563–2582 (2014).

    Article  CAS  Google Scholar 

  18. Kim, Y. J. et al. Generation of multipotent induced neural crest by direct reprogramming of human postnatal fibroblasts with a single transcription factor. Cell Stem Cell 15, 497–506 (2014).

    Article  CAS  Google Scholar 

  19. Germain, P. L. & Testa, G. Taming human genetic variability: transcriptomic meta-analysis guides the experimental design and interpretation of iPSC-based disease modeling. Stem Cell Rep. 8, 1784–1796 (2017).

    Article  Google Scholar 

  20. Wu, J. et al. Insertional mutagenesis identifies a STAT3/Arid1b/beta-catenin pathway driving neurofibroma initiation. Cell Rep. 14, 1979–1990 (2016).

    Article  CAS  Google Scholar 

  21. Woodhoo, A. et al. Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity. Nat. Neurosci. 12, 839–847 (2009).

    Article  CAS  Google Scholar 

  22. D'Antonio, M. et al. TGFbeta type II receptor signaling controls Schwann cell death and proliferation in developing nerves. J. Neurosci. 26, 8417–8427 (2006).

    Article  CAS  Google Scholar 

  23. Clements, M. P. et al. The wound microenvironment reprograms Schwann cells to invasive mesenchymal-like cells to drive peripheral nerve regeneration. Neuron 96, 98–114(2017).

    Article  CAS  Google Scholar 

  24. Lee, S. M., Chin, L. S. & Li, L. Dysregulation of ErbB receptor trafficking and signaling in demyelinating Charcot-Marie-Tooth disease. Mol. Neurobiol. 54, 87–100 (2017).

    Article  CAS  Google Scholar 

  25. Nickols, J. C., Valentine, W., Kanwal, S. & Carter, B. D. Activation of the transcription factor NF-kappaB in Schwann cells is required for peripheral myelin formation. Nat. Neurosci. 6, 161–167 (2003).

    Article  CAS  Google Scholar 

  26. Tang, W. et al. Expression of Nrf2 promotes Schwann cell-mediated sciatic nerve recovery in diabetic peripheral neuropathy. Cell Physiol. Biochem. 46, 1879–1894 (2018).

    Article  CAS  Google Scholar 

  27. Mey, J., Schrage, K., Wessels, I. & Vollpracht-Crijns, I. Effects of inflammatory cytokines IL-1beta, IL-6, and TNFalpha on the intracellular localization of retinoid receptors in Schwann cells. Glia 55, 152–164 (2007).

    Article  Google Scholar 

  28. Zhang, G. et al. Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 497, 211–216 (2013).

    Article  CAS  Google Scholar 

  29. Trujillo, G. et al. Neutrophil recruitment to the lung in both C5a- and CXCL1-induced alveolitis is impaired in vitamin D-binding protein-deficient mice. J. Immunol. 191, 848–856 (2013).

    Article  CAS  Google Scholar 

  30. Vries, M. H. et al. CXCL1 promotes arteriogenesis through enhanced monocyte recruitment into the peri-collateral space. Angiogenesis 18, 163–171 (2015).

    Article  CAS  Google Scholar 

  31. Deshmane, S. L., Kremlev, S., Amini, S. & Sawaya, B. E. Monocyte chemoattractant protein-1 (MCP-1): an overview. J. Interf. Cytok. Res. 29, 313–326 (2009).

    Article  CAS  Google Scholar 

  32. Kohl, B., Fischer, S., Groh, J., Wessig, C. & Martini, R. MCP-1/CCL2 modifies axon properties in a PMP22-overexpressing mouse model for Charcot-Marie-Tooth 1A neuropathy. Am. J. Pathol. 176, 1390–1399 (2010).

    Article  CAS  Google Scholar 

  33. Kobsar, I., Hasenpusch-Theil, K., Wessig, C., Muller, H. W. & Martini, R. Evidence for macrophage-mediated myelin disruption in an animal model for Charcot-Marie-Tooth neuropathy type 1A. J. Neurosci. Res. 81, 857–864 (2005).

    Article  CAS  Google Scholar 

  34. Lehmann, H. C. et al. Human Schwann cells retain essential phenotype characteristics after immortalization. Stem Cells Dev. 21, 423–431 (2012).

    Article  CAS  Google Scholar 

  35. Monk, K. R. et al. A G protein-coupled receptor is essential for Schwann cells to initiate myelination. Science 325, 1402–1405 (2009).

    Article  CAS  Google Scholar 

  36. Wainger, B. J. et al. Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts. Nat. Neurosci. 18, 17–24 (2015).

    Article  CAS  Google Scholar 

  37. Meyer Zu Horste, G. & Nave, K. A. Animal models of inherited neuropathies. Curr. Opin. Neurol. 19, 464–473 (2006).

    Article  Google Scholar 

  38. Chittoor, V. G. et al. Biochemical characterization of protein quality control mechanisms during disease progression in the C22 mouse model of CMT1A. ASN Neuro. 5, e00128 (2013).

    Article  Google Scholar 

  39. Misko, A., Ferguson, T. & Notterpek, L. Matrix metalloproteinase mediated degradation of basement membrane proteins in Trembler J neuropathy nerves. J. Neurochem. 83, 885–894 (2002).

    Article  CAS  Google Scholar 

  40. Chambers, S. M. et al. Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat. Biotechnol. 30, 715–720 (2012).

    Article  CAS  Google Scholar 

  41. Jessen, K. R. & Mirsky, R. The origin and development of glial cells in peripheral nerves. Nat. Rev. Neurosci. 6, 671–682 (2005).

    Article  CAS  Google Scholar 

  42. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  Google Scholar 

  43. Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  Google Scholar 

  44. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  Google Scholar 

  45. Choi, I. Y., . & LimH.. & Lee, G. Efficient generation human induced pluripotent stem cells from human somatic cells with Sendai-virus. J. Vis. Exp. 86, e51406 (2014).

    Google Scholar 

  46. Koyanagi-Aoi, M. et al. Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells. Proc. Natl Acad. Sci. USA 110, 20569–20574 (2013).

    Article  CAS  Google Scholar 

  47. Kim, H. et al. miR-371-3 expression predicts neural differentiation propensity in human pluripotent stem cells. Cell Stem Cell 8, 695–706 (2011).

    Article  CAS  Google Scholar 

  48. Sareen, D. et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci. Transl. Med. 5, 208ra149 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The work in the Lee lab was supported by grants from the Robertson Investigator Award from the New York Stem Cell Foundation (G.L.), the CMT Association (G.L.), the National Institutes of Health through grant no. R01NS093213 (G.L.), the Muscular Dystrophy Association (G.L.) and MSCRF/TEDCO (G.L.). We also acknowledge salary support from the Johns Hopkins MD/PhD program (B.M.-C.), the FARMS Fellowship (B.M.-C.), the Adrienne Helis Malvin Medical Research Foundation (G.L., Y.O.) and the GRDC Programme through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2017K1A4A3014959). The work in the Kim lab was supported by grants from Kyung Hee University in 2016 (KHU-20160535), the Korea Health Technology R&D Project through the KHIDI funded by the Ministry of Health & Welfare, the Republic of Korea (HI16C2216) and NRF grants funded by the Korean government (NRF-2017R1C1B3009321, NRF-2017M3C7A1047640 and NRF-2017M3A9E4047243). The work in the Baloh lab was supported by grant nos. RN3-06530 (California Institute for Regenerative Medicine) and NS097545 (National Institutes of Health). The work in the Studer lab was supported by the New York State Stem Cell Fund (G.L., K.E. and L.S.) and New York state stem cell science program (NYSTEM, contract C32599GG). The work in the Hoke lab was supported by MSCRF/TEDCO and the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation. The work in the Brandacher lab was supported by MSCRF/TEDCO.

Author information

Authors and Affiliations

Authors

Contributions

R.H.B., G.B., A.H., L.S. and G.L. conceived the study. B.M.-C., Y.J.K., K.E., R.H.B., G.B., A.H. and L.S. designed the study. B.M.-C., Y.J.K., R.M., B. K., I.Y.C., H.L., Y.O., B.L., K.J.K., S.B., J.K.H., W.H., O.H., Y.H.C. and G.L. performed experiments. B.M.-C., Y.J.K., R.M., B. K., I.Y.C., H.L., Y.O., B.L., K.J.K., S.B., J.K.H., W.H., O.H., Y.H.C., L.S. and G.L. analysed the data. B.M.-C., Y.J.K. and G.L. contributed to the data assembly. B.M.-C., Y.J.K. and G.L. interpreted the results. B.M.-C., Y.J.K. and G.L. wrote the manuscript.

Corresponding authors

Correspondence to Yong Jun Kim or Gabsang Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures and table captions.

Reporting Summary

Supplementary Table 1

Unfiltered microarray results for CMT1A versus control hiPSC-derived Schwann cells.

Supplementary Table 2

Detailed data characterizing the original patient and embryonic sources of the fibroblasts and hESCs used.

Supplementary Table 3

RNA-sequencing data from control hESC-derived, hiPSC-derived and hiNC-derived Schwann cells, analysed with conventional methodologies and DAVID.

Supplementary Table 4

RNA-sequencing data from control hESC-derived, hiPSC-derived and hiNC-derived Schwann cells, analyzed with ‘power kit’ methodology and DAVID.

Supplementary Table 5

RNA-sequencing data evaluated for differentially expressed genes between CMT1A versus control cells from hESC-derived, hiPSC-derived and hiNC-derived Schwann cells. Analysed with DAVID and filtered for inflammation-related categories.

Supplementary Table 6

RNA-sequencing data evaluated for differentially expressed genes between CMT1A versus control cells from hESC-derived, hiPSC-derived and hiNC-derived Schwann cells. Analysed with Ingenuity Pathway Analysis in search of candidate pathologic pathways.

Supplementary Table 7

Cytokine-array results from hESC-derived, hiPSC-derived and hiNC-derived Schwann cells.

Supplementary Table 8

List of qRT-PCR primers used.

Supplementary Table 9

List of primary antibodies used.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee-Clavin, B., Mi, R., Kern, B. et al. Comparison of three congruent patient-specific cell types for the modelling of a human genetic Schwann-cell disorder. Nat Biomed Eng 3, 571–582 (2019). https://doi.org/10.1038/s41551-019-0381-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-019-0381-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing