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Single cancer cells within a tumor exhibit variable levels of resistance to drugs, ultimately leading to
treatment failures. While tumor heterogeneity is recognized as a major obstacle to cancer therapy,
standard dose-response measurements for the potency of targeted kinase inhibitors aggregate
populations of cells, obscuring intercellular variations in responses. In this work, we develop an
analytical and experimental framework to quantify and model dose responses of individual cancer
cells to drugs. We first explore the connection between population and single-cell dose responses
using a computational model, revealing that multiple heterogeneous populations can yield nearly
identical population dose responses. We demonstrate that a single-cell analysis method, which we
term a threshold inhibition surface, can differentiate among these populations. To demonstrate the
applicability of this method, we develop a dose-titration assay to measure dose responses in single
cells.Weapply this assay to breast cancer cells responding tophosphatidylinositol-3-kinase inhibition
(PI3Ki), usingclinically relevantPI3Kis onbreast cancer cell lines expressing fluorescent biosensors for
kinase activity. We demonstrate that MCF-7 breast cancer cells exhibit heterogeneous dose
responses with some cells requiring over ten-fold higher concentrations than the population average
to achieve inhibition. Our work reimagines dose-response relationships for cancer drugs in an
emerging paradigm of single-cell tumor heterogeneity.

Despite numerous advances in cancer biology, target identification, and
drugdiscovery anddevelopment, existing chemotherapydrugs generally fail
to yield durable responses. Kinase inhibitors represent one promising new
class of chemotherapeutic agents. These drugs are designed to inhibit the
activity of an oncogenic kinase critical to transformation, proliferation, and/
or survival. While kinase inhibitors have had some clinical success1–3, a
variety of cell-intrinsic and cell-extrinsic resistance mechanisms have been
identified, including variable drug distribution4, microenvironmental
heterogeneity5, compensatory activation of other oncogenic signaling
pathways6–8, and heterogeneity in the underlying population of cancer cells.
Population heterogeneity can have multiple origins, including genetic and
non-genetic differences among cells9. Non-genetic heterogeneity

encompasses many aspects of cell behavior, including cell cycle state10, cell
signaling pathways11–13, metabolism14, and migratory capacity15,16.

Several recent studies have examined the effects of heterogeneity in
response to drugs that target specific signaling pathways. This work has
mostly focused on the RAS/RAF/MEK/ERK pathway17–21, but others stu-
died the response to inhibitors of CDK4/622, the EGF receptor23, and Akt
pathway inhibitors24. Cell barcoding and lineage tracing have revealed that
prior to drug addition, single cells transiently exist in multiple subpopula-
tions that display a spectrum of drug susceptibilities20,21,25. Upon treatment,
the more drug-resistant subpopulations outgrow the drug-susceptible
populations and may undergo large-scale changes in chromatin organiza-
tion or genetic mutations, leading to durable drug resistance25–27. After
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surviving treatment, drug resistant cells continue to occupy a range of
subpopulations depending on previous drug dose28 and may develop new
vulnerabilities to specific treatments29. Notably, multiple approaches have
shown that cells that continue to proliferate afterMEK inhibition are able to
maintain high ERK levels after drug exposure17,20, demonstrating a con-
nection between persistent kinase signaling after targeted inhibition and
survival.Hence, it appears that heterogeneity in kinase activity after targeted
kinase inhibition is a crucial obstacle to cancer treatment.

Despite our growing understanding of single-cell drug responses, drug
efficacy in cell-based assays is generally quantified using a population-scale
dose-response experiment. In these experiments, cells are exposed to the
drug of interest, and a relevant output (suchas kinase activity) ismeasured30.
Crucially, common measures of kinase signaling such as western blots
involve lysing cells and aggregating protein levels from all cells into one
sample, eliminating information about single-cell kinase activity. Drug dose
is variedover several logs of concentration, and theoutput is plotted over the
concentration range. After acquiring a dose-response curve, the data can be
fit and parameterized using the following formula (Eq. 1) for a sigmoid:

R dð Þ ¼ Emax þ
E0 � Emax
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where R is the response, d is the drug concentration, Emax is the response at
infinite concentration, E0 is the initial response, EC50 is the concentration
required to achieve 50% of the maximal response, and Hill slope (HS) is a
measure of the steepness of the sigmoid31. Using these parameters, dose
responses can be rapidly compared among drugs, cell lines, and conditions.
Typically, decreasing the EC50 or increasing the Emax is used as evidence of
increased drug potency32–34. More recent work has improved dose-response
analysis by correcting for differences in cell growth rates and drug response
times35,36. However, these approaches reveal very little about the drug
response heterogeneity present in a population of cells37. Drug-cell line
combinations with high Emax have been associated with the presence of
resistant subpopulations37, but dose–response curves rely onmeasurements
that are fundamentally population level.

One target of novel kinase inhibitors is phosphatidylinositol-3-kinase
(PI3K), which activates downstream effectors including Akt and mamma-
lian target of rapamycin complex 1 (mTORC1)38. The PI3K/Akt/mTORC1
pathway controls cell proliferation in response to growth factor signaling.
PI3K activity is opposed by the Phosphatase and Tensin Homolog (PTEN)
phosphatase. Together,mutations that either constitutively activate PI3K or
inactivate PTEN are present in 40% of breast cancer cases, occurring more
commonly in estrogen receptor (ER) positive cancers39. Based on the pre-
valence of PI3K activation in ER+ breast cancer, specific inhibition of PI3K
is a promising therapeutic strategy. More recent PI3K inhibitors (PI3Kis)
have emerged that target specific PI3K isoforms, such as alpelisib, which
targets PI3Kα. Patterns of PI3K isoform expression are cell-specific, but
PI3Kα is commonly mutated or overexpressed in breast cancer and many
other malignancies40. Other drugs, including omipalisib, simultaneously
inhibit PI3K and mTOR, which shares a similarly shaped kinase domain
with PI3K41. In 2022, alpelisib became the first clinically approved PI3K
inhibitor formetastatic ER+ breast cancer2. Though effective in prolonging
survival, alpelisib does not cure metastatic disease. Treatment failures can
occur due to the activation of compensatory signaling pathways in cancer
cells42,43. Patients also may discontinue treatment because of severe side
effects, such as systemic hyperglycemia due to interruption of insulin sig-
naling and glucose uptake in tissues44. However, unlike BRAF V600E
mutations and inhibition of theMAPK pathway, less is known about how a
heterogeneous overall population of breast cancer cells responds to PI3K
inhibition.

To better understand the currently insurmountable challenge of tumor
heterogeneity anddrug resistance,we analyzed single-cell drug responses by
measuring dose-titration curves in individual cells. We first developed a

computational model to compare how different distributions of dose-
response parameters in a population would affect the population-level dose
response. Our model reveals a major shortcoming in standard
dose–response assays: markedly different population distributions can
generate indistinguishable dose responses. Inspired by this shortcoming, we
introduce an approach that is sensitive to differences in the underlying
population distributions. This analysis, which we term threshold inhibition
curves, can be performed on any single-cell dose response dataset. To
demonstrate the utility of the approach experimentally, we combined
fluorescent single cell kinase reporterswith an experimental design inwhich
breast cancer cells are exposed to increasing doses of PI3K inhibitors
alpelisib or omipalisib. We acquired single-cell measurements of Akt and
ERK signaling pathway activities inmultiple breast cancer cell lines at awide
range of PI3Ki doses on time-scales fromminutes to h. Our measurements
revealed that MCF-7 cells respond rapidly to PI3Ki, while Vari-068 cells do
not. We were able to extract single-cell dose-response curves from MCF-7
cells andfit dose-response parameters to individual cell drug responses.Our
approach revealed remarkable heterogeneity in dose responses to clinically
relevant PI3K inhibitors. Surprisingly, we observed that a substantial sub-
population (~10%) of ER+MCF-7 breast cancer cells exhibit EC50 values
more than 10 times greater than the population EC50 for omipalisib. Our
work demonstrates that ubiquitous population-scalemeasurements of drug
response obscure subsets of drug-resistant cancer cells that may drive
recurrent breast cancer.

Results
Heterogeneous single-cell dose responses cannot be differ-
entiated by population measurements
We began with a modeling approach to analyze what population-level dose
response experiments might reveal about the underlying heterogeneous
cellular populations. Since population-level dose response measurements
are common, understanding their ability to detect single cell heterogeneity is
vital to their interpretation and use. We hypothesized that many different
distributions of dose responses, which could include resistant outlier
populations or other types of variation, could yield indistinguishable
population-level dose responses. To test this hypothesis, we built a simple
computational model to compare single-cell and population-level dose
responses. We assumed that a kinase inhibitor could cause a continuous
change in the level of active kinase in a cell, and each cell in a population
could have its own dose response curve, parameterized by an EC50, Hill
slope, Emax, and E0. From these assumptions, we inferred that a population-
level dose responsewould result from averaging the amount of active kinase
across all cells in a population. To construct a model based on these
assumptions, we first simulated distributions of dose response parameters,
then sampled these distributions to get single-cell dose response parameters
(Fig. 1a). We put each set of single-cell dose response parameters into the
dose response equation (Eq. 1) to generate single-cell dose responses and
then averaged over the entire population of cells to get the simulated
population dose response.

For our simulation, we started with dose response parameters (EC50,
Hill slope, Emax, and E0) for MCF-7 cells exposed to omipalisib gathered
from previous experiments32,37. Using those population-level parameters as
the mean value, we generated distributions for EC50 and Hill slope. We
generated four different distributions, corresponding to populations with
low and high variability in EC50 andHill slope, a population with a bimodal
distribution of EC50 values, and a population with a small subpopulation of
“resistant” cells that had a much higher EC50 and Emax than the bulk
population (Fig. 1b). We sampled each set of distributions 1000 times,
corresponding to 1000 individual cells, and averaged across the simulated
population to generate a simulated population dose response. Our simu-
lation shows that the population-level dose responses we simulate
approximate the mean behavior of the population. However, the
population-level dose response is essentially identical across populations,
independent of the underlying distributions present in the population (Fig.
1c). This result is intuitive but demonstrates that if cell-to-cell variability is
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present in drug response, population-level measurements of drug response
cannot capture or characterize this variability.

Using our simulation, we next asked to what extent the population-
level dose response represents the behavior of any individual cell in the
population. This question was prompted by observations from develop-
mental biology and toxicology that a population of binary responders (i.e.,
highHill slope behavior) with different thresholds (EC50 values) will lead to
a gradual population response (i.e., low Hill slope)45,46. Using the same
model, we generated distributions of cells with a unimodal distribution of
EC50 and Hill slope values with the Hill slope distribution centered at
relatively steep Hill slope values (mean Hill slope = 3.16, log2(mean Hill
slope) = 1.66). We sampled these distributions and generated a simulated
population dose response (Supplementary Fig. 1a), and then fit Eq. 1 to the
simulated population dose response. The distribution of EC50 andHill slope
values sampled and a vertical line representing the EC50 and Hill slope
acquired from the population fit are shown in Supplementary Fig. 1b and

Supplementary Fig. 1c.Comparing the populationfit (blue vertical line) and
the underlying distribution (red curve) reveals that the Hill slope inferred
from the population represents less than 5% of cells in the population, and
most cells have amuchhigherHill slope.A steepHill slope can reflect strong
feedback loops within the cell, and systemically underestimating the actual
Hill slope of response present in single cells could lead to misinterpretation
of population-level data. More broadly, our simulation suggests that
population-level dose responses obscure underlying heterogeneity andmay
not actually correspond to any single-cell behavior present in the
population.

Threshold inhibition curves and surfaces characterize hetero-
geneous dose responses
Given that population-level dose response curves cannot capture hetero-
geneity in populations, we propose a new way of characterizing dose-
dependent kinase inhibition based on single-cell measurements: threshold

Fig. 1 | Modeling dose responses from heterogeneous populations. a Schematic of
model showing how we generate individual dose responses by sampling from dis-
tributions of parameters and then averaging across sampled cells to simulate the
population dose response. b Simulated population densities (smoothed histograms
of the proportion of cells with a given dose response parameter value) of EC50 and
Hill slope parameters for four different hypothetical populations. Dashed lines

represent the EC50 or Hill slope inferred from population level data, while solid lines
are the simulated distribution. Note that all four populations have almost identical
population means. c The resulting overall dose responses from averaging over cells
sampled from each population in (b). Solid lines represent the average from sam-
pling each population 1000 times, while the dashed line represents the dose response
from the measured population dose response parameters (dashed lines in b).
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inhibition curves. Insteadof plottingpopulation-averagedkinase activity as a
function of dose, we instead define a threshold of kinase inhibition and for
each dose plot the proportion of cells that fall below the defined threshold.

We first deploy this analysis on the hypothetical populations shown in
Fig. 1.We once again sampled each population 1000 times to generate 1000
simulated single-cell dose–response curves. Then, we defined a threshold,
such as 60% of the cell’s basal activity, and calculated the proportion of cells
with signaling below that level at a given dose. Directly comparing tradi-
tional dose responses with threshold inhibition curves demonstrates their
utility (Fig. 2a, b). As observed previously, the population-averaged dose
response curves are practically indistinguishable for the four populations
described by different parameter distributions in Fig. 1 (Fig. 2a). However,
by examining threshold inhibition curves, the four populations are readily
distinguished (Fig. 2b). The low andhigh variance populations reach 50%of
cells inhibited at the same dose, but the higher variance population has cells
that reach that threshold at lower doses, and cells that remain uninhibited
until higher doses. Similarly, the two underlying populations within the
bimodal population are clearly distinguished. Finally, the resistant sub-
population can be identified because the curve does not reach 100% of cells
inhibited at any dose in the simulation.

It is unclear what degree of inhibition is required to induce a desired
phenotype in vitro or in vivo, and the 60% threshold in Fig. 2bwas chosen as
an illustrative example. Thus, we expanded our analysis by varying the
threshold required for inhibition of cells, creating a threshold inhibition
surface dependent on both the selected threshold and the applied dose (Fig.
2c). This further reveals different characteristics of the populations. Com-
pared to the high variance population, the low variance population has less
heterogeneity at all thresholds. For the low-variance population, cells are
inhibited at a wider range of doses at higher inhibition thresholds. Similarly,
the bimodal populations are only apparent at inhibition thresholds between
30% and 50%, while at very high or very low thresholds the population
appears more unimodal. The threshold inhibition surfaces again show that
the population with a resistant subpopulation is not fully inhibited even at
high doses.

Dose titration assay enables the measurement of single-cell
dose responses
After demonstrating computationally that population dose response mea-
surements can mask single-cell heterogeneity, we next tested the ability to
quantify the heterogeneity that cells show in response to a clinically relevant

drug. We measured single-cell dose responses to PI3Kis alpelisib and
omipalisib. We tested these PI3Kis on MCF-7 and Vari-068 breast cancer
cell lines. MCF-7 cells are an ER+ cell line with constitutively active PI3K
pathway signaling due to a mutation in the catalytic subunit of PI3K. Vari-
068 cells have constitutive PI3K pathway activity due to a mutation in
PTEN13.We used kinase translocation reporters (KTRs) for kinasesAkt and
ERK to measure single-cell signaling activities13,47–49. KTRs rapidly and
reversibly translocate between the cytoplasm and nucleus in response to the
activity of a specific kinase. KTRs are quantified by the logarithmof the ratio
of fluorescent intensity between the cytoplasm and nucleus (log2(CNR)),
with higher values indicating greater signaling activity. Akt is directly
downstream of PI3K and is a commonly measured output for PI3K inhi-
bition. ERK is less directly associated with PI3K, but it is another commonly
activated kinase in cancer and an important therapeutic target. Further-
more, we and others have found substantial crosstalk between the ERK and
Akt pathways, and there is evidence that PI3K inhibition can also inhibit
ERK pathway activity13,49,50.

To quantify how MCF-7 and Vari-068 KTR cells respond to indi-
vidual PI3Ki concentrations, we stably expressed Akt and ERK KTRs in
both cell lines along with a stable histone-2B nuclear marker. We first
exposed cells to a range of individual concentrations of omipalisib or
alpelisib in live-cell microscopy experiments. Using automated image
processing, we extracted single-cell signaling trajectories for ERK and
Akt. In untreated conditions, the ratio of cytoplasmic to nuclear fluor-
escence intensity is higher in the Akt channel than the ERK channel
(Supplementary Fig. 2a, Supplementary Fig. 3a), which suggests greater
activation of Akt by constitutively active PI3K signaling in these cells.
Averaging among all cells in the population revealed dose-dependent
Akt and ERK inhibition (Supplementary Fig. 2b, Supplementary Fig. 3b).
Omipalisib was more potent than alpelisib (achieving measurable inhi-
bition at lower doses) in both cell lines, consistent with previous
measurements32. We observed differences in deactivation kinetics
between MCF-7 and Vari-068 cells. After inhibition, MCF-7 cells
reached steady inhibition of both Akt and ERK within 60 min (Supple-
mentary Fig. 2b). However, Vari-068 cells responded more slowly,
reaching full inhibition to high inhibitor doses after 2–3 h (Supple-
mentary Fig. 3b). Differences between cell lines may be secondary to
distinct mutations that constitutively activate the PI3K pathway. These
results suggest that ourMCF-7 andVari-068KTR cells detect continuous
changes in kinase signaling in response to PI3K inhibition.

Fig. 2 | Threshold inhibition curves and surfaces
capture heterogeneity in dose response.
a Population averaged dose responses from simu-
lated populations in Fig. 1. b Threshold inhibition
curve for the same populations in Fig. 1. The curves
were calculated by sampling each population 1000
times, and then calculating the proportion of the
population inhibited to below 60% of their basal
signaling at each dose. c Threshold inhibition sur-
faces, calculated as in (b) but with a varying
threshold. A dashed line has been added at the 60%
threshold, profiles along these lines correspond to
the lines in (b).
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Exposing cells to a single dose of PI3Ki reveals individual cell signaling
levels, but it does not reveal dose response parameters. We would like to
understand the distribution of dose response parameters within a popula-
tion so that we can detect the presence of outlier cells requiring high con-
centrations of drug to be inhibited. Thus, we next measured dose responses
in single cells by exposing the same population of cells to increasing doses of

each PI3Ki, which we refer to as a dose titration. For each dose, we imaged
cells continuously for 1 h. SinceMCF-7 cells reach a new steady state rapidly
after exposure to a new dose, we focus our analysis on them. Our experi-
mental approach is demonstrated in Fig. 3a.We used our automated image
processing pipeline13,49 to extract values for Akt and ERK kinase activities
from individual cells tracked for the duration of the experiment.
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We next investigated how cells varied in dose-dependent deactivation
of Akt and ERK. We examined the trajectories of each individual cell
exposed to increasing doses of omipalisib using a kymograph to plot the
time-domain signaling activity of each cell (Fig. 3b). Since we added
increasing doses of omipalisib throughout the experiment, wewere also able
to associate specific timepoints with specific drug doses, which are shown at
the top of the kymograph. We sorted cells by the area under the curve of
their Akt trajectory, so cells with higher overall Akt are at the top of the
kymograph. Our data show substantial heterogeneity in basal state and
inhibition response. Most cells show substantial Akt inhibition at an omi-
palisib dose of 9.8 nM, but many respond well before that dose. The degree
of Akt inhibition varies from cell to cell. ERK also shows heterogeneity in
responses with some cells almost unaffected by omipalisib and others
demonstrating substantial inhibition.

Dose-titration Akt inhibition matches single-point experiments
Our goal is to measure how individual cells will respond to any dose of
PI3Ki. Thus, it is vital to ensure that our drug titration experiments cor-
respond to single-dose experiments. Specifically, we wondered if dose-
titration experiments might provoke compensatory signaling limiting
later inhibition, or if spreading doses over time could enhance their effects.
We exposed MCF-7 cells to three different single doses of omipalisib or
alpelisib and extracted the distribution of Akt log2(CNR) values 1 h after
PI3Ki addition. We compared these distributions with the equivalent
time-point in dose response experiments (1 h after the corresponding
dose was given). We find that the distribution of Akt signaling activity in
dose-titration experiments appears to match single-point distributions,
with no systematic increase or decrease in inhibition. These results suggest
that for MCF-7 cells exposed to alpelisib or omipalisib, the levels of
inhibition observed in dose-titration experiments do correspond to more
traditional single-point measurements. Based on this observation, we can
plot the data in Fig. 3b as dose-dependent, instead of time-dependent,
signaling. Figure 3d summarizes our results using violin plots to
demonstrate the distribution of signaling activity at each dose, along with
themeandose response (black line).Our ability to extract dose-dependent
Akt andERK signaling from the same cells enables us tomeasure full dose-
response curves in single cells.

We performed identical experiments in Vari-068 cells, applying
increased doses of alpelisib or omipalisib every h for ten total doses. How-
ever, as previously observed (Supplementary Fig. 1), we found slower
deactivation of Akt in response to omipalisib in Vari-068 cells. Akt deac-
tivation in response to alpelisib was only observed at very high concentra-
tions. Due to the delayed kinetics of Akt deactivation, a 1-h increment
between doses was not enough time for Vari-068 cells to reach a new steady
state, and there was a larger discrepancy between single-point and dose-
response signaling distributions than inMCF-7 cells (Supplementary Fig. 4
for Vari-068 cells, compared to Fig. 3c forMCF-7 cells). We also compared
the distribution of Akt signaling in Vari-068 and MCF-7 cells exposed to
high doses of alpelisib and omipalisib (highest doses from Supplementary
Fig. 2 and Supplementary Fig. 3).We found that there were similar levels of
heterogeneity ofAkt andERKactivities in both cell lines after full inhibition,
demonstrating that heterogeneity in both basal state and in response to
PI3Ki is a feature of both cell lines (Supplementary Fig. 5).

Measuring dose-response parameters in single cells
Wenext characterizeddose responses in singleMCF-7 cells.Wefit the dose-
response equation (Eq. 1) to each cell in the population exposed to either
alpelisib (N = 1040cells) or omipalisib (N = 911cells). Examining individual
cells reveals important deviations from the population-averaged behavior
(Fig. 4a). Individual cells can have EC50 values at least ten times greater than
the population average (Fig. 4b), indicating that inhibition requires higher
drug concentrations. The population average hill slope is slightly greater
than 1 (log2(Hill Slope) more than 0), showing relatively steep transitions
from activation to inhibition, but some cells have more shallow transitions
(Fig. 4c). At the single-cell level, this could relate to the strength of feedback
loops and compensatory pathways connecting PI3K inhibition with
downstream Akt activation. We further quantify this observation by plot-
ting the single-cell dose-response parameters distribution in Fig. 4d. For
bothdrugs, theE0distributions are identical, reflecting thatnodrughasbeen
applied at this point. Both drugs can achieve the same amount of Akt
inhibition at high doses. The distribution of observed EC50 values varies
substantially between drugs, with omipalisib exhibiting approximately 100-
fold greater potency than alpelisib, matching the population-aggregated
measurements (Fig. 4d). Notably, there is substantial variation in EC50

within each population. Though most cells show an EC50 for omipalisib
around 10 nM, 99 of the observed 911 cells (11%) exhibit an EC50 greater
than 100 nM. This observation suggests that dosing regimens based on
achieving a tissue concentration based on population-level dose responses
may not inhibit a large portion of cancer cells. Furthermore, although
omipalisib is clearly more potent than alpelisib based on previous
measurements32 and population-averaged dose responses measured here,
single-cell distributions of potency overlap significantly, complicating the
comparison.

Single-point measurements do not predict dose-response
measurements
After observing substantial variability inAkt dose responses, we next sought
to quantify towhat extent and howdifferent dose response parameters were
correlated for MCF-7 cells exposed to alpelisib or omipalisib. We consider
E0 and Emax to be “single-point”measurements, since they can bemeasured
using a variety of single-cell modalities by simply exposing cells to either
very low or very high drug concentrations. Meanwhile, measuring EC50 or
Hill slope requires measurements of the same cell across a range of con-
centrations, necessitating more complex live-cell methods. For both alpe-
lisib and omipalisib, there was very weak or no correlation between either of
the single-point measurements and EC50 or Hill slope (Fig. 5). Spearman
correlation coefficients were generally weak and nonsignificant, except for a
weak correlation between E0 and log2(Hill Slope). This further supports that
our dose-titration assay produces previously unobserved measurements
about single-cell drug effects.

Threshold inhibition surfaces can characterize heterogeneous
dose responses in experimental populations
Threshold inhibition surfaces (Fig. 2c) are based on applying thresholds to
dose-response curves from individual cells. Thus, we were able to calculate
threshold inhibition surfaces for our experimentally measured populations
of MCF-7 cells exposed to alpelisib or omipalisib (Fig. 6). These response

Fig. 3 | Measuring dose responses in individual cells. a Experimental approach.
Cells are exposed to a single concentration of alpelisib or omipalisib for an h, and the
single-cell response is averaged over the last 10 min of exposure. Then, a higher
concentration is added. Each concentration is 4× greater than the previous one.
Concentrations range from 150 pM to 40 μM. b Kymograph showing single-cell
trajectories of each MCF-7 cell measured in an omipalisib dose-response experi-
ment. Each row is a single cell, and each column is a different time point, with color
representing the signaling activity. Paired Akt and ERK trajectories are shown, with
Akt on the left and ERK on the right. Cells are sorted by the area under the curve of
their Akt trajectory. The dose of omipalisib at each timepoint is shown at the top of

the kymograph. c Comparison of Akt signaling distributions when exposed to a
given drug concentration in a single-point experiment (red) and a dose response
experiment (gray). Each distribution was generated using kernel smoothing. Ver-
tical lines indicate the population mean of each distribution. d Akt (top) and ERK
(bottom) dose-dependent signaling activity in response to alpelisib (left) and
omipalisib (right). In each plot, the distribution of signaling activity is shown as a
violin, while themean dose response is indicated with a solid black line. A horizontal
dashed black line is included at the untreated mean to guide the eye. The full list of
doses used in the figure, from left to right in increasing order, is: No treatment (NT),
0.15 nM, 0.6 nM, 2.4 nM, 9.8 nM, 39 nM, 156 nM, 625 nM, 2.5 μM, 10 μM, 40 μM.
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surfaces fully characterize the heterogeneity observed in our experiments.
Comparing alpelisib and omipalisib, we again see that for any threshold
inhibition, omipalisib is substantially more potent. In both populations, the
threshold affects the observed heterogeneity, as illustrated by the difference
between the concentrations where cells are initially inhibited and fully
inhibited. For alpelisib, at low thresholds (around 30%) there is a sub-
stantially wider range of doseswhich achieve some degree of inhibition than
at higher thresholds. Furthermore, we expect that omipalisib will have a

more heterogeneous response since the range of doses causing inhibition is
wider than alpelsib. We can also use these surfaces to interpret how
increasing dose will affect heterogeneous populations by examining the
slope of the contour lines. The linear portion of the contour lines for both
alpelisib and omipalisib demonstrate that to inhibit another 10%of cells in a
population, ~1.1xmoredrug is needed.Taken together, thisworkprovides a
proof of concept for using threshold inhibition surfaces to characterize and
visualize the heterogeneity in dose response to multiple drugs.

Fig. 4 | Characterizing heterogeneous dose
responses. aMean dose response (from Fig. 1d, top
right) and three representative individual dose
responses for MCF-7 cells exposed to Omipalisib.
Vertical lines indicate the EC50, obtained by fitting
Eq. 1 to each individual dose response. b, c Bar
graphs comparing the EC50 and Hill slope para-
meters for the mean and single-cell dose responses
shown in (a). d Distributions of dose response
parameters extracted from single cells for both
alpelisib and omipalisib. Distributions are the
kernel-smoothed density of the underlying data. For
alpelisib N = 1040 cells and for omipalisib
N = 911 cells.

Fig. 5 | Single-point measurements do not predict
dose-response parameters. Correlation between
single-point parameters (E0, Emax) and dose-
response parameters (Hill slope, EC50) for MCF-7
cells exposed to an omipalisib dose-titration of
either alpelisib (red) or omipalisib (blue).

https://doi.org/10.1038/s41540-024-00369-x Article

npj Systems Biology and Applications |           (2024) 10:42 7



Discussion
Heterogeneous responses of individual tumor cells are a major obstacle to
cancer therapy. Ourwork adds new tools to uncover this heterogeneity, and
provides a proof-of-concept example using MCF-7 breast cancer cells and
their responses to two clinically relevant PI3Kis. First, we present a simple
model that enables us to explore the correspondence between population
dose responses and the dose responses of the individual cellsmaking up this
population. We also present a method to characterize and visualize het-
erogeneous dose responses, which we term dose response surfaces. Dose
response surfaces provide a quantitative measure of the proportion of cells
that will be inhibited given a drug dose and a specific level of inhibition
required.Dose response surfaces canbe createdquickly usingdose-response
data gathered from individual cells (experimental or simulated) and can be
used to compare the level of overall inhibition (i.e., potency) and hetero-
geneity between multiple drugs. We envision dose response surfaces as
being particularly useful when combinedwith experimental51 or simulated52

data of spatiotemporal drug distributions inside a tumor. These data show
that cells experience substantial variations indrug concentrations over space
and time in a tumor. We expect that heterogeneity in single-cell dose
responses would exacerbate this heterogeneity and increase the likelihood
that some cells exposed to low or transient drug doses survive. Our results
also show that drug doses can be raised to inhibit greater than 90% of cells.
However, these doses would likely demonstrate intolerable toxicity.

Second, we present a proof-of-concept example for experimentally
measuring single-cell dose responses.While single cellmeasurements canbe
acquired after a single drug dose using a variety ofmethods, such data reveal
little about drug effects since the pre-inhibition state is unknown. It can also
be unclear whether heterogeneity measured in this way is due to stochastic
noise or pre-existing cell state53. Using our dose-titration assay to acquire
measurements of single cells at multiple doses, we demonstrate that single
MCF-7 cells have markedly different dose responses to the PI3Kis alpelisib
and omipalisib. This is similar to findings in previous studies in which cells
were exposed to escalating doses of a biological stimuli (acetylcholine or
insulin growth factor) and adownstream readout (calciumorAkt signaling)
was measured54,55. In both cases, individual cells exhibited consistent var-
iation from themean, as opposed to random variation to each stimulus.We
also identify systemic, rather than random, differences in cellular responses
to kinase inhibition.

The source of signaling heterogeneity is not fully understood. We and
others have found that signaling heterogeneity can be explained by differ-
ences inpre-existing state, utilizing two fundamentally different approaches.
One approach is to use high-dimensional endpoint measurements,
including single cell sequencingor high-content imaging, to characterize the
variability present in cellular populations exposed to different inputs56,57.
This approach yields high-dimensional landscapes of cellular heterogeneity
and has been used to predict single-cell dose responses to epidermal growth
factor56. However, endpoint measurements require killing cells, making it
impossible to associate a high-dimensional characterizationof cell statewith

later behavioral measurements. Another approach, employed by us and
others, is to use live-cell imaging to measure signaling dynamics in indivi-
dual cells andfit kineticmodels of signaling to individual cells, thus inferring
cell state from the model parameters that best fit each cell12,49,58,59. This
approach is amenable to dynamic data, and cell states can be inferred and
associated with later behaviors. However, inferring cell states requires
dynamic models as opposed to direct measurements. Both approaches
predict that, due to differences in cell state, cells should have different
intrinsic sensitivity to kinase inhibition. Our results validate these predic-
tions. Furthermore, by comparing how different preconditions affect dis-
tributions of measured dose responses, the assay presented here could help
unify the two approaches to identifying cell states by connecting cell state
measurements to downstream behaviors.

Another outstanding challenge in understanding resistance to targeted
therapy lies in unifying the timescales of various observations. Previous
work using live cell microscopy has revealed a repeatable series of events
occurring over several h to days, including specific transcriptional changes,
the induction of stress signaling pathways, and atypical cell replication,
which enable persistent cells to continue growing17,18. Lineage tracking
enables resistant clones tobe trackedover several days20. Finally, França et al.
tolerized cells to increasing drug doses over several weeks to months,
revealing a diverse set of transcriptional changes in resistant cells that are
dependent on the tolerizing dose28. Meanwhile, our assay reveals hetero-
geneity in cellular response to drugs over minutes to h. However, we do not
track cells over longer time periods or determinewhich cells re-enter the cell
cycle. Based on previous reports of compensatory signaling activation43, we
speculate that at least some cells with a low EC50 (meaning they are easily
inhibited) would reactivate signaling. Thus, future work should focus on
comparing three populations of cells: (1) Those which initially respond to
the inhibitor and remain inhibited; (2) those which respond and reactivate
kinase signaling due to compensatory signaling mechanisms; and (3) those
which do not respond to the inhibitor at all due to pre-existing resistance
mechanisms. A complete picture of the emergence of resistance would
connect resistant subpopulations prior to treatment with their immediate
drug response (over minutes to h), subsequent reactivation of kinase sig-
naling and cell cycle progression (over h to days), and long-term tran-
scriptional changes in these lineages (over weeks to months). This would
enable the identification of key control points that could be exploited to
improve treatment efficacy.

Our single-cell dose-titration assay, where cells are exposed to a
sequence of several predetermined chemical stimuli, holds potential for
exploring a wide range of cellular behaviors. We and others have demon-
strated that perturbing cells reveal a much wider range of functional het-
erogeneity than observing cells at rest. In living tissues, cells are exposed to a
variety of stimuli, and past exposure can amplify or negate responses to later
stimuli based on updated internal cellular state13,60. Thus, we propose a new
experimental paradigm, which we term “cellular obstacle courses”, where
sequential stimuli are applied to cells and single-cell responses are tracked

Fig. 6 | Threshold inhibition surfaces for experi-
mental populations. We calculated threshold
inhibition surfaces as in Fig. 2 for experimental
populations of MCF-7 cells exposed to alpelisib (a)
or omipalisib (b). In (a), N = 1040 cells. In (b),
N = 911 cells.
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throughout the course of the experiment. Our dose-titration assay is a
simple instance of a cellular obstacle course, which we use to infer dose
responses in single cells. However, this approach has been used with more
varied sequential stimuli including activation and inhibition of receptors
and components in the ERK pathway61. Using this approach, the authors
were able to dissect various contributions of receptors, pathway inhibition,
and oncogenic mutations on ERK signaling. We envision that these
experiments could be rationally designed, as we have demonstrated here, or
could be employed as a high throughput screening tool, where multiple
perturbations are combined in various orders anddoses tomap connections
between cellular history and response to a particular perturbation62. The
design space for such experiments is massive, and we have barely scratched
the surface of potential applications of cellular obstacle courses.

Dose response assays are ubiquitous at all stages of pre-clinical drug
development, from lead compound identification to clinical trial dose
determination. Our computational model demonstrates that these assays
ignore heterogeneity in cellular responses, and our experimental results
validate that conclusion. Our results suggest four key considerations for
drug development. First, our assay was performed in a 96-well plate and
only requires readily available fluorescence imaging systems. Thus, it could
be adapted to early-stage target identification, and previous efforts have
already utilized biosensors for high-throughput characterization of inter-
actions between drugs and signaling dynamics63. Secondly, previous drug-
discovery paradigms have focused on achieving high levels of inhibition
with limited success. It is currently unclear how specific levels of inhibition
in single cells impact functional outcomes suchas survival ormigration.Our
work supports a model where quantitative dose-signal-behavior relation-
ships are measured and used to determine the optimal level of kinase
inhibition required to achieve a specific therapeutic goal. Third, our work
provides further context to dose selection in clinical trials and clinical
medicine. Previous work has defined the therapeutic index of a drug as the
ratio between the toxic and effective doses of a drug. In oncology a
population-scale metric, such as reductions in tumor volume, typically
define drug efficacy. Here, we demonstrate that the dose required for
effectiveness against all cancer cells is likely to be increased by cellular
heterogeneity, which will reduce the therapeutic index. Finally, our work
reveals cell-line-dependent differences in the kinetics of kinase inhibition.
The time required to achieve peak inhibition is a relatively understudied
aspect of kinase inhibition and could help contextualize drug pharmaco-
kinetics and pharmacodynamics. For instance, a drug with shorter peak
plasma times but longer time to peak inhibition could yieldmore resistance
because cells are not exposed to adequate drug concentrations for the
required time. Thus, heterogeneity in cellular responses to inhibitors of
kinases and other drug targets is crucial to understand across early stages of
drug development.

Our work has several limitations. We utilize a kinase translocation
reporter here and exploit the rapid kinetics of PI3K inhibition and Akt
deactivation to measure single-cell dose responses. Akt signaling activity is
commonly used as a measure of PI3K activation or inhibition, but dynamic
imaging reporters may not exist for many other drug targets. Furthermore,
our method may not be appropriate for drugs with different targets or
mechanisms of action. Our measurements are also likely affected by
intrinsic differences present in the cell population, including differences in
cell cycle timing64. These differences may complicate interpretation of our
result, but cancer cells in real tumors also exhibit differences in cell-cycle
timing alongwithmyriad other differences. Thus, studying these differences
in vitro may provide vital information for accurately predicting how drugs
behave in vivo. Effective cytotoxic drugs cause cell death, a binary endpoint
without gradations needed to reproduce the dose-titration curves used for
inhibition of kinases. Finally, our own results reveal that cells have different
kinase deactivation kinetics, asmeasured by our KTRs. Thus, our assaymay
only be practical for cells and readouts that exhibit fairly rapid (on the order
of minutes) deactivation kinetics. Nonetheless, our assay is compatible with
a wide range of clinically relevant drugs, and novel reporters are con-
tinuously emerging, including reporters for metabolic activity65,66 and

reporters localized to specific subcellular regions67,68. Future work will focus
on adapting our approach to a broader range of cell lines and single-cell
outputs.

Methods
Modeling single-cell dose responses
To model single-cell dose responses to kinase inhibitors, we first assumed
that previous dose response experiments using western blots for phos-
phorylatedandunphosphorylatedproteinswould function by averaging the
amount of protein in each cell after cell lysis. Thus, if we simulated a dose
response of active protein in individual cells, the population dose response
would be represented by the average of all cells in the simulation at a given
dose.We further assumed that the response of individual cells to drug could
be described by a sigmoidal curve.

To simulate single-cell dose responses, we first generated distributions
of dose response parameters for the traditional sigmoidal dose response
equation (Eq. 1). The distributions used for each population in Fig. 1 are
shown in Table 1. We centered the distributions around the measured
population dose response for omipalisib applied toMCF-7 cells37, where the
E0 was normalized to 1. For each simulated population, we sampled 1000
total cells. In the bimodal population simulation, we sampled 500 cells from
each population, while in the resistant subpopulation simulation we sam-
pled 950 cells from population 1 and 50 cells from population 2. For each
cell, we sampled each parameter distribution independently to acquire a set
of single-cell dose response parameters. We then used those dose response
parameters to determine the dose response R(d) using Eq. 1 over a dose
range from10−11nM to10−5nM.To calculate the simulatedpopulationdose
response for each hypothetical population, we averaged across all cells at
each dose.

Calculating dose response curves and surfaces
We acquire single-cell dose response surfaces (Figs. 2 and 6), we set a
threshold that was a variable fraction of each cell’s baseline signaling. For
Fig. 2b, we used a constant threshold of 60%.We then calculated howmany
cells at each dose were below their individual threshold. For Fig. 2c, we
varied the threshold between 20% of basal signaling and 90% of basal
signaling.

Cell culture
Weoriginally obtainedMCF-7 cells from the ATCC (Manassas, VA, USA).
We cultured MCF-7 cells in DMEM (Thermofisher, Waltham, MA USA),
10% fetal bovine serum, 1% glutamax, 1% penicillin/streptomycin, and
plasmocin prophylactic (Invivogen, Toulouse, France) maintained at 37 °C
and 5% CO2 in a humidified incubator. We trypsinized and re-suspended
cells every 3 days to passage them. Short tandem repeat analysis was used to

Table 1 | Parameters used for single-cell dose response
simulations

Parameters

E0 Emax Log10(EC50) Log2(HS)

Populations Low Variance μ: 1
σ: 0.1

μ: 0.16
σ: 0.1

μ: −7.72
σ: 0.1

μ: −1.02
σ: 0.1

High Variance μ: 1
σ: 0.1

μ: 0.16
σ: 0.1

μ: −7.72
σ: 0.5

μ: −1.02
σ: 0.5

Bimodal – population
1 (50%)

μ: 1
σ: 0.1

μ: 0.16
σ: 0.1

μ: −6.72
σ: 0.1

μ: −1.42
σ: 0.1

Bimodal – population
2 (50%)

μ: 1
σ: 0.1

μ: 0.16
σ: 0.1

μ: −8.72
σ: 0.1

μ: −0.62
σ: 0.1

Resistant Subpopula-
tion – population
1 (95%)

μ: 1
σ: 0.1

μ: 0.16
σ: 0.1

μ: −7.72
σ: 0.1

μ: −1.02
σ: 0.1

Resistant Subpopula-
tion – population 2 (5%)

μ: 1
σ: 0.1

μ: 0.46
σ: 0.1

μ: −4.72
σ: 0.1

μ: −1.02
σ: 0.1
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authenticate cell lines andwe tested formycoplasmawhen cellswere initially
passaged.

We obtained Vari-068 cells as a gift from the Sofia Merajver lab. We
cultured these cells as described previously13.

Stable expression of kinase translocation reporters
We stably expressed a nuclear histone 2B (H2B) marker and KTRs for Akt
and ERK as described previously13,69. We used a PiggyBac transposon
(Systems Biosciences, Palo Alto, CA, USA) with a vector containing H2B-
mCherry, Akt KTR-mAquamarine, ERK KTR-mCitrine, and a puromycin
selectionmarker, whichwe refer to as the pHAEPvector. After transposing,
we selected positive cells by culturing cells using 5 μg/ml puromycin
(ThermoFisher).

Live-cell microscopy and perturbation experiments
For imaging experiments,MCF-7pHAEPcellswereplated at 5000cells/well
in 100 μl of imagingmedia in glass bottom96-well plates (Cellvis,Mountain
View, CA, USA). Imaging media consisted of 10% fetal bovine serum, 1%
glutamax, 1% pen–strep, 1% sodium pyruvate, and 10 nM β-estradiol
(Sigma-Aldrich, Millipore Sigma, St. Louis, MO, USA) in phenol-red free
Fluorobrite DMEM(Thermofisher).We used an EVOSM7000microscope
with an on-stage incubator to perform live cell microscopy. The on-stage
incubator was equilibrated at 37 °C and 5% CO2, and >80% humidity prior
to adding the 96-well plate. 24 h after seeding, we added the cells to the
microscope incubator. For imaging, we configured microscope settings to
minimize light exposure. We used 10x magnification. We captured images
of cells approximately every 3minutes. We captured multiple contiguous
fields within each well in an experiment and used autofocus on the H2B-
mCherry channel on one field within each well at each timepoint. For dose
response experiments, we imaged a pre-drug state for 20minutes. Then, we
added the lowest dose of alpelisib or omipalisib (SelleckChem,HoustonTX,
USA) and imaged for 1 h.We then added the next dose and imaged for 1 h,
repeating this procedure until we added the highest drug concentration.
Final drug concentrations were 0 nM, 0.15 nM, 0.6 nM, 2.4 nM, 9.8 nM,
39 nM, 156 nM, 625 nM, 2.5 μM, 10 μM, and 40 μM.

Automated image processing
After acquiring images, we extracted single-cell signaling time tracks using
an automated image processing algorithm as described previously12,13,49.
First, adaptive thresholding is applied to nuclear images to identify nuclear
pixels. We then dilate the nuclear mask by 5 pixels, while preserving the
number of objects in the image. Dilating the nuclear mask identifies cyto-
plasmic pixels immediately outside of the nucleus. We preserve the object
number so that pixels between two nuclei are only assigned to their nearest
nuclei. The mean intensity in each nucleus and cytoplasm is calculated,
which is used to calculate the cytoplasmic to nuclear ratio. Cells are con-
nected through time by connecting nuclei with the most overlap in suc-
cessive images. For dose response analysis, only cells that were tracked for
the duration of the experiment were included.

Single-cell dose response analysis
We identifieddose responses in individual cells by averaging theirmeasured
log2(CNR) values over the timepoints from 50 to 60min after each drug
dose was applied. We performed the same procedure for both ERK and
AKT KTRs. We calculated an untreated condition as the average of Akt or
ERKat each timepoint between 10min prior to the addition of thefirst drug
dose. The procedure identifiedAkt and ERK signaling activity at 11 doses in
hundreds of cells. To fit single-cell dose response curves, we used the
lsqcurvefit() function in MATLAB R2022b (MathWorks, Waltham, MA
USA). During fitting, we constrained the Emax and E0 values between −3
log2(CNR) and 3 log2(CNR), the EC50 between 0 and 40 μM, and the hill
slope between 0 and 100. The experimental threshold inhibition surfaces
(Fig. 6)weredeterminedbyfirstfittingdose responseparameters to each cell
in the experimental population and then repeating the same procedure as
the simulated populations.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Source data (raw images) and single-cell signaling data are available upon
reasonable request.

Code availability
Image processing code is available upon reasonable request. Dose response
simulation code is available at https://zenodo.org/records/10892758.
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