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Reliable detection of substances present at potentially low concentrations is a problem common to
many biomedical applications. Complementary to well-established enzyme-, antibody-antigen-, and
sequencing-based approaches, so-called microbial whole-cell sensors, i.e., synthetically engineered
microbial cells that sense and report substances, have been proposed as alternatives. Typically these
cells operate independently: a cell reports an analyte upon local detection.
In this work, we analyze a distributed algorithm for microbial whole-cell sensors, where cells
communicate to coordinate if an analyte has been detected. The algorithm, inspired by the Allee effect
in biological populations, causes cells to alternate between a logical 0 and 1 state in response to
reacting with the particle of interest. When the cells in the logical 1 state exceed a threshold, the
algorithm converts the remaining cells to the logical 1 state, representing an easily-detectable output
signal.We validate the algorithm throughmathematical analysis and simulations, demonstrating that it
works correctly even in noisy cellular environments.

Numerous disease indicators are based on detecting that the abundance of a
particular substance exceeds a threshold concentration1–3. Widely-adapted
techniques are sequencing for genetic information and antibody-based
detection for proteins4. Recently microbial whole-cell sensors (MWCS), i.e.,
cells engineered to sense and report substances, emerge as an easy-to-use
and cost-effective alternative to these classical detection methods5. MWCS
have been demonstrated to successfully sense pollutants6, detect inflam-
mation in mice models7, and provide means for environmental
monitoring8–10.

To detect analytes at low concentrations, MWCS use techniques such
as optimizing the cellular sensing circuitry7,11 and sensing multiple, corre-
lated analytes7. These approaches are examples for local sensor designs,
where engineered cells locally sense and report analytes. In this case, the
population-level readout is obtained as the cumulative single-cell responses,
which inherently limits the population-level response: Assume a population
C of n cells, a small fraction α∈ [0, 1] of which detect the analyte of interest,
and an ideal local cell response outc(inc) that maps the presence (inc = 1) or
absence (inc = 0) of a detection event at cell c to a local cell output. In
presenceof an ideal local cell response that outputs a (normalized) 1 if inc = 1
and 0 otherwise, the population-level response outpop is given by

outpop ¼ 1
n

P
c2C

outcðincÞ ¼ α; ð1Þ

i.e., remains linear in the fraction α of cells that detect the analyte.
By contrast, population-based designs use communication between

cells topotentially achieve improved threshold-like population responses. In
terms of the example before this is achieved by allowing outc to depend not
only on inc, but also on the other cells’ (communicated) inputs: the
population-level response

outpop ¼ 1
n

P
c2C

outcðin1; . . . ; innÞ ð2Þ

is not necessarily proportional to α in this case.
A commonly usedmechanism to communicate is via quorum sensing

(QS)molecules12,13, which diffuse through the cellmembrane and, if present
in sufficiently high concentrations, allow cells to trigger a population-level
response8–10. For example, the circuit byHsu, Chen,Hu, andChen14 usesQS
for population-level signal amplification: when cells sense metal ions, they
start to secrete the QS molecule. This molecule, then diffuses into the sur-
rounding medium and inside the population’s cells. If a cell’s internal
concentration exceeds a certain threshold, a reporting pathway is triggered.
Further examples for population-based designs based on QS are the
detection of mercury15 and phenolic compounds11.

In this article, we analyze a simple distributed algorithm that acts as a
distributed amplification circuit and, together with a local sensory and
reporting circuit, yields a population-based MWCS design. In our
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algorithm, cells transition from a low (L) state to a high (H) state upon
reacting with rare-event substances of interest. When a specific number of
cells successfully alter their state within a predetermined time frame, the
algorithm guarantees the production of an amplified reporter signal, indi-
cating thepresenceof rare events.Conversely, if this threshold is notmet, the
reporter signal is guaranteed to remain low and is not amplified at
population-level. Given the high noise levels in biological circuits16, the
threshold is designed to mitigate the number of false positives compared to
naive broadcasting methods, offering noise protection.

The algorithm is inspired by the Allee effect17 as observed in biological
populations:While in populations that compete for a shared resource, lower
densities are supposedly more likely to thrive18, the Allee effect describes the
phenomenon that thefitness of small populationsoftendecreases, e.g., due to
the reliance on cooperation strategies within the population19–21. The algo-
rithm is designed such that the population of H cells shows an Allee-like
behavior: for lowHdensities, the “birth” rate, i.e., the rate bywhichL cells are
transformed intoHcells, is compensatedby their “death” rate, i.e., the rate by
which H cells are transformed into L cells. Above a certain threshold cell
density, the situation is reversed, and the birth rate outweighs the death rate.

Further, differently than other QS amplification circuits11,14,15, our
algorithm autonomously maintains the amplified state indefinitely. This is
achieved through a positive feedback loop, where the signal responsible for
amplification promotes itself.

Results
The concentration of the analyte of interest is denoted by AðtÞ 2 Rþ. Cells
of the detection algorithm are in either of two states: low (L), voting for the
absence of the analyte of interest, or high (H), voting for its presence. We
denote thedensity of cells inL at time tbyLðtÞ 2 Rþ, and thedensity of cells
in H by HðtÞ 2 Rþ. We write P(t) =H(t)+ L(t) for the total population
size. Assuming that the population size is within a steady state, we neglect
replication and cell-death reactions.

A naive algorithm to obtain a non-linear population-level response
would be to broadcast any detection of the analyte by a cell to all other cells.
Such an algorithm comprises of two reactions

Lþ A�!Hþ A ð3Þ

LþH�!2 �H ð4Þ

the first of whichmodels detection of an analyte by a cell and the second the
broadcast of such an event to all other cells. However, as we show later, this
algorithm does not tolerate incorrect detections, i.e., cells that incorrectly
transition from state L to state H in absence of an analyte; a problem any
biological implementation will necessarily have.

To address the problem of the broadcasting algorithm to deal with
faulty state transitions, we propose an algorithm that tolerates erroneous
detection of the analyte up to a certain rate. Our algorithm comprises of
three reactions that determine when a cell switches state: (i) Reaction
(Detect): A cell in state L changes to state H upon local detection of the
analyte. We assume that this happens with a rate σA 2 Rþ. (ii) Reaction
(Hold): A cell in state L also switches to state H with a rate that depends on
the density H according to a Hill function with parameters
κ 2 R > 0;K 2 R > 0, and n 2 R with n > 1. The Hill function models the
fact that this reaction is triggered by aQSmolecule which is secreted by cells
in the H state; see, e.g., ref. 22 for a Hill-function model of a QS circuit. (iii)
Reaction (Reset): A cell in stateH switches back to state Lwith a certain reset
rateρ 2 R > 0. Intuitively, this is to prevent accumulation of incorrect
detection events in the system.

(Detect): Lþ A�!Hþ A σA � A � L� � ð5Þ

ðHoldÞ : LþH�!2 �H κ � Hn

Hn þ Kn � L
� �

ð6Þ

ðResetÞ : H�!L ρ � H� � ð7Þ

Cells may incorrectly detect the analyte with a rate σerr 2 R > 0, accounted
for in the additionally reaction1

ðErrorÞ : L�!H σerr � L
� � ð8Þ

For the purpose of analysis, unless stated otherwise, we will subsume both
(5) and (8) into the single reaction

ðSetÞ : L�!H σ � L½ � ð9Þ

calling σ = σA ⋅A+ σerr the rare-event detection rate.
Figure 1 illustrates the algorithm’s reactions (Fig. 1a) and threemodes of

operation: in absenceof theanalyte (Fig. 1b), in itspresence (Fig. 1c), andafter
detection of the analyte with the analyte potentially being absent (Fig. 1d).
Observe that the high density of H cells is maintained in the latter case.

Figure 2 visualizes the Allee-like behavior of H cells: Fig. 2a, b show the
“birth” rate ofH cells, i.e., the sumof the rates in (6) and in (9), as well as the
“death” rate of H cells, i.e., the rate in (7), over the density of H cells. In the
absence of the analyte (Fig. 2a), the rare-event detection rate σ is low, and
stable steady states for the H density are either low (close to 0mL−1) or high
(about 1.5 ⋅ 108 mL−1). We show later that the low-density steady state is
reached if the initial H density was below a threshold, and the high-density
steady state if it was above this threshold, thus guaranteeing the memory
effect for a once detected analyte. Conversely, in presence of the analyte, and
a consequently high rare event detection rate σ, the H cell density converges
to a high value (Fig. 2b).

We now argue correctness of the algorithm.We can write an ordinary
differential equation (ODE) for the cell densitiesH andP from reactions (9),
(7), and (6), obtaining

dH
dt

¼ σ � ðP � HÞ þ κ
Hn

Hn þ Kn ðP � HÞ � ρH: ð10Þ

Using our proof strategy, we can establish the correctness of the Allee-
based algorithm by showing that under certain conditions of its parameters
κ,K, n, and the total population size P, the algorithm guarantees: (i) con-
vergence to a lowdensity ofHcells if the rare event detection rate σ is belowa
critical rate σc and the initial density of H cells is low (no memorized
detection happened), and (ii) to a high density of H cells either if the initial
population of H cells was high (a detection was memorized), or the rare
event rate σ exceeds the critical threshold rate σc (the analyte is being
detected).

Theorem 1. If maxH2½0;P�ðκ Hn

HnþKn ðP �HÞ � ρHÞ > 0, then there exist
αi, αf in 0; 1� ½ with αi < αf and σc > 0 such that:
• If σ < σc, there exists a critical point Hc,σ such that:
1. If H(0) <Hc,σ, then H(t) converges to a value in ½0; αiP½.
2. If H(0) >Hc,σ, then H(t) converges to a value in ½αf P; P½.
• If σ > σc, then H(t) converges to a value in �αf P; P½.

The following two corollaries immediately follow fromTheorem1 and
establish the correctness of detection (Corollary 1) and memorization of a
previously detected analyte (Corollary 2).

Corollary 1. (Detection). If the conditions for Theorem 1 hold, and with
αi, αf, a nd σc as defined in Theorem 1, ifH(0) = 0 then H(t) converges to a
value in 0; αiP

� �
if σ < σc, and to a value in ½αf P; P½ if σ > σc.

Corollary 2. (Memory). If the conditions for Theorem 1 hold, and under
the notation for Theorem 1, if H(0) > αiP, then H(t) converges to a value
in ½αf P; P½.

Wefinally establish anupper boundon the time the algorithmneeds to
converge to a high density of H cells in presence of an analyte. The proof is
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given in the Supplementary Material, for which the convergence time is
established.

Theorem 2. (Convergence time). Let σ > σc. Let
maxH2½0;P�ðκ Hn

HnþKn ðP �HÞ � ρHÞ > 0. Let Hc,0 be the second lowest non-
negative root solution of κ Hn

HnþKn ðP � HÞ � ρH ¼ 0. If
maxH2½0;P�ðκ Hn

HnþKn ðP � HÞ � ρHÞ > 0, there exists a time tl ¼ βσ1 lnð1� Rσ1
Þ

with βσ and Rσ functions of σ, such that H(t) >Hc,0 for any t > tl.
To validate that the algorithm performswell within realistic parameter

ranges, we estimated parameters and ran simulations from a potential
genetic circuit implementation (Fig. 3). Following previous QS circuit

designs in synthetic biology22,23,weuse anN-acylhomoserine lactone (AHL)
as the QS molecule. The AHL molecule is synthesized by LuxI under the
control of a promoter (p1 in Fig. 3) that is activated by the binding of an
LuxR- AHL complex. LuxR is consituently expressed by the circuit (not
shown in the figure). Additionally, the detection of the analyte by the cell is
assumed to activate promoter p1.

We next outline how this circuit implements the Allee-based algo-
rithm:The algorithm’s cell statesL andHmodel cellswith low internal LuxI,
respectively, high internal LuxI concentrations. Reaction (9)models the fact
that an anlyte leads to an increasing internal concentration of LuxI, thus
converting an L cell to an H cell. Also, LuxI is degraded and diluted within

Fig. 2 | Allee-like behavior of the H cells. a, b Birth rate (9)+ (6) of H cells (orange)
and death rate (5) of H cells (blue) versus H density. The characteristic s-shape of a
birth rate in a population with Allee effect is visible. a Rates in absence of the analyte

(σ = 0.1 h−1). b Rates in presence of the analyte (σ = 5 h−1). Parameters used:
κ = 35 h−1, ρ = 14 h−1, P = 2 ⋅ 108 mL−1, n = 4.

Fig. 1 | Illustration of the algorithm. a The three
reactions (5), (6), and (7). b Cell population in
absence of the analyte. A small amount of cells are
incorrectly converted from L to H, but the popula-
tion remains mostly in the L state. c Cell population
in presence of a sufficiently high concentration of
the analyte. Interaction with the analyte converts L
cells into H cells. Additionally H cells convert other
L cells into H cells. d State of the population after the
analyte has been detected and was potentially
removed thereafter. The high density of H cells is
maintained by H cells continuously converting L
cells into H cells.
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the cell, accounting for reaction (7). Finally, H cells synthesize AHL that
diffuses into the medium and from there into surrounding cells. The so-
formedLuxR-AHLcomplex consequently activates promoter p1 that shows
a Hill-type activation profile. The promoter’s activation again leads to
expression of LuxI, making an L cell switch to an H cell, as required by
reaction (6).

For simulations we parametrized the algorithm’s reactions with rate
parameters from literature (Table 1). For the previously discussed imple-
mentation, κ corresponds to the expression of LuxI controlled by p1. From
the model by ref. 22 [supplementary information], we choose κ = 35 h−1.
The reaction rate constant ρ corresponds to the degradation rate constant of
LuxI and was set to 14 h[−122. The Hill coefficient n for activation of p1 via
LuxR-AHL was set to 422. The threshold parameter K for the activation via
LuxR-AHL was set to a relatively high value of 8 ⋅ 107 mL−1, reported in a
circuit by Smith and Schuster24. The total cell densitywas set to a value larger
than 2-times the threshold K, and well in the range of reachable E. coli cell
densities; we used P = 1.5 ⋅ 108 mL−1. The parameters in Table 1 fulfill the
condition of Theorem 1.

The critical threshold rate σc was determined through binary search.
We start from the interval I ¼ ½0; σutr�, where σutr � ðP �HÞ þ
κ Hn

HnþKn ðP �HÞ � ρH ¼ 0 has only one solution forH. From Theorem 1,
the equation κ Hn

HnþKn ðP � HÞ � ρH ¼ 0 necessarily has three solutions for
H. We then repeatedly determine the midpoint of the interval, and verify if
the above equation has three or one solution with themidpoint as σ. In case
of three solutions, we replace the left bound of I by themidpoint, and in case
of one solution we replace the right bound by the midpoint. In case two
solutions or a sufficient precision is reached, the search terminates.We refer
the reader to the Supplementary Material for more details. For our setting,
we find that σc ≈ 3.04 h−1, about 22% of the system’s lowest rate constant,
which is ρ.

Theparameters inTable 1wereused toobtain the transient and steady-
state simulation results. Figure 4a shows dHdt , i.e., the net birth rate of H cells,
versus H for different rare event detection rates σ. While larger values of σ
lead to a single equilibrium points, lower values (0 h−1 and 1.5 h−1 in the
figure) result in three equilibrium points. Of the three points, the smallest
and the largest are stable and are seen to have different H densities for
different σ: the smallest equilibrium point corresponds to a negative
detection result and the largest to a positive detection result. Further,
choosing σ = 3.04 h−1 close to the critical σc, results in a net birth rate
function that barely touches the x-axis.

We next ran transient simulations for the same σ values as in Fig. 4a
over a time range of 0.6 h simulated time (Fig. 4b). One observes, the
convergenceofH(t) to a high density ofH cells for a σ of 4 h−1 and 5 h−1, and
to a low density of H cells for a σ of 0 h−1 and 1.5 h−1; in agreement with
Theorem 1. The transient simulation for σ = 3.04 h−1 close to the critical σc
does not visibly converge in the simulated time. Increasing the simulation
time, however, shows that it converges to a high H density.

he memorization of the presence of an analyte that has been removed
thereafter. In Fig. 4c we varied the exposure time of the cells to the analyte,
while in Fig. 4d the concentration of the analyte was varied. The memor-
ization above a certain critical rate σc(t) = σA ⋅A(t) is observed in both cases,
which is consistent with Corollary 2.

We finally ran simulations for an extended duration to determine
steady-state values for different settings of rare event detection rates σ
(Table 2). The results are consistent with Theorem 1. When σ is above the
critical rate σc, larger values of σ lead to faster convergence of H(t) to its
steady state. As shown in Table 2, the highest convergence time is 0.61 h,
which occurs for σ = 3.04 h−1, a value close to σc. For a slightly higher
σ = 4 h−1, the convergence time is already reduced to 0.44 h. For a mathe-
matical analysis of the convergence times, we refer the reader to the Sup-
plementary Material (Lemmas 7 and 19).

To demonstrate the effectiveness of the Allee-based algorithm, we
compare its performance to other algorithms, including two natural adap-
tations and one presented by ref. 14. In the comparison we focus on the
thresholding behavior of the algorithms: ideally the detection algorithm
shows a strong amplification of its detection output around a threshold
concentration of the analyte, below of which the output is strong negative,
and above of which it is strong positive.

A natural simplification of the Allee-based algorithm is to remove the
(6) reaction, and only keep the reactions that transform cells to H cells in
presence of the analyte, as well as reset H cells to L cells with a certain reset
rate ρ:

(Set): L�!H σ � L½ � ð11Þ

(Reset): H�!L ρ �H� � ð12Þ

Steady-state analysis of H cells via setting dH
dt ¼ 0 and subsequent

algebraic manipulation yields, H ¼ σ
ρ P=ð1þ σ

ρÞ ¼ P σ
ρþσ as the unique

steady-state. Since it is unique, the algorithm lacks thepossibility tomemorize
previous presence of the analyte. Further, formost applicationswe expect σ to
be small compared to the other rates (and in particular ρ), implying a low
amplification from the analyte concentration A to the output H.

A natural distributed algorithm that solves the problem of detecting an
analyte is to broadcast any detection of the analyte to all other cells that relay
this broadcast. Here, relay is obtained by a cell in state H that had been
informed of the presence of the analyte, to pass this information to anyL cell
it interacts with. In terms of reactions, and referring to κ > 0 as the broad-
casting rate, this algorithm can be written as

(Set): L�!H σ � L½ � ð13Þ

ðRelay :Þ LþH�!2 �H κ � L � H½ � ð14Þ

and its dynamics are dH
dt ¼ σ � ðP � HÞ þ κHðP � HÞ.

Fig. 3 | Genetic circuit implementation of the Allee-based algorithm. Both the
AHL and the rare event can transform the cell from the state L to H by triggering the
expression of LuxI. LuxR is constitutively expressed (circuit not shown).

Table 1 | Reaction and population parameters used in
simulations

Parameter Value Source

κ 35 h−1 Din et al. 22

ρ 14 h−1 Din et al. 22

n 4 Din et al. 22

K 8 ⋅ 107 mL−1 Smith et al. 24

P 1.5 ⋅ 108 mL−1 assumed > 2K
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Since 0 ≤H ≤ P, one has thatH is bounded. We now perform a case
distinction between the cases where σ > 0 and σ = 0. Case σ = 0: For any
H 2 0; P½ ½, one has dH

dt > 0. From the monotonicity of H and its bound-
edness, it follows that H converges to a finite steady-state. Since dH

dt ¼ 0

when H = P, one has that H(t) converges to P. Case σ > 0: For any
H 2 0; P� ½, one has dHdt > 0. IfH(0) is in 0; P� �, from themonotonicity ofH
in 0; P� � and its boundedness, it follows thatH converges to a finite steady-
state. Since dH

dt ¼ 0 when H = P, one has that H(t) converges to P. If
H(0) = 0, since, one has that H(t) = 0 for all t. Indeed, two steady states,
obtained by setting dH

dt ¼ 0, are possible: (i) σ = 0 andH = 0, and (ii) σ > 0
and H = P.

While the presence of the two steady-states shows that the algorithm
canmemorize previously detected analytes, the steady-states also show that
the algorithm cannot tolerate incorrect transitions of L cells toH cells: for an
arbitrarily small σ, all cells switch to state H.

Ref. 14 proposed a circuit that uses distributed amplification via a QS
pathway: Cells that detect the analyte synthesize theQSmolecule. Similar to
themodel for theAllee-based algorithm,we abstract this via two cell types: L
cells with low internal concentrations of LuxI and H cells with high con-
centrations of LuxI. Any cell whose QS threshold is triggered, expresses a
reporter molecule S (e.g., YTP). In terms of reactions, this algorithm is

Fig. 4 | Simulation results. a Plot of the net birth rate H cells (dH/dt) versus H for
different σ. Equilibrium points ofH are the roots of dH/dt. b Plot ofH(t) over time t.
For values of σ bellow the critical σc,H(t) converges to H cell densities below αiP
(consistent with Corollary 1). For values of σ above σc,H(t) converges to H cell
densities above αfP (again, consistent with Corollary 1). For σ = 3.05 h−1, the plotted
time range is not enough to show convergence ofH(t). c Plot ofH(t) and the analyte
concentration A(t) over time t. The analyte concentration was chosen as a negative

step function with different durations until the step. One observes that below a
certain exposure time of the cells to the analyte, the analyte is not memorized by the
algorithm. Above this exposure time, the detection of the analyte ismemorized even
if it removed thereafter (consistent with Corollary 2). d Plot ofH(t) and the analyte
concentration A(t) over time t. The analyte concentration was chosen as a pulse of
varying amplitude. One observes that below a certain amplitude, the detection is not
memorized, while above it is memorized.

Table 2 | Steady-state density of H(t) and convergence times
for different rare event detection rates

Rate σ Steady-state of H Convergence time

0.00 h−1 0 mL−1 0 h

1.50 h−1 0.15 ⋅ 108 mL−1 0.21 h

3.04 h−1 0.36 ⋅ 108 mL−1 0.61 h

4.00 h−1 1.01 ⋅ 108 mL−1 0.44 h

5.00 h−1 1.03 ⋅ 108 mL−1 0.3 h

σ Convergence times are given as the time until 95% of the steady-state density is reached.
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expressed as

(Set): L�!H σ � L½ � ð15Þ

(Reset): H�!L ρ �H� � ð16Þ

ðSignal-SecretionÞ: 8C 2 fL;Hg : CþH�!CþHþ S κ � Hn

Hn þ Kn � C
� �

ð17Þ

(Signal-Decay): S�!; ρ � S� � ð18Þ

where S is the reporter molecule, and the reaction (18) accounts for the
decay of S.

To compare the thresholding behavior of the distributed amplification,
the Set-reset, and the broadcasting algorithm to the Allee-based algorithm,
we ran simulations in presence of the same analyte concentration A for all
four algorithms (Fig. 5). Simulation parameterswhere chosen identically for
similar reactions. One observes the strong amplification of the Allee-based
algorithm around a non-zero critical concentration of A. The distributed
amplification algorithm shows a threshold behavior, but with a weaker
amplification. The broadcasting algorithm has a strong threshold at 0, and
the Set-reset algorithm shows no thresholding behavior.

The non-zero thresholding behavior around a critical threshold σc as
shown inTheorem1anddemonstratedby simulations inFig. 5 suggests that
theAllee-based algorithm is robust to incorrectly detected analytes by L cells
(σerr > 0 in our model). To demonstrate that this is the case, also for sto-
chastically varying incorrect detections as exprected in a real genetic circuit
implementation, we ran simulations where we stochastically varied σ over
time, simulating the effect of a stochastic σerr in absence of an anlyte. For any
such simulation, an ideal algorithm is expected to keep H cell densities low,
and thus not wrongly signal the detection of an analyte.

Simulations were carried out in MobsPy25 with a simulated time of
1000 h. For the stochastic model of wrongly detected analytes we chose a
stochastic birth-death process of H cells with a birth rate β of 0.5 h−1 and a
death rate γ of 2 h−1. The parameters have been set to the leaky expression
rate and thedecay rate of LacI22 to reflect a realistic parameter range for leaky
expression resulting in incorrect L toH transitions of a cell. The so-obtained
stochastic rates were then fed into a deterministic transient-time simulation
of the Allee-based algorithm. Figure 6 shows the resulting densitiesH(t) as
well as the rate σ(t) over time t for a simulated time of 100 h.We can observe
that while the stochastic event detection rate is capable of increasing the
density H(t), the algorithm does not amplify the H cells further, thus pre-
venting the cells from incorrectly detecting the analyte.

To examine the impact of parameters like the population density P, as
well as the rate parameter κ from (6) and ρ from (7), on the algorithm’s
critical threshold σc, we determined σc for parameter sweeps (Fig. 7). The
parameter ranges that violate the condition of Theorem 1 are marked with
setting σc = 0 in the heat map.

In all the heat maps, we can observe a distinct linear boundary
separating a region where σc = 0 indicating a violation of the condition of 1
and a valid region. For instance, in Fig. 7c, the region marked as R3 falls in
this category where the reset rate constant ρ is significantly larger than the
hold rate constant κ, leading to the inability of the amplification process to
trigger. Consequently, the region possesses only a stable equilibrium state
withH = 0andno stable equilibriumstate forHwith ahigh cell density.This
is expected as the (7) reaction dominates the system behavior in this case.

The heat maps also reveal that when the (6) rate parameter κ is higher
than the (7) rate constant ρ, the critical threshold σc is often close to zero.
This is evident in the regionmarked as R1 in Fig. 7c. Due to the higher hold
rate, the algorithm can produces wrong positives for a lower σ.

Discussion
We presented and discussed a distributed algorithm to detect rare events,
such as the presence of a rare analyte, by a population of engineered cells.
The algorithm is intended to be used in combination with sensory and
reporting circuits within MWCS. The algorithm is inspired by the Allee
effect observed in natural systems: it uses the fact that a certain critical
threshold cell density that signal the presence of an analyte is hard to reach
initially, but once it is reached, the fact that an analyte has been detected it
quickly propagated to the whole cell population.

We have established conditions under which the algorithm provably
works as intended (Theorem 1). Numerical simulations of a proof-of-
concept circuit demonstrate that the algorithm shows strong amplification
of near a critical threshold concentration of the analyte (Fig. 5). This is in
contrast to three other natural algorithms that have been discussed in this
work (Fig. 5). Additionally, hybrid stochastic–deterministic simulations
(Fig. 6) were carried out to demonstrate the robustness of the algorithm to
cells that wrongly detect the analyte.

Fig. 5 | Comparison of the four algorithms: Allee-based, Set-reset, broadcasting,
and distributed amplification algorithm. The plot shows steady-state reporter
densities (S respectively H) over analyte concentrations A obtained via simulation.
Simulationparameters:P = 1.5 ⋅ 108 mL−1, ρ = 14 h, κ = 35 h,K = 8 ⋅ 107 mL−1, andn = 4.

Fig. 6 | Robustness of the Allee-based algorithm to an incorrect detection of the
analyte. The plot shows H(t) and σ(t) over time t for 4 h simulated time with a low,
stochastic rate σ in absenceof ananalyte. The algorithm is seen tonot incorrectly amplify
the detection of the analyte: theH cell densityH remains low throughout the simulation.
Simulation parameters: P = 1.5 ⋅ 108 mL−1, ρ = 14 h, κ = 35 h,K = 8 ⋅ 107 mL−1, n = 4,
β = 0.5, and γ = 2. The parameters αf (see Theorem 1) and σc are shown as hor-
izontal lines.
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Since the detection thresholds and the targeted total cell populations
may differ significantly per application, one may need to adapt the reaction
parameters for these cases.We speculate that the simplicity of the detection
algorithm aswell as themechanistic understanding of all parameters greatly
simplifies this adaption, e.g., via plasmid copy number manipulation to
affect the reaction rates26 and gene removal to alter the parameter K24. We
leave the impact of inter-cellular differences and changing population sizes
to future work.

Finally, as has been show by the robustness simulations, the choice of
the critical threshold rateσcbalances the capability of sensing rare events and
robustness: while a low threshold favors early detection, a high threshold
tolerates a larger concentration of wrongly detected analytes.

Methods
Model construction
The model was constructed using the ODE CRN formulation27. In this
formulation, considering no inflow and outflow of matter into the system,
the rate of change over time for the concentration/density X(t) for any
species X is expressed as:

dXðtÞ
dt

¼ Generative reaction rates of X� Consuming reaction rates of X ð19Þ

Here, the “generative reaction rates of X” refer to the rates of reactions
where X is produced times its stoichiometry in each reaction, while the

“consuming reaction rates of X” refer to the rates of reactions where X is
consumed times its stoichiometry in each reaction.

For this model, reaction rates from Reactions (5) and (9) are defined
using mass-action kinetics28, which assumes that the reaction rate is the
result of the product of the reactants’ concentration and a constant reaction
rate. Conversely, Reaction (6) uses the Hill formulation29, which accounts
for cooperativity among multiple ligand binding sites.

TakingX asH, writing theODEassociatedwith the proposed chemical
reactionnetworkby inserting theproposed rate expressions, and assuming a
constant steady-state population value such that L = P−H yields Equa-
tion (10).

Proof strategy
Theorem 1 is proven with the following strategy: From Equation (10),
algebraic manipulation of dH

dt ¼ 0 yields up to three potential equilibrium
points forH, the smallest ofwhich is stable, themiddle one unstable, and the
largest one being stable (if they exist). Using the monotonicity of dHdt within
certain subdomains of H, one can show that for the interval I between the
first, stable, and the second, unstable, equilibrium point, dHdt is negative for
H∈ I, and I ¼ ; for rare event detection rates σ larger than a critical rate σc.
The proof we give in the Supplementary Material is based on the inter-
mediate value theorem. For sufficiently large values of σ, only one stable
equilibrium point remains and its value can be bounded away from 0. The
proof in the SupplementaryMaterial uses a quadratic Lyapunov function to
show convergence to this fixed point.

Fig. 7 | Parameter variations showing σc for different reaction rate parameters κ and ρ. Subplots (a–d) differ in the total population density P.
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Theorem 2 is proven with the following strategy: We begin by
establishing a lower bound ordinary differential equation (ODE),
dH�
dt < dH

dt , known for its exponential convergence to a fixed point. In
parallel, we define an interval I starting at zero. If, at any point in time tc,
the value of H(tc) falls outside this interval, it indicates that H(t) will
converge to the amplified state. Furthermore, leveraging theODE’s lower
bound and the initial conditionsH*(0) =H(0) = 0, if there exists a specific
time instance tlwhereH

*(tl) exits the I interval, it implies thatH(tl) must
also leave this interval.

Simulation model
We used the Python simulation framework MobsPy25 to obtain transient
and steady-state simulation results for the parameters inTable 2. The core of
the simulation code is shown in Listing 1.

The robustness simulation was separated into two parts. First, we
generated a birth and death process to simulate noisy event rates introduced
to the system, as shown in code Listing 2.

Subsequently, the generated data was incorporated into anothermodel
using simulation events, which represent changes in species values during
simulation. Its core code is shown in Listing 3.
# s = sigma, k = kappa, and p = rho

L, H = BaseSpecies(2)
L > > H [s] # Set
H > > L [p] # Reset
L + H > > 2 * H [lambda l, h: f'{k}*{l}*1/(1 + ({K}/{h})
^{n})'] # Hold
H(0), L(P) # initially, H(0) = 0 and L(0) = P

MySim= Simulation(L ∣ H)

Listing 1:MobsPy simulation code for the Alle-effect-based algorithm.
Initialization of reaction and population parameters is according to Table 1.
Parameter σ (s in the code) was varied in the simulations.

A = BaseSpecies(1)
Zero > > A [pr]
A > > Zero [dr]

MySim = Simulation(E)
MySim.simulation_method = ‘stochastic’

Listing 2: MobsPy simulation code for the birth and death noise gen-
eration. The simulation parameters were set to pr = 0.5 and dr = 2.

with open('noise.pkl', 'rb') as file:
noise = pickle.load(file)

L, H, A = BaseSpecies(3)

L+ A > > H + A[1]
H > > L[p]
L + H > > 2 * H[lambda l, h: f'{k}*{l}*1/(1 + ({K}/
{h})^{n})']

L(P)
S1 = Simulation(H ∣ L ∣ A)
for time, data in zip(noise['Time'], noise['Data']):

with S1.event_time(time):
A(data)

S1.simulation_method = ‘stochastic’

Listing 3:MobsPy simulation code for the robustness test. Initialization
of reaction and population parameters is according to Table 1. The
noise.pkl file contains the results from Listing 2.

All simulations were run in Python version 3.10 and MobsPy version
2.2.0. Thehardware usedwas aMacBookAirwith 1,1GHzQuad-Core Intel
Core i5, Intel Iris Plus Graphics 1536MB, and 8 GB 3733MHz LPDDR4X.
The operating system was Mac OS.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
All data generated from the simulations was generated by the code available
at https://github.com/BioDisCo/alle_effect_for_rare_event.
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