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Explainable deep learning for tumor dynamic modeling and
overall survival prediction using Neural-ODE
Mark Laurie1,2 and James Lu 1✉

While tumor dynamic modeling has been widely applied to support the development of oncology drugs, there remains a need to
increase predictivity, enable personalized therapy, and improve decision-making. We propose the use of Tumor Dynamic Neural-
ODE (TDNODE) as a pharmacology-informed neural network to enable model discovery from longitudinal tumor size data. We show
that TDNODE overcomes a key limitation of existing models in its ability to make unbiased predictions from truncated data. The
encoder-decoder architecture is designed to express an underlying dynamical law that possesses the fundamental property of
generalized homogeneity with respect to time. Thus, the modeling formalism enables the encoder output to be interpreted as
kinetic rate metrics, with inverse time as the physical unit. We show that the generated metrics can be used to predict patients’
overall survival (OS) with high accuracy. The proposed modeling formalism provides a principled way to integrate multimodal
dynamical datasets in oncology disease modeling.
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INTRODUCTION
The study of tumor growth dynamics has a long history, with early
seminal efforts demonstrating the ability of mathematical models
to describe experimental data1,2. Subsequently, there has been a
plethora of mathematical models based on various frameworks
(e.g., deterministic, stochastic, game theoretical, etc.) that have
integrated aspects of the underlying biological processes (e.g.,
tumor heterogeneity and angiogenesis) and led to the generation
of scientific insights3. For drug development applications, the
modeling of tumor size dynamics from patient populations has
become an important tool by which to characterize treatment
efficacy. Currently, non-linear mixed-effects modeling (NLME),
based on structural models described with either algebraic or
differential equations, is the most widely adopted methodology
used by the pharmacometrics community4. Via modeling, the
derived tumor dynamic metrics have found wide utility in
supporting the development of anti-cancer drugs, ranging from
early efforts5 showing the ability of such metrics to predict Phase 3
overall survival (OS) from Phase 2 data to broader applications6,7

and use of the tumor dynamic metrics to predict the hazard ratio
of clinical trials for a wide variety of solid tumor types8. While there
have been prior efforts to use machine learning (ML) algorithms to
map tumor metrics derived from NLME modeling9 to OS, the
derivation of the metrics themselves has not been attempted
using ML. Although there has been much progress in model-
informed drug development within oncology using tumor dynamic
models, there remain many opportunities for additional applica-
tions, including personalized therapy10.
A key area for the advancement of tumor dynamic modeling is

increasing the ability to accurately predict future patient out-
comes from early observed longitudinal data. If successful, this
would increase the impact of predictive modeling for drug
development and for personalized therapy. The paths for future
progress may entail the utilization of high dimensional data that
have become available through technological advances in the
biomedical sciences (e.g., Digital Pathology11, ctDNA12 etc.), via

the development of algorithms, or via a combination of both.
Despite the many types of models that have been developed to
support clinical decision-making in oncology, there is an increased
appreciation that in order to effectively mine ever larger datasets,
Artificial intelligence (AI) approaches are required to complement
existing statistical and mechanistic models13.
While there are many neural network architectures that can be

utilized to describe longitudinal data such as tumor size
measurements, the formalism of neural-ordinary differential
equations (Neural-ODE)14,15 is an especially effective platform by
which to combine the strengths of deep learning (DL), with the
advantages of ODEs (which is amongst the most commonly used
mathematical formalism in tumor dynamics modeling). The use of
Neural-ODE in pharmacology has been successfully developed for
pharmacokinetics (PK)16 and pharmacodynamics (PD)17 modeling,
demonstrating promising predictivity results in the settings
examined. In this work, we provide the foundational Tumor
Dynamic Neural-ODE (TDNODE) modeling framework that consists
of an encoder-decoder architecture. A key consideration in the
methodological development is integrating the ML model with
physical concepts18, as this may enhance interpretability and
enable making physically consistent predictions in temporal
extrapolations beyond the training set18. While largely building
upon the important work of15 whereby a recurrent neural network
(RNN) encoder is used together with a Neural-ODE decoder, there
are additional developments necessary to make it pharmacology-
informed in terms of dynamical characterization of patients’ tumor
data that leverages the well-established oncology disease model-
ing framework10. In this work, we propose a principled way to
normalize patients’ tumor dynamics data in conjunction with
scaling the encoder outputs in correspondence in order to
maintain a specific units-equivariance19 in the learned vector field.
Thus, we not only enable the interpretation of the encoder
outputs as tumor dynamic metrics (with the physical unit of
inverse time), but also ensure a generalizable approach to predict
patients’ OS in a manner that rests upon the well-established
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tumor growth inhibition (TGI)-OS link. We show that by applying
the proposed methodology together with our devised data
augmentation approach, we can generate a model that makes
unbiased predictions of future tumor sizes from early, truncated
tumor size data. Furthermore, we show that the encoder-
generated TDNODE metrics (that is, patient-specific kinetic
parameters produced by feeding the longitudinal tumor data
into the encoder) can predict patients’ OS using the ML survival
model XGBoost20 with a performance that significantly surpasses
the existing TGI-OS approach20. Finally, we show that the XGBoost
model for OS can be interpreted using the SHapley Additive
exPlanation (SHAP) to quantify how the contribution of TDNODE
metrics impacts tumor dynamic predictions21,22.

RESULTS
Dynamical systems formulation enables the interpretation of
parameters as kinetic rates
We wish to discover the dynamical law governing patients’ tumor
dynamics using the Neural-ODE system shown below:

dzðtÞ
dt

¼ f θ z tð Þ; pð Þ; t 2 0; T½ �: (1)

Here, T is the final simulation time of interest, f θ is a neural
network parameterized by a set of weights θ to be learned across
the patient population, p2Rk represents the patient-specific
kinetic parameters and zð0Þ 2 Rc represents the patient-specific
initial state of the system both of which are to be learned from
individual patient data, and z �ð Þ : ½0; T � ! Rc represents the time-
continuous solution being sought. The patient-specific parameters
and initial state represent patient-to-patient variability obtained
by passing the individual patient tumor data through the
corresponding encoders. In particular, the current framework
focuses on discovering the set of equations for tumor dynamics,
independent of the choice of treatment and/or dosing.
In our formulation, we would like to be interpret p as kinetic

parameters with the physical unit of 1/[t] rather than simply an
arbitrary abstract representation generated by a neural network
with the sole aim of reproducing the tumor dynamic data. We do
so by performing a time-scaling operation on Eq. (1) and
leveraging the notion of equivariance23: upon transformation to
a dimensionless time t̂ ¼ t=T and using the chain rule, we have
(please see the Appendix for the derivation):

dzð̂tÞ
dt̂

¼ f θ z t̂
� �

; p
� �

´ T ; t̂ 2 0; 1½ �: (2)

We propose that in order to interpret p as kinetic parameters,
we should learn vector fields f θ which satisfy the following
generalized homogeneity24 condition:

f θ z; pð Þ ´ T ¼ f θ z; p ´ Tð Þ; 8z 2 Rc; p 2 Rk ; T 2 Rþ: (3)

Note that while vector fields f θ z; pð Þ that are linear in p enters
would clearly satisfy (3), this condition does not equate to linearity
as there are non-linear functions that satisfy (3) as well. From Eqs.
(2) and (3), it follows that:

dzð̂tÞ
dt̂

¼ f θ z t̂
� �

; p ´ T
� �

; t̂ 2 0; 1½ �: (4)

Equation (4) shows that in order for the dynamical system
expressed in dimensionless time t̂ to reproduce a given set
dynamical data given in the original time t, its kinetic parameters
need to scale in direct proportion to the corresponding time-
scaling factor: that is, p ´ T . As T can be an arbitrarily chosen
positive real scaling factor, we introduce a patient-dependent data
augmentation scheme such that a single temporal data trace (in
original time) is truncated, and subsequently mapped to a number

of different temporal traces expressed in rescaled time, t̂. The
augmented set of temporal traces under different rescaling is then
used to train the model. In summary, we propose a data
augmentation scheme involving various choices of time-scaling
factor T , thereby imbuing p with the meaning of kinetic rate
parameters. Refer to the “Methods” section for further details.

Model architecture generates longitudinal tumor predictions
and kinetic parameters
We designed TDNODE with the intent to longitudinally predict
tumor dynamics given an arbitrarily defined observation window,
whereby the input data consists of tumor sum-of-longest-
diameter (SLD) measurements and their respective times of
measurement.
The main components of the TDNODE architecture consist of a

set of two encoders that process sequential inputs and an ODE-
solver decoder, as displayed in Fig. 1: the Initial Condition Encoder
consists of a recurrent neural network (RNN) that creates a
4-dimensional encoding which represents the initial condition of a
given patient; the Parameter Encoder contains an attention-based
Long Short-Term Memory (LSTM) flanked by laterally connected
linear layers, which produces a 2-dimensional representation of
tumor kinetic parameters. The ODE-solver decoder uses the two
encoder outputs as the initial condition and kinetic parameters,
respectively, to generate longitudinal SLD predictions. Following
Chen et al.14, the decoder consists of an ODE system whose vector
field is represented as a neural network. In the ODE solver,
numerical integration is carried out for the 4-dimensional state
vector (which provides a latent representation of the time-varying
tumor state) from the current time point to its corresponding
values at the next requested time point, according to the
dynamics provided by the vector field. Finally, a Reducer is used
to reduce the state vector to a single number, so as to be
compared with the measured SLD values. Refer to Methods for
additional details.

TDNODE produces unbiased predictions of tumor dynamics
We examined the ability of TDNODE to reproduce and extrapolate
tumor dynamics using the IMPower150 dataset25. As the aim of
this work is to make longitudinal tumor predictions, we first
excluded subjects from the dataset with less than or equal to one
tumor size measurement. Subsequently, data were split randomly
with respect to subject ID into a training set used to develop
TDNODE (889 patients) and a test set used to assess TDNODE’s
tumor dynamic predictions (216 patients). In the training set, we
performed the proposed method of augmentation that considers
the subsampled subsets of collected patient time series data,
which significantly increased the number of tumor dynamic
profiles observed by TDNODE during training. Tumor SLD
measurements were normalized with respect to the training
cohort mean and standard deviation for both cohorts. Observation
times were scaled with respect to the time of the last
measurement for each subject. To determine the last time of
measurement, we deem all measurements made at a time t less
than or equal to the patient’s observation window (wi) since the
start of treatment as seen, measurements that TDNODE is able to
observe and estimate in its tumor dynamic prediction curve. All
measurements collected at time t greater than the wi-week
observation window are conversely deemed as unseen; here
TDNODE is assessed in its ability to extrapolate or infer tumor
dynamics using only data collected from within its observation
window. In this study, we let wi ¼ 32 weeks represent the
observation window for each subject.
We show in Table 1 that TDNODE can accurately extrapolate

tumor dynamics on the test set for t >wi across treatment arms in
the IMPower150 dataset. Here, the bootstrapped median root-
mean-squared error (RMSE) and R2 score on the extrapolation
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component of the test set were shown to be 9.69 and 0.88,
respectively. We note that these data were never seen by TDNODE
during model development and inference. Training set RMSE and
R2 performance can be seen in Supplementary Table 4. Here,
TDNODE achieved a bootstrapped median R2 score of 0.95 on all
measurements on both the training and test sets.
TDNODE was also shown to produce unbiased predictions, as

shown in Fig. 2 for both the training and test sets. In particular,
TDNODE predictions did not exhibit systematic trends with
respect to the measured SLD values (Fig. 2a, b). Moreover,
TDNODE exhibited no systematic bias in a statistically significant
manner in the tumor size predictions with respect to the time of
measurement (Fig. 2c, d). These findings demonstrate promise for
TDNODE to both longitudinally model and forecast tumor size
data, in contrast to classical TGI models which were shown to carry
systematic biases of tumor size predictions with respect to
observation time26. Refer to Supplementary Figures 1 and 2 for
plots showing these comparisons for each treatment arm in the
IMPower150 dataset.
We illustrated TDNODE’s predictive abilities using selected

patient longitudinal SLD measurements from the test set. To this

end, we adjust wi to be 16, 24, or 32 weeks for all subjects. We
observe in Supplementary Fig. 3 how the TDNODE predicted
tumor profiles for these patients change with respect to increases
in the observation window. We also observe in Supplementary
Table 5 how TDNODE’s extrapolation performance improves as
the observation window is increased. Taken together, our results
show that TDNODE can make qualitatively appropriate continuous
predictions of tumor dynamics at the subject level and that
TDNODE makes more accurate predictions as the observation
window is increased, as expected. Additional patient longitudinal
tumor dynamic predictions can be seen in Supplementary Fig. 4.

TDNODE enables superior prediction of overall-survival
compared to existing TGI-OS models
The parameter encoder module of TDNODE produces a
2-dimensional encoding that can be used to predict patients’
OS. In a similar manner to using TGI metrics to predict OS9,27, we
used this output as the input to an XGBoost ML modeling
approach used previously in ref. 27 (see parameters in Supple-
mentary Table 3). We used the same sets of training-test patient

Table 1. TDNODE predictive performance of tumor dynamics using a 32-week observation window on the test set.

Treatment arm Number of predictions for t >wi RMSE
(median土MAD)

R2 score
(median土MAD)

Arm 1: atezolizumab+ carboplatin+ paclitaxel 208 12.56土 1.29 0.75土 0.05

Arm 2: atezolizumab+ carboplatin+ paclitaxel+ bevacizumab 214 7.65土 0.93 0.93土 0.01

Arm 3: carboplatin+ paclitaxel+ bevacizumab 79 4.34土 0.31 0.98土 0.01

All treatment arms 501 9.69土 0.75 0.88土 0.02

We evaluated the predictive performance of TDNODE on the unseen portion of the test set. For each patient, we let the observation window wi = 32 weeks
and only evaluate measurements collected at time values beyond wi . Although TDNODE generates a continuous solution of predictions z �ð Þ, the RMSE and R2

scores are calculated using the discrete set of predictions only at observation times with SLD measurements. The predictive performance across all treatment
arms is shown in bold. Variability was measured via median absolute deviation (MAD).
The bolded row indicates the model that gave rise to superior predictive performance.
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Fig. 1 Schematic representation of Tumor Dynamic Neural-ODE (TDNODE). The deep learning model is designed to discover the underlying
dynamical law from tumor dynamics data and use the identified kinetic parameters to predict patient overall survival (OS). Time series tumor
dynamic data were split at the patient level into a training and test set. Times of last observation were obtained and the augmented patient
time series data were created. The SLD data were Z-score normalized using the mean and standard deviation from the training set; the
measurement times were scaled at the patient level using each patient’s last observed measurement time. Pre-treatment and truncated post-
treatment tumor dynamic profiles were fed into the initial condition and parameter encoders of TDNODE, respectively. Post-treatment time
series data were partitioned to improve learning of longitudinal tumor dynamics. The parameter encoder output for each patient was scaled
by the corresponding time of the last measurement to produce a set of kinetic rate parameters with the interpretation of inverse time as the
physical unit (please note that the neural network schematics are only representational and do not reflect the actual layers or channel
dimensionalities used). The initial condition (zð0Þ) and kinetic parameters (p) were then used in a Neural-ODE model that represents the
learned dynamical law and acts as a decoder of the system. Finally, the model solution was reduced to SLD predictions as a function of time. In
parallel, the patients’ OS is predicted using the ML model XGBSE. Via SHAP-ML and PCA analysis on the kinetic rate parameter distribution, our
modeling paradigm successfully links tumor dynamics and OS in a data-driven manner.
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split to evaluate OS predictions. Only encoder outputs from the
training set patients were used to construct the OS ML model. This
model did not observe test set encoder metrics until after the OS
ML model was developed. We evaluated OS predictivity using the
c-index28, which was calculated using the OS ML model’s output
and the OS status of each patient from the clinical trial. On the
training set, we evaluated OS predictivity by 5-fold cross-
validation with random splitting of the data.
We compared this statistic to that obtained using an existing set

of all TGI metrics (consisting of tumor growth rate (KG), tumor
shrinkage rate (KS) and the time to tumor growth (TTG)6), which
were obtained using a non-linear mixed-effects (NLME) model
fitted to data from all patients, from which the individual
parameters were obtained8, as is standard practice in pharmaco-
metrics modeling. For both models, we evaluated OS predictivity
using just the generated metrics, or in conjunction with eleven
baseline covariates (Supplementary Table 2) obtained at the start
of each subject’s enrollment in the clinical trial27. Figure 3 displays
how the ML-predicted survival probabilities with 95% confidence
intervals for each treatment arm align with that of the Kaplan-
Meier (KM) curves of the patients in the test set.
The results shown in Table 2 demonstrate that the ML model for

predicting OS based on TDNODE metrics (referred to as TDNODE-
OS.ML) resulted in significantly increased predictive performance
as compared to TGI metrics (referred to TGI-OS.ML) and is true
using either the metrics alone or using the metrics in conjunction

Fig. 2 TDNODE enables unbiased predictions of tumor dynamics with respect to both tumor size and observation time. a Prediction
versus SLD data on the training set. b Prediction versus SLD data on the test set for t > 32 weeks. c Training set residuals between tumor
dynamic predictions (PRED) and observed SLD data with respect to time. d Test set residuals between tumor dynamic predictions and
observations with respect to time Bootstrapped LOWESS curves with 95% confidence intervals (CIs) were generated for c, d.

Table 2. Comparison of predictive performance for overall survival
using TGI metrics and TDNODE-derived metrics.

Model Input features C-index
evaluated via
5-fold cross-
validation
(median±MAD)

C-index
evaluated on the
test set

TGI-OS.ML TGI metrics only 0.73 ± 0.01 0.68

TGI metrics+ 11
baseline covariates

0.78 ± 0.02 0.75

TDNODE-
OS.ML

TDNODE metrics 0.84 ± 0.02 0.82

TDNODE
metrics+ 11
baseline covariates

0.86 ± 0.02 0.84

Prediction of OS using TGI metrics compared with that of TDNODE encoder
output metrics, both with and without eleven baseline covariates. The
inclusion of these covariates significantly improved the prediction of OS in
the TGI-OS model, whereas TDNODE metrics appear to capture the
information provided by these covariates. In both cases, TDNODE-
generated metrics are superior for the prediction of patients’ OS when
compared to that of TGI-generated metrics. The variability of each metric is
measured using median absolute deviation (MAD).
The bolded row indicates the model that gave rise to superior predictive
performance.
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with the previously used eleven baseline covariates. Furthermore,
in the case of OS prediction using TDNODE-derived metrics, we
observe no significant loss in performance in OS predictivity
between the validation set patients and the test set patients by
comparing the c-index values. Furthermore, the predictive
performance levels of TDNODE-OS.ML showed marginal improve-
ments after incorporating the eleven baseline covariates. The
result suggests that the TDNODE metrics extract sufficient
information from the longitudinal tumor size data such that the
additional eleven baseline covariates no longer provide additional
predictive value. This is in contrast to the case of TGI-OS.ML, where
utilizing the eleven baseline covariates resulted in a sizable
improvement in OS predictivity.

TDNODE metrics can explain patient overall survival
To enhance the interpretability of TDNODE, we designed the
formulation such that a single dynamical law is learned from the
tumor dynamics data with patient-to-patient variability explained by
kinetic parameters expressed with the units of inverse time. In
addition to showing that the TDNODE-generated metrics can be
used to predict OS, here we demonstrated that the relationship
between the metrics and OS can be explained at a qualitative level
as can be seen in Fig. 4. Using principal component analysis (PCA)29,
we obtained the first principal component from the set of
2-dimensional encoder metrics and showed that it exhibits similar
OS predictability to that of the TDNODE-generated metrics when
using XGBoost, achieving a c-index of 0.82 on the training set and
0.81 on the test set (see Supplementary Table 6 for details). SHAP21,22

analysis of this XGBoost model shows a positive impact upon the OS
expected survival time with respect to increases in this axis.
Given this finding, we evaluated the impact of perturbations of

this component on the tumor dynamics of individual patients. In Fig.
4, we find that increases in this component yield monotonic
decreases in the longitudinal tumor dynamic predictions for all
patients in the training and test sets. This finding aligns with that of
the SHAP analysis that we performed, as increases in tumor sizes are
expected to be associated with a decrease in OS. SHAP summary
plots of the XGBoost ML model using the 2-dimensional encoder
output of TDNODE can be found in Supplementary Figs. 5 and 6,
and additional examples of feature dependence plots for randomly
selected patients can be found in Supplementary Figs. 7 and 8.

DISCUSSION
We presented a deep learning methodology to discover a
predictive tumor dynamic model from longitudinal clinical data.
In essence, the methodology leverages Neural-ODEs14,15 formu-
lated in such a way that a single underlying dynamical law
(represented by the vector field) is to be discovered from the
patient population data, with patient-to-patient variability in
the tumor dynamics data explained by differences in both the
individual initial state as well their kinetic rate parameters.
Furthermore, we introduced an equivariance property in the
vector field under time rescaling transformation, so as to enable
the interpretation of the learned patient embedding as kinetic
parameters, with the units of inverse time. By estimating the
individual patients’ kinetic parameter values (or metrics) from the
longitudinal tumor size data, they can then be used to predict
the patients’ OS using an ML model. Our proposed use of
leveraging longitudinal tumor size data to generate metrics and
subsequently OS predictions follows the well-established TGI-OS
paradigm5,8,10 which has been widely applied to support oncology
drug development. On the other hand, prior TGI-OS approaches
have all relied on the human modellers choosing appropriate
parametric functions for both the tumor dynamics equations as
well as the statistical models for survival. In this work, we endeavor
to leverage machine intelligence to discover the underlying models

while retaining a one-to-one correspondence with the traditional
TGI-OS paradigm on a conceptual level. Compared to many other
alternate approaches for modeling time series data, our proposed
TDNODE methodology has the benefit of explainability brought
about by the following: (1) the bottleneck of the encoder-decoder
architecture enables accounting for patient-to-patient variability in
a parsimonious manner; (2) the equivariance condition of the
vector field enables interpretation of patient embeddings as kinetic
parameters; (3) the dynamical system nature of the formulation
enables a direct connection between salient aspects of tumor
trajectories and their impact on the predicted OS.
The proposed methodology was applied to data from

IMPower150, a phase 3 clinical trial of NSCLC patients. We showed
on this dataset that the proposed TDNODE methodology over-
came a key obstacle of the current TGI modeling approach, namely
its ability to predict in an unbiased manner the future tumor sizes
from early longitudinal data. These results can be explained by the
formulation of TDNODE in minimizing a loss function and the
proposed data augmentation scheme of feeding the early tumor
dynamics data into the encoder while ensuring accurate extra-
polations for future dynamics. In contrast, the approach of
population modeling based on non-linear mixed-effects30 aims
to characterize model parameters at both the population and
individual levels rather than aiming to minimize errors in model
predictions over an unseen horizon. Another benefit of utilizing the
deep learning approach was the discovery of tumor dynamics
metrics, beyond the tumor growth and shrinkage rates (i.e., KG and
KS, respectively) that have been widely used in TGI literature8,10.
We showed that the TDNODE metrics obtained were better
predictive of patient OS than the existing ones, as demonstrated
by the sizably higher c-indices achieved.
There remain several areas for further research. While the results

shown here demonstrate significant promise in the setting of
NSCLC patients, it remain to be applied to other solid and
hematological cancer types. Of note, as TGI models of the same
structure3 are often applied across different tumor types, it may be
advantageous to apply TDNODE to identify the best set of pan-
tumor dynamical equations. Additionally, our current TDNODE
model does not incorporate dosing or PK; however, such extensions
are possible areas for further work. In order to further improve the
TNODE predictive performance, hyperparameter optimization and
the experimentation of alternate numerical solvers (e.g., ref. 31) are
promising avenues. While this work sets the mathematical
foundations for longitudinal tumor data, further expansions to
incorporate multimodal, high dimensional data32 of both static and
longitudinal nature remain active areas for future development.

METHODS
Data summary
Longitudinal tumor sum-of-longest-diameters (SLD) data were
collected from the IMpower150 clinical trial in which 1184
chemotherapy-naive patients with stage IV non-squamous
non–small cell lung cancer (NSCLC) were enrolled33. This Phase
3, randomized, open-label study evaluated the safety and
efficacy of atezolizumab (an engineered anti-programmed
death-ligand PD-L1 antibody) in combination with carboplatin+
paclitaxel with or without bevacizumab compared to carboplatin
+ paclitaxel+ bevacizumab33. All patients provided written
consent prior to enrollment. Patients assigned to Arm 1 were
administered atezolizumab+ carboplatin+ paclitaxel (n= 400).
Patients assigned to Arm 2 were administered atezolizumab+
carboplatin+ paclitaxel+ bevacizumab (n= 392). Patients
assigned to Arm 3 were administered carboplatin+ paclitaxel+
bevacizumab (n= 392). In Arms 1 and 2, atezolizumab was
administered as an IV infusion at a dose of 1200 mg Q3W until a
loss of clinical benefit was observed. In all arms, carboplatin was
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administered at 6 mg/mLmin−1 Q3W for 4 cycles, 6 cycles, or
until loss of clinical benefit, whichever came first. In Arms 2 and 3,
bevacizumab was administered as an IV infusion at a dose of
15 mg kg−1 Q3W until disease progression, unacceptable toxicity,
or death. In all arms, paclitaxel was administered as an IV infusion
at a dose of 200 mgm−2 Q3W for 4 cycles, 6 cycles, or until loss
of clinical benefit, whichever came first. Full details of study
design can be found in25.

Data processing
Data definition. Let ψ ¼ y1; y2; � � � ; ynf g represent the set of SLD
measurements from n subjects in the dataset, where yi ¼ðyi;1; yi;2; � � � ; yi;mi

Þ is a list of SLD measurements (typically
measured in mm) sorted by time, whereby yi;j corresponds to
the jth SLD measurement for subject i. Here,mi corresponds to the
number of SLD measurements for subject i. Similarly, let Γ ¼
fτ1; τ2; � � � ; τng represent the corresponding observation times of
n subjects in the dataset, where τi ¼ ðτi;1; τi;2; � � � ; τi;mi Þ is a sorted
list of mi observation times (typically expressed in weeks), such
that τi;j corresponds to the jth observation time for subject i. We
exclude patients with less than or equal to one post-treatment
observation since longitudinal modeling would not be applicable.
Using these definitions and the IMPower150 dataset, we have a
total number of 1105 eligible subjects.

Data splitting. We then randomly allocate 80% of subjects (
ntrain ¼ 889) into the training set and 20% of subjects (ntest ¼ 216)
into the test set (consisting of 73, 68 and 75 patients in treatment
arms 1, 2, and 3, respectively). Here, Ψtrain and Ψtest represent the
SLD measurements of subjects in the training set and test set,
respectively. Similarly, Γtrain and Γtest represent the observation
times of subjects in the training and test set, respectively.

Definition of pre-treatment and post-treatment measurements.
The dataset contains tumor SLD measurements collected across
two distinct segments: 1) pre-treatment and 2) post-treatment. We
define the pre-treatment measurements as SLD measurements
collected prior to the initiation of active treatment. Conversely, we
define post-treatment measurements as SLD measurements
collected after the active treatment has been initiated. As the
time for the start of treatment is taken to be 0, yi;j is considered
pre-treatment when τi;j<0, and post-treatment when τi;j � 0.

Definition of the observation window. We also defined a set of
observation windows for subjects in both training and test
cohorts. Here, an observation window is defined as the quantity of
post-treatment time in which a subject has been observed. Let
W ¼ fw1;w2; � � � ;wng represent the set of observation windows
for all n subjects such that wi represents the observation window
for subject i. This scalar corresponds to the amount of seen data
that TDNODE uses to predict tumor dynamics and generate
parameter encodings. Thus, any measurements outside the
observation window are deemed as unseen by TDNODE and
subsequently not used as input. In this study we let wi ¼ 32 weeks
for all patients.
From this definition, consider patient i and let l ið Þ ¼

argmaxjðτi;j � wiÞ represent indices for measurement such that
τi;lðiÞ and yi;lðiÞ correspond to the last observed time of measure-
ment and last observed SLD value; that is, the last observed SLD
value to be used as input for TDNODE. Hence, for patient i, all
(integer) indices j between 1 and lðiÞ represent observed
measurements, and all indices greater than lðiÞ represent
measurements unseen by the model in either training or testing.

Normalization of SLD. We compute the mean and standard
deviation of all SLD values within the training set. In this regard, let
μ represent the arithmetic mean of yi;j computed over all

i; j 2 Ψtrain , and let σ represent the standard deviation of yi;j
computed over all i; j. Then, we perform Z-score normalization on
yi;j using μ and σ:

eyi;j ¼
yi;j � μ

σ
(5)

where eyi;j is the Z-score normalized j’th measurement of subject i.
Here, we let eΨtrain and eΨtest represent the normalized SLD values of
all patients in the training and test sets, respectively.

Normalization of time. We introduce a patient-specific method to
normalize the observation times of each subject in both the
training set and test set. For each patient, we declare the last
observed time of measurement as a scaling factor that is used on
that patient’s time series. We then use the last observed
measurement time to normalize its respective list of observation
times τi for all i; j:

eτi;j τi; l ið Þð Þ ¼ τi;j
maxj�l ið Þτi;j

; (6)

such that eτi;j � 1 up to the observation window and eΓtrain and eΓtest
contain the normalized observation times for all subjects.

Augmentation. We wish for TDNODE to be generalizable such
that it can longitudinally model a representative set of tumor
dynamic profiles commonly seen in clinical trials. Doing so
requires that the training set be large and diverse, containing a
wide variety of tumor dynamic profiles upon which TDNODE can
generalize when modeling tumor dynamics on unseen data. To
increase the diversity of tumor dynamic profiles in the training set,
we introduce a new subsampling strategy that we apply to
training set observations Γtrain and Ψtrain . Recall that lðiÞ is an index
that corresponds to the last observed measurement for subject i.
Hence, eτi;1:lðiÞ and eyi;1:lðiÞ represent the normalized post-treatment
tumor dynamics for patient i, and components of these lists are
used to generate subject i’s parameter encoding. We took lðiÞ to
truncate each subject’s observed tumor dynamics corresponding
to the respective observation window, wi .
For each patient i in the training set, data augmentation is

performed in the following manner: we consider the set of all
integer intervals ranging from one to the number of measure-

ments for the subject mi , that is cj ið Þ � f½1; j�j2 � j � mig, and in
each case derive the associated sets of normalized SLD and time

values: {eyi;j jj 2 cj ið Þ} and feτi;j τi ;maxðjÞð Þjj 2 cj ið Þg.
The result of this subsampling method is an additional 4671

tumor dynamic profiles to be used during training, which
significantly boosts the size of the training set to a total of
5560 subsampled patients.

Formulation of the patient-dependent initial condition
Here, we describe the formulation of the representation of subject
i’s initial tumor state:

zi 0ð Þ ¼ gθðeτi;1:βi ;eyi;1:βi Þ (7)

where zið0Þ 2 Rc represents subject i’s c-dimensional initial tumor
state, and gθ is the initial condition encoder neural network
parametrized by θ, that takes as input subject i’s pre-treatment
tumor size measurements (eyi;1:βi ) and observations times (eτi;1:βi ) to
produce zið0Þ. Here, βi is an index that corresponds to the last pre-
treatment measurement for subject i:

βi ¼ maxðargmaxj τi;j � 0
� �

; 1Þ (8)

where all indices less than or equal to βi correspond to pre-
treatment measurements, and all indices greater than βi
correspond to post-treatment measurements. If a subject has no
pre-treatment measurements, βi is set to 1, indicating that the first
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measurement represents the pre-treatment tumor size for subject
i. A description of the initial condition encoder’s architecture can
be found in the “Model architecture” section and for further
information please refer to the model code provided at the
locations given in Supplementary Note 1.

Implementation of the patient-dependent parameter
encoding and temporal rescaling
As discussed in the “Results” section, we leverage Eq. (4) to
transform data using a subject dependent temporal rescaling into
a unit time interval. This is implemented in the following manner:
the kinetic parameter encoding for subject i is computed as,

pi ¼ hθðeτi;βi :lðiÞ;eyi;βi :lðiÞÞ � τi;lðiÞ (9)

where pi 2 Rk represents subject i’s k-dimensional representation
of tumor kinetic parameters and hθ is the TDNODE parameter
encoder neural network, parametrized by θ, that takes as input
subject i’s post-treatment observed tumor dynamics to produce
pi . We wish to reference only post-treatment tumor dynamics,
starting from the last pre-treatment measurement. To do so, we
use the value at index βi to reference the last pre-treatment
measurement for subject i. Additionally, since we assume the
system evolves autonomously from time zero, we set eτi;βi ¼ 0.
Note that in Eq. (9) the last observed time τi;lðiÞ serves as the
temporal scaling T of Eq. (4). A description of this network’s model
architecture used to generate pi can be found in the “Model
architecture” section and for further information please refer to
the model code provided at the locations given in Supplementary
Note 1.

Neural-ODE solution
We solve the Neural-ODE in Eq. (4) using the initial condition
encoding zið0Þ and the parameter encoding pi . We numerically
integrated this ODE system using f θ, beginning at τ ¼ 0 and ends
at τ ¼ eτi;mi (the normalized last measurement time for subject i). If
batched solving is enabled, the solving process continues until the
normalized last measurement time for the subject in the batch
with the highest normalized last measurement time. Subsequent
to the generation of the c-dimensional tumor state evolution, it is
passed to a reducer which results in a series of scalar tumor size
measurements. The ODE solver used was Dormand−Prince 5(4)
(dopri5 as implemented within the torchdiffeq library34)
and the continuous adjoint solution was used for backpropaga-
tion; please see the model code provided at the locations given in
Supplementary Note 1 for further information.

Model architecture
TDNODE consists of four modules: an initial condition encoder
that transforms pre-treatment tumor size data into a c-dimen-
sional representation of the subject’s initial tumor state, a
parameter encoder that transforms post-treatment tumor size
data into a k-dimensional representation of the subject’s observed
tumor dynamics, a neural-ODE decoder module that computes a
continuous series of c-dimensional tumor state representations,
and a reducer module that produces the final series of continuous
scalar predictions. Refer to Fig. 1 for a visual representation of the
computational graph that utilizes these modules.

Initial condition encoder. The initial condition encoder, denoted
as gθ takes as input a tensor representing the pre-treatment
measurements and times of measurement and generates a batch
of c-dimensional representation of each subjects’ pre-treatment
tumor state zið0Þ: Here, the input is of shape B ´Mβ;max ´ 2, where
B is the specified batch size, or number of subjects to process and
Mβ;max is the number of pre-treatment measurements for the
subject with the most pre-treatment measurements in the batch.

The initial condition encoder consists of a multi-layer gated
recurrent unit (GRU) recurrent neural network (RNN); the output of
the RNN is processed by a single fully connected layer, producing
a tensor with shape B ´ c.

Parameter encoder. The parameter encoder, denoted as hθ, takes
as input a tensor representation the truncated post-treatment
measurements and times of measurement and generates a
k-dimensional representation of each subject’s post-treatment
tumor dynamics up to an arbitrarily defined observation window.
The parameter encoder takes as input a tensor of shape and
B ´ ðMs;max � 1Þ ´ 4 produces a batch of parameter encodings pi of
shape B ´ k; here Ms;max denotes the number of seen measure-
ments for the subject with the highest number of observed
measurements in the batch. Finally, we apply Eq. (9) to obtain a
batch of patient-normalized encodings pi with the same shape.
The parameter encoder’s architecture utilizes multi-headed
attention in as well as with residual fully connected layers. The
multi-headed attention layer requires as input a key, value, and
query. Here, the key and value are generated by separate fully
connected layers. The query is generated using a deep residual
neural network and a Long Short-Term Memory (LSTM) network
with 100 hidden units. The outputs of the query and attention
layer are subsequently concatenated. Finally, a deep residual
network consisting of fully connected layers is used to generate
the patient-specific kinetic parameters. Please refer to the model
code referred to in Supplementary Note 1 for further details.

Neural-ODE vector field. Upon creation of the batch of parameter
encodings pi and initial conditions zið0Þ, we use Eq. (1) to solve the
neural-ODE system and generate a solution z �ð Þ : ½0; T � ! Rc with
shape B ´ q ´ c, where q is the number of measurements to be
obtained in the interval 0 to T . Here, T is the upper bound of time
value in numerical integration, which is equivalent to the
maximum of the last times of measurement for subjects in the
batch. The numerical integration is carried out with a neural
network decoder, f θ, which takes as input the batch of initial
conditions zið0Þ and parameter encodings pi to produce the time
derivatives used to compute the next c-dimensional tumor state.
This tumor state is then used as input with the parameter
encoding to solve to compute the time derivative to compute the
next state, and so forth. We used the continuous adjoint solving
method in this work. Here, we define f θ as a series of fully
connected layers with residual connections. Each series of fully
connected layers is interspersed with SELU activation functions35.
The resulting solution z �ð Þ is then converted back into a scalar
space by a Reducer module, described below. For further details,
please refer to the model code at the locations provided in the
Supplementary Note 1.

Reducer. The generated batch of solutions to the neural-ODE
system zð�Þ is represented as a batch of B set of c-dimensional
tumor states that required conversion to a series of scalar SLD
predictions. Here, we instantiate a simple neural network reducer
that takes the c-dimensional batch of solutions produced by the
NODE decoder and converts it into a batch of B scalar SLD
predictions that represent the predicted tumor sizes for each
patient. We implemented the Reducer as a series of fully
connected layers interspersed with SELU activation functions.

Model development
Instantiation. In this study, we set the initial condition encoder
output dimension (c) to 4. Here, we set the hidden dimension in
the GRU to 10. As the input to the initial condition encoder is a
tensor of time-observation pairs, we set its input dimension to 2.
For the parameter encoder, we set the output dimension (kÞ to

2. As the input is a tensor of partitioned time-observation pairs, we
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set the parameter encoder’s input dimension to 4. We set the
dimensionalities of all networks in the preprocessor encoder
network to 4 and use a single-headed self-attention mechanism
with output dimensionality set to 100. The LSTM module’s output
is also set to 100. These outputs are concatenated and used as
input to the post-processor modules, which compresses this
representation into the 2-dimensional encoding output.
The NODE decoder module takes as input a 6-dimensional

tensor consisting of the 4-dimensional initial condition encoding
and 2-dimensional parameter encoding. Each fully connected
layer has a hidden dimension of 21 and produces a 6-dimensional
representation of the tumor state. Since the last 2 dimensions of
this output correspond to that of the parameter encoder, we set
these values to 0 to signal that the parameter encoding remains
constant throughout the solving process. The result is a series of
6-dimension solutions at every time point requested.
Finally, the reducer takes as input the set of 4-dimensional

solutions at each step to produce a 1-dimensional series of SLD
predictions for each patient using a series of fully connected
layers. Note that, since the output of the NODE module is a set of
6-dimensional encodings at every time step, the reducer module
uses only the first c ¼ 4 values of the obtained solution.

Partitioning. Equations (4) and (6) use truncated tumor dynamic
profiles to generate initial condition parameter encodings for each
patient, respectively. The input to Eq. (4) is a tensor of pre-
treatment measurements, where each row corresponds to a single
observation and its corresponding time of measurement. Con-
versely, the input to Eq. (6) is a tensor of partitioned post-
treatment observed measurements. Here, each row corresponds
to a pair of adjacent observations. For instance, for a patient with 4
time series measurements, of which 3 are deemed as seen, a
partitioned tensor of shape 2 × 4 is created. In the first row, the
first and second measurements are concatenated. In the second
row, the second and third measurements are concatenated. Each
row has length 4 as each pair of measurements consists of a time
and SLD observation. We implement this partitioning mechanism
to better enable learning of each patient’s post-tumor state.

Batching. To enable higher throughput training, we propose a
batching operation to simultaneously generate solutions for
multiple patients at a time. Because each patient may have a
different number of measurements, we produce masks that screen
each patient solution for the predictions that correspond to
observed data. For each batch, the union of times is collected as a
single array. Labels are also concatenated together, with the
position of each label corresponding to the appropriate index in

the time tensor. A mask tensor with the same shape is generated
as well, with 1 s representing valid positions and 0 s representing
positions to exclude. Pre-treatment and post-treatment tensors of
each patient in the batch are stacked. Left-padding of variable
length is applied, with the pad value equivalent to the first-time-
SLD observation pair. IDs and cutoff indices for each are also
stacked and used in each iteration.

Loss calculation. During model development, batched tensors of
shape B ´ L representing the continuous time series SLD predictions
of B patients are produced during each iteration. This prediction
tensor is utilized in conjunction with a label and mask tensor (each
of the same shape) to calculate the RMSE for the iteration used to
adjust TDNODE’s weights via backpropagation. In this loss function,
the mask, a one-hot tensor with 1’s representing the locations in
which to tabulate the loss, is used to parse the prediction tensor for
predictions with times that correspond to actual observed SLD
measurements. After this filtering is applied, the RMSE is calculated
using the label tensor. Backpropagation is then carried out to
optimize the weights of all four TDNODE modules.

Hyperparameter configuration. We trained TDNODE for 150
epochs using ADAM optimization36, an L2 weight decay of 1e-3,
a learning rate of 5e-5, an ODE tolerance of 1e-4, a batch size of 8,
and an observation window of 32 weeks. Refer to Supplementary
Table 1 for additional information on the hyperparameter
configuration of TDNODE.

Libraries used. In this implementation, we used the torchdif-
feq library to carry out the solving process34. Other notable data
science libraries include pandas, numpy, and scipy37,38. We
used the Pytorch deep learning framework to develop and
evaluate TDNODE39. Survival analysis and SHAP analysis were
performed using the lifelines and shap libraries, respec-
tively22,40. We used matplotlib to generate the majority of
plots in this study38. Refer to the environment.yml file in the
model code (see locations provided in Supplementary Note 1) for
additional packages used.

Model evaluation and analysis
TDNODE benchmarking. We used root-mean-squared error
(RMSE) and R2 score to evaluate performance of TDNODE on the
training and test sets. To obtain bootstrapped RMSE and R2 scores,
we obtained the median and standard deviation of 1000-sample
RMSE and R2 distributions, where each sample RMSE and R2 value
is calculated from n prediction-label pairs sampled with

Fig. 3 Comparison of TDNODE prediction of survival probability with respect to treatment arm for test set patients (n= 216). Predicted
survival probability (median and 95% CI) using kinetic rate parameters versus data for patients enrolled in a Arm 1 (atezolizumab+
carboplatin+ paclitaxel), n= 73; b Arm 2 (atezolizumab+ carboplatin+ paclitaxel+ bevacizumab), n= 68; c Arm 3 (carboplatin+ pacli-
taxel+ bevacizumab), n= 75.
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replacement from the dataset. Refer to Table 1 and Fig. 2 for
additional performance metrics of TDNODE with respect to
treatment arm and dataset and scatter plots visualizing the
association between TDNODE-generated predictions and
observed SLD data with respect to the treatment arm and dataset.

Residual versus time analysis. Residuals between the TDNODE
predictions at time points with observed measurements and their
corresponding were obtained for all patients in the training and
test sets (Fig. 2). A bootstrapped LOWESS curve with 95%
confidence interval (CI) was applied to assess if there was any
systematic bias in the predictions with respect to time. Refer to
Supplementary Fig. 2 for a visualization of residual versus time
plots with respect to each treatment arm and dataset.

Generation of patient-level SLD predictions. For all patients in the
training and test sets, we generated continuous longitudinal SLD
predictions (Fig. 3) with observation windows set to 16 weeks,
24 weeks, and 32 weeks. Refer to Model Architecture and Neural-
ODE Solving Mechanism for details on how these continuous
predictions were produced.

Generation of TDNODE-derived metrics for each patient. The
trained parameter encoder component of TDNODE was used to
generate the 2-dimensional kinetic rate metrics for each patient.
These two variables were used in downstream Principal Compo-
nent Analysis (PCA), XGBoost-ML for OS hazard rate prediction,
and patient-level plots that assess the effect of directed
perturbations of these variables.

Encoders NODE Decoder
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Tumor Dynamic Predictions
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Fig. 4 Illustration of TDNODE-derived metrics in the explainability of OS and tumor dynamic predictions for individual patients. a Patient
tumor dynamic data are fed into TDNODE encoders to produce 2-dimensional parameter encoding vectors that represent the patient’s kinetic
rate parameters, which are then fed into the NODE decoder to produce longitudinal tumor dynamic predictions. b We visualize the
distribution of kinetic rate parameters for all patients in the dataset, prior to and after performing principal component analysis (PCA). c Using
only the first principal component, XGBoost is used to predict Overall Survival (OS). d SHAP analysis is performed to quantify the impact of the
first principal component on OS; I and II refer to individual patients with differing PCA components and SHAP values. e Perturbations in
longitudinal tumor dynamic profiles for each patient are made by systematically perturbing their encoder metrics along the direction of the
first principal component, thereby linking tumor dynamic predictions to OS; charts I and II refer to the highlighted patients in d.
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Principal component analysis. We performed principal compo-
nent analysis (PCA)29 on the 2-dimensional kinetic rate metrics
produced by TDNODE for each patient. Refer to Fig. 4 for a
description on how these principal axes were obtained and how
they were used to link tumor dynamics and OS.

Prediction of OS using XGBoost-ML from TDNODE-generated
metrics. We used the first principal component to predict OS
for all patients in the dataset using XGBoost-ML20,22,41. In the
training set, we obtained c-indices representing the OS prediction
accuracy using 5-fold cross-validation and reported the median
c-index. We then used the entire training set to train an XGBoost-
ML model tasked to predict OS on all patients in the test set,
which was used to generate hazard rates for patients in the test
set. Refer to Supplementary Table 3 for XGBoost-ML training
parameters and the observed c-indices with respect to input
parameters used. Here, we used the following six different sets of
input variables: TDNODE-generated parameter encodings with
and without baseline covariates; the two principal component
values for each patient with and without baseline covariates; the
first principal component value with and without baseline
covariates.

SHapley Additive exPlanations (SHAP). We used SHAP to identify
the degree and contributions of input variables to our input
models22. We performed SHAP analysis on the XGBoost-ML model
using just the first principal component obtained from the
TDNODE-generated metrics to identify its directionality. We also
performed SHAP analysis on the XGBoost-ML model that directly
utilized the TDNODE-generated metrics and on the XGBoost-ML
model that utilized the metrics in conjunction with the eleven
baseline covariates obtained for each patient. Refer to Supple-
mentary Figs. 5 and 6 to view the SHAP summary plots for relevant
variables in each of these models.

Generation of subject feature dependence plots. The first principal
axis was used to systematically perturb the 2-dimensional
parameter encodings produced for each patient. This compo-
nent’s direction was transformed into the data space, yielding the
unit vector ½0:701; 0:701�. For each patient, we plotted the original
predicted dynamics, along with 500 predicted dynamics with
systematically perturbed encodings. The magnitude of perturba-
tion was defined with range ½�2; 2�. Refer to Supplementary Figs.
7 and 8 for additional examples of feature dependence for
selected patients in the training and test set.

Generation of OS survival curves. We used the XGBoost-ML model
that utilized only the first principal component of the TDNODE-
generated encodings to model the expected survival times of
each patient in the test set with respect to the treatment arm.
Refer to Fig. 3 to view examples of these plots.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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APPENDIX
The full derivation of Eq. (2) is as follows:
Let t t̂

� � ¼ t̂ ´ T and y t̂
� � ¼ zðt t̂

� �Þ. Then, we have:

dy t̂
� �
dt̂

¼ dz t t̂
� �� �
dt

´
dt t̂
� �
dt̂

¼ f θ z tð̂tÞ� �
; p

� �
´ T ¼ f θ y t̂

� �
; p

� �
´ T :

Thus, we obtain Eq. (2) by renaming z t̂
� � ¼ y t̂

� �
.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41540-023-00317-1.

Correspondence and requests for materials should be addressed to James Lu.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

M. Laurie and J. Lu

11

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2023)    58 

https://github.com/patrick-kidger/diffrax
https://clinicaltrials.gov/ct2/show/study/NCT02366143
https://github.com/rtqichen/torchdiffeq
https://proceedings.neurips.cc/paper/6698-self-normalizing-neural-networks
https://proceedings.neurips.cc/paper/6698-self-normalizing-neural-networks
http://arxiv.org/abs/1412.6980
http://www.scipy.org
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://loft-br.github.io/xgboost-survival-embeddings
https://doi.org/10.1038/s41540-023-00317-1
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Explainable deep learning for tumor dynamic modeling and overall survival prediction using Neural-ODE
	Introduction
	Results
	Dynamical systems formulation enables the interpretation of parameters as kinetic�rates
	Model architecture generates longitudinal tumor predictions and kinetic parameters
	TDNODE produces unbiased predictions of tumor dynamics
	TDNODE enables superior prediction of overall-survival compared to existing TGI-OS�models
	TDNODE metrics can explain patient overall survival

	Discussion
	Methods
	Data summary
	Data processing
	Data definition
	Data splitting
	Definition of pre-treatment and post-treatment measurements
	Definition of the observation�window
	Normalization�of SLD
	Normalization of time
	Augmentation

	Formulation of the patient-dependent initial condition
	Implementation of the patient-dependent parameter encoding and temporal rescaling
	Neural-ODE solution
	Model architecture
	Initial condition encoder
	Parameter encoder
	Neural-ODE vector�field
	Reducer

	Model development
	Instantiation
	Partitioning
	Batching
	Loss calculation
	Hyperparameter configuration
	Libraries�used

	Model evaluation and analysis
	TDNODE benchmarking
	Residual versus time analysis
	Generation of patient-level SLD predictions
	Generation of TDNODE-derived metrics for each patient
	Principal component analysis
	Prediction of OS using XGBoost-ML from TDNODE-generated metrics
	SHapley Additive exPlanations�(SHAP)
	Generation of subject feature dependence�plots
	Generation of OS survival�curves

	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	Appendix
	ADDITIONAL INFORMATION




