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Tissue analysis is vital for investigating disease mechanisms and
guiding diagnostics, e.g., in cancer, communicable or non-
communicable diseases. During the last decades, technological
developments enabled deep molecular characterization of
tissue samples. This is particularly driven by omics approaches
such as genomics, transcriptomics, proteomics, metabolomics,
etc. (Fig. 1)". Omics aims to (quantitatively) analyze possibly all
molecules of a specific type in a specimen, the proteome,
transcriptome, metabolome, etc. The omics analyses are enabled
by specific methods, e.g.,, genomics by large-throughput DNA
sequencing termed Next Generation Sequencing (NGS; Fig. 1).
Typically, results from omics analyses contain large numbers of
features, e.g., expression of genes, from a large number of
instances, e.g., cells. These results allow complex downstream
analyses, e.g., uncovering regulatory networks?, cell transitions?,
or key molecular disease drivers*. These approaches were
missing important information on the spatial organization and
structure of the analyzed tissues and organs. Recent approaches
allow the integration of the relative position of the investigated
instance, most commonly honeycomb-shaped tissue areas,
within a given sample using spatial transcriptomics (for
example, spatially resolved transcript amplicon readout map-
ping (STARmap) or NGS barcoding techniques)® or spatial
proteomics (e.g., multiplexed antibody-based imaging methods:
multi-epitope-ligand cartography (MELC), tissue-based cyclic
immunofluorescence (t-CyCIF))%. Even though spatial technolo-
gies are still evolving, their potential to further extend deep
tissue phenotyping is increasingly recognized. The missing piece
remains the lack of structural morphological information on an
ultrastructural, microscopic, and macroscopic scale. These are
the fundamental tasks of pathology, which remains the
cornerstone of tissue diagnostics of human diseases.

The major approach for diagnosing and studying morphological
alterations in diseases is using microscopic analysis of histopathol-
ogy. This analysis changed little since the advent of microscopes
and the definition of cellular pathology in the 19th century. It still
relies on manual qualitative or semi-quantitative analyses by
pathologists, often lacking reproducibility, precision, scalability
and throughput. A major breakthrough brings digital pathology,
opening the possibilities of automated histopathology analyses
and computational pathology’. Computational pathology
expanded rapidly in recent years, particularly fueled by deep
learning technologies. Most approaches utilizing deep learning
focus on deriving clinically actionable readouts from histopathol-
ogy, such as molecular alteration or treatment response predic-
tion, mostly in cancer®. While relatively easy to train and use, these
approaches have very limited explainability, provide categorical
outputs, and are currently not suitable for uncovering novel
morphological findings. An alternative approach for data mining
of histopathology data uses large-scale, comprehensive extraction

of explainable, quantitative features from histological structures
identified using semantic segmentation®. This approach repre-
sents a complementary omics technology for morphology at a
microscopic scale, providing multiple features from multiple
instances. The instances represent relevant structural units of
tissue, e.g., in the kidney, this can be the glomerular, tubular
(epithelial), interstitial and vascular compartments or even single
cells.

“Pathomics” is the proposed term for this analytical
approach®'®, “pathome” for the entirety of morphological
histology features, and “Next Generation histoMorphometry
(NGM)" for the technology, following the terminology of molecular
omics (Fig. 1). Pathomics complements a similar approach used in
radiology, termed radiomics''. Radiomics extracts quantitative
features from radiological imaging modalities such as MRI or CT
based on structures or volumes of interest, mostly at macroscopic
scale’. The extracted features are then used to predict clinical
outcomes, e.g., disease progression or treatment response.
Another discipline tackling morphology is anatomy'*'4, particu-
larly computational anatomy. This field analyzes and models
biological organisms by representing anatomical structures as
either 2D- or 3D-shapes to gain insights into structure-function
relationships. Computational anatomy is a complementary
approach to radiomics, often at a macroscopic scale, but is not
restricted to using radiological imaging.

Pathomics and radiomics could be envisaged as part of an
overarching “morphomics.” Morphomics might be an ideal term
encompassing all morphological descriptors at all scales: ultra-
structural (nm-pm), microscopic (Um-cm), or macroscopic (mm-m).
The entirety of morphological features would be then called
“morphome,” albeit this term is already used in linguistics. The
different techniques and approaches used to derive the morpho-
logical features at each scale make the subdivision of morphomics
into pathomics and radiomics meaningful (Fig. 1).

Another overarching term in omics is phenomics (Fig. 1), which
describes the comprehensive analysis of phenotypes character-
ized by multiple traits. This is typically done by integrating high-
throughput data from multiple fields, in principle, all molecular
omics apart from genomics, and would also include all
morphomics approaches’®.

Pathomics seamlessly integrates into the multi-omics landscape,
providing the missing in-depth analyses of structural changes in
tissues on a microscopic level (Fig. 1). In each tissue, microscopic
histological structures can be defined on several levels. The
currently smallest individual units are subcellular organelles.
However, mainly nuclei can be visualized in standard histology,
other subcellular organelles, or small organisms like viruses, and
analysis of their morphology, normally requires ultrastructural
analysis using electron microscopy. The next level is represented
by single cells, followed by cells organized in functional units or
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Fig. 1

The omics landscape extended by morphology-based approaches. a Classical molecular omics can be complemented by

morphomics, comprehensively quantifying tissue structure. Particularly, the integration of spatial molecular and morphological omics can
provide new insights into tissue organization and diseases. b Morphomics analysis at different scales, ultrastructural, microscopic and

macroscopic.
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Fig. 2 Calculation of common pathomics features within a segmentation framework. Tissue such as kidney tissue can be segmented by
deep learning-based algorithms into major histological compartments (e.g., glomeruli, tubules). Based on the segmentation results, various
features regarding morphometry (e.g., area, shape, diameter), color or texture are calculated. The output of the framework is a high-
dimensional matrix with each instance and its respective features similar to classic molecular omics.

compartments in association with the extracellular matrix, such as
glands, interstitium or stroma, vessels and nerves. All these
structures can be observed using light microscopy. Finally, the
organization of these compartments defines the structure of the
specific organ or tissue. These levels represent a connected
multilevel hierarchical organization. A wide range of features can
be extracted from histological structures, such as size (area, length
of axes, etc.)'S, shape (circularity, eccentricity, elongation, etc.)®,
color (hue, intensity, etc.) or texture (homogenous, heterogenous,
etc)'". In addition, features can be derived from the relationship
of histological structures to each other: distance between similar
structures or structure density (for example, cellularity of a gland)
and geometric orientation (for example, nuclear major axis
orientation)'”. Lastly, several structures can build a tissue
architectural unit that itself can express features, such as structure
density or orientation of structures within and between units.
Some features, such as color or texture, can be extracted from
arbitrary regions of interest, such as image tiles, i.e., without
defining a biologically meaningful structure expressing the
features. Compared to molecular omics, which often require
specific, costly infrastructure and sample preparation, pathomics
uses the already available histological slides from the clinical
routine and can be run on a rather standard computational
infrastructure (Fig. 2).
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Several key developments are needed to advance pathomics
and facilitate its adoption in research and clinical diagnostics.
There is a need to agree on standard definitions of histopatho-
logical structures and image features to improve comparability
between studies, as was initiated for radiomics'?. Although only
very few pathomics studies exist, the terminology differences limit
comparability. Histopathology is confronted with large variability,
especially regarding the quality and appearance of stains.
Normalization methods that can align the appearances of stains
from various laboratories without changing the tissue geometry
will be essential. It would be desirable to make pathomics datasets
publicly available to facilitate their reuse. Ideally, the correspond-
ing images should be publicly available as well since structure
definitions might change over time. However, this is often
hindered due to patient privacy and legal issues. New initiatives,
such as the BigPicture'® project, could potentially resolve this
problem and offer a repository for digital pathology and
pathomics.

Downstream analyses of pathomics data and their integration
with other omics, potentially analyzed across different organs,
represent an important avenue of future research. Since the
location of histopathological structures is inherently traceable
(“spatial”), an approach combining pathomics with spatial
transcriptomics or proteomics might be an obvious starting point,
e.g., using graph neural networks'®. The integration of pathomics
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with radiomics, as two “morphomic” approaches tackling different
scales, might be possible by selectively correlating corresponding
areas within radiological imaging and histopathology. Novel
radiologic imaging modalities with high resolution might facilitate
this integration?®. Another integration strategy might be multi-
modal learning, using different data fusion approaches as recently
described for radiomic and pathomic data?'. Available methods,
such as clustering, least absolute shrinkage and selection operator
(LASS0)??2 or recursive feature elimination®3, might prove useful to
identify biologically relevant features. Patient-level aggregation of
pathomic information?* will be critical to facilitate the integration
of pathomics into clinical prediction models.

Morphology-based omics, including pathomics, might offer a
missing piece in the study of disease mechanisms across scales.

Reporting summary

Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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