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iUMRG: multi-layered network-guided propagation modeling
for the inference of susceptibility genes and potential drugs
against uveal melanoma
Yueping Ren1,5, Congcong Yan1,5, Lili Wu2,5, Jingting Zhao1, Mingwei Chen3, Meng Zhou1, Xiaoyan Wang4, Tonghua Liu2✉,
Quanyong Yi4✉ and Jie Sun 1✉

Uveal melanoma (UM) is the most common primary malignant intraocular tumor. The use of precision medicine for UM to enable
personalized diagnosis, prognosis, and treatment require the development of computer-aided strategies and predictive tools that
can identify novel high-confidence susceptibility genes (HSGs) and potential therapeutic drugs. In the present study, a
computational framework via propagation modeling on integrated multi-layered molecular networks (abbreviated as iUMRG) was
proposed for the systematic inference of HSGs in UM. Under the leave-one-out cross-validation experiments, the iUMRG achieved
superior predictive performance and yielded a higher area under the receiver operating characteristic curve value (0.8825) for
experimentally verified SGs. In addition, using the experimentally verified SGs as seeds, genome-wide screening was performed to
detect candidate HSGs using the iUMRG. Multi-perspective validation analysis indicated that most of the top 50 candidate HSGs
were indeed markedly associated with UM carcinogenesis, progression, and outcome. Finally, drug repositioning experiments
performed on the HSGs revealed 17 potential targets and 10 potential drugs, of which six have been approved for UM treatment. In
conclusion, the proposed iUMRG is an effective supplementary tool in UM precision medicine, which may assist the development of
new medical therapies and discover new SGs.
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INTRODUCTION
Uveal melanoma (UM) is the most common primary malignant
intraocular tumor in adults, affecting ~5/1,000,000 individuals1.
Current treatments for the local primary tumor include enuclea-
tion and radiation therapy (RT)2,3. However, the indication
depends on the tumor size and location relative to the adjacent
ocular tissues, as well as the existence of comorbidities. The
incidence of distant metastases is as high as 50% within 10 years
of initial diagnosis, and the prognosis of metastatic disease is poor,
with a reported median overall survival (OS) of only 6-12 months4.
The distant metastasis and mortality rates have remained
unchanged in the last decades, although surgical techniques
and RT have improved.
There are currently no definitive treatments available for

metastatic UM. Several clinical trials have demonstrated that
conventional cytotoxic chemotherapy was ineffective for meta-
static UM5,6. Even the emerging targeted therapies, which target
associated genetic mutations and downstream signaling path-
ways, have not yet yielded determinate results7,8. It is therefore
critical to perform genetic mapping and subsequently to identify
new candidate cancer biomarkers and treatments. However, the
current knowledge for susceptibility genes identification is mainly
derived from preclinical in vitro or in vivo studies, which are
limited, since these experimental models cannot fully recapitulate
the clinical situation9. With the advent of network medicine, the
large amount of available biomedical data provides a chance to

build a framework that integrates preclinical results through
highly efficient networks10.
In the present study, a heterogeneous multi-layered molecular

network (HMMN) was constructed by integrating multiple data
resources (transcriptomics, ncRNAomics, regulatomics, and inter-
actomics). Next, a network propagation algorithm was used for
the systematic inference of novel susceptibility genes (SGs) in and
potential drugs for UM. The relevance between the candidate SGs
and UM carcinogenesis, progression, and outcome was evaluated.
Finally, candidate targets and drugs of these novel SGs were
inferred using the drug repositioning approach.

RESULTS
Reconstruction of the HMMN
To re-construct a comprehensive molecular network encom-
passing as many potential regulatory edges as possible,
different molecular networks were first assembled using publicly
available transcriptomics, ncRNAomics, regulatomics, and inter-
actomics data (Supplementary Table 1). A lncRNA-mRNA net-
work with 1954 nodes and 2261 edges was constructed from
lncRNAtarget and starBase. miRNA-lncRNA and miRNA-gene
regulatory networks were constructed from lncBase and
miRTarBase, including 6701 nodes and 48,182 edges, and 3664
nodes and 8641 nodes, respectively. Two TF-miRNA and TF-gene
regulatory networks were constructed from TransmiR and
TRANSFAC, including 784 nodes and 3578 edges, and 2322
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nodes, and 6246 edges, respectively. A protein–protein interac-
tion network was constructed from HuRI, including 9060 nodes
and 63,242 edges. Finally, an HMMN with 18,231 nodes and
12,6187 edges was re-constructed by integrating these hetero-
geneous networks.

Prediction of novel SGs using the iUMRG
The workflow of a computational framework (hereinafter referred
to as iUMRG) via propagation modeling for detecting SGs in UM is
illustrated in Fig. 1. As shown in Fig. 1, 59 experimentally
supported UM-related SGs were first collected, including 8 mRNAs,
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Fig. 1 Illustration of the overall framework of iUMRG.
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39 miRNAs, and 12 lncRNAs. Next, random walk with restart-based
network propagation algorithm was used in the HMMN and
LOOCV to train iUMRG with different r values by considering one
known UM-related gene as a seed node and 58 other known UM-
related genes as testing cases. ROC analysis demonstrated that the
iUMRG achieved the highest predictive performance with a ROC
curve (AUC)= 0.8825 at an r= 0.4 (Fig. 2A, B).
All 59 known SGs were used as seed nodes to predict novel UM-

related SGs, and iUMRG was used on the HMMN. Finally, all nodes
in the HMMN were ranked according to the risk score, and the top
50 genes were defined as the most likely novel SGs, including 22
protein-coding genes, 18 miRNAs, and 10 lncRNAs (Supplemen-
tary Table 3).

Functional analyses of novel UM-related SGs
KEGG enrichment analysis was performed for the co-expressed
genes of 10 novel risk lncRNAs, and it was found that they were
significantly enriched in several functional clusters, including
calcium signaling pathway, homologous recombination, neuroac-
tive ligand-receptor interaction, and autophagy (Fig. 3A, B). Next,
KEGG enrichment analysis was performed for the target genes of
18 novel UM-related risk miRNAs, and it was demonstrated that
viral carcinogenesis, miRNAs in cancer, pathways in cancer and
transcriptional misregulation in cancer were significantly enriched
(Fig. 3C, D). KEGG enrichment analysis was then performed for
novel risk protein-coding genes, and it was found that these
predicted novel risk protein-coding genes were involved in viral
carcinogenesis (Fig. 3E, F). These functional clusters enriched by
novel UM-related SGs were associated with known biological
pathways involved in cancer carcinogenesis and progression,
which supported the potential functional roles of these novel SGs
in UM.

Further confirmation of novel UM-related SGs in different
patient cohorts
The association of these novel SGs with UM progression and
metastasis was further examined in several published patient
cohorts. First, univariate Cox regression analysis was performed to
examine the association of these 50 novel SGs with OS,
progression-free survival (PFS), and disease-specific survival in
the TCGA cohort, and it was found that 27/50 candidate SGs were
significantly and marginally significantly associated with patient
outcome (Fig. 4A). A similar analysis was also performed for the
other three patient cohorts. A total of 11, 6, and 4 candidate SGs
were found to be significantly and marginally significantly

associated with patient outcome (Fig. 4B–E). Further analysis in
the TCGA cohort revealed that expression levels of three
candidate SGs (MTUS2, OIP5-AS1, and has-mir-31) are significantly
different among different clinical stages of UM patients (P= 0.026
for MTUS2, P= 0.029 for OIP5-AS1 and P= 0.007 for has-mir-31)
(Fig. 4F). Specifically, the increased expression levels of these three
candidate SGs are associated with UM progression (Fig. 4F).
Further comparative analysis of expression patterns between
primary and metastatic tumors showed that 13 candidate SGs
were significantly differentially expressed between primary and
metastatic tumors in at least one of the four cohorts (TCGA,
GSE22138, GSE84976, and GSE44295) (Fig. 4G). Specifically, seven
candidate SGs (EZH2, NEAT1, hsa-mir-200c, hsa-mir-200b, EGR1,
IRF7, and FBXW7) are significantly up-regulated and six (CTNNB1,
KRTAP1-1, NAA50, PTEN, SNHG1, and hsa-let-7c) are significantly
down-regulated in metastatic UM tumors compared with primary
tumors (Fig. 4G). Based on the above observation, 35/50 candidate
SGs were shown to be associated with UM progression,
metastasis, and clinical outcome.

Network analyses of novel UM-related SGs
Network features were further examined using the HMMN as a
background network; these 50 novel SGs tended to have smaller
mean distances and higher densities than other gene nodes in the
background network (Fig. 5A). Furthermore, these 50 novel SGs
could form a sub-network with 46 nodes and 201 edges (Fig. 5B).
Of the 46 nodes, snail family transcriptional repressor 1 (SNAI1)
and RELA proto-oncogene, NF-κB subunit (RELA) were found to
have the highest betweenness centrality, suggesting that these
two genes were more likely to be important nodes in this
subnetwork (Fig. 5C). When examining the association of SNAI1
and RELA with patient prognosis in the TCGA cohort, it was found
that the expression levels of SNAI1 and RELA were capable of
distinguishing between patients with substantially different out-
comes. As shown in Fig. 5D, patients with a high SNAI1/RELA
expression tended to be at an increased risk of a poor outcome
compared with those with a low expression (P= 0.017 for SNAI1
and P= 0.0093 for RELA; log-rank test). A similar prognostic role of
SNAI1 and RELA was also observed in the GSE44295 dataset.
Patients with a low SNAI1/RELA expression had marginally
significantly improved survival compared with those with a high
SNAI1/RELA expression (P= 0.089 for SNAI1 and P= 0.07 for RELA;
log-rank test; Fig. 5E).
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Prediction of targets and corresponding drugs for novel UM-
related SGs
To investigate whether these novel UM-related SGs could serve as
targets of existing repositioned drugs for UM therapy, enrichment
analysis was performed to examine the overlap between novel
UM-related SGs and targets for a specific drug. A total of 17 novel
UM-related SGs were identified as potential targets of 10 drugs,
including 7 Food and Drug Administration-approved drugs. As
shown in Fig. 6, acetylsalicylic acid (ASA) was predicted to target
MYC and TP53. Four drugs [docosahexaenoic acid (DHA), glucose,
berberine derivative and all-trans-retinoic acid (ATRA)] were
predicted to target 10 novel UM-related risk miRNAs (miR-141-
3p, miR-181a-5p, miR-9-5p, miR-429, miR-200b-3p, miR-449b-5p,
miR-200c-3p, miR-200a-3p, miR-7-5p, and miR-27a-3p). Five drugs
(carboplatin+ docetaxel, quercetin, isoprenaline, diamorphine,
and panobinostat) were predicted to target five novel UM-
related risk lncRNAs (growth arrest-specific 5, small nucleolar RNA
host gene 1, KCNQ1 opposite strand/antisense transcript 1,
maternally expressed 3, and nuclear paraspeckle assembly
transcript 1). Moreover, we found that four drugs (carboplatin+
docetaxel, quercetin, isoprenaline, and panobinostat) targeted the

same two lncRNAs (GAS5 and MEG3), and two drugs (glucose and
ATRA) targeted the same two miRNAs (miR-200b-3p and
miR-200c-3p), in which the first two level of Anatomical
Therapeutic Chemical (ATC) codes of carboplatin, docetaxel,
quercetin, and ATRA were L01 (antineoplastic agents). These
results indicated that if one drug targeted more predicted UM-
related SGs, it was more likely to be an antineoplastic agent.

DISCUSSION
The biology of UM is extremely complicated, and there are
currently no definitive treatments for metastatic UM. Considering
the current precision medicine approaches to early diagnosis and
treatment, better strategies are required to discover new SGs and
candidate drugs.
Few SGs have been experimentally verified, due to the generally

laborious and expensive traditional biological experiments
required. Previous studies have revealed that the cytogenetic
alterations on chromosomes 1p, 3, 6, and 8 are indicators of UM
prognosis and metastasis11,12. The two mutually exclusive activat-
ing mutations in G protein alpha subunits (GNAQ and GNA11) play
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a crucial role, as they could interfere with the downstream
signaling of G-protein-coupled receptors through the MAPK, PI3K/
Akt, and Rho GTPase pathways in UM cells7,13. However, the
clinical trials of targeted therapies based on these pathways failed
to show their effects on suppressing tumor growth or improving
PFS7,8. Therefore, pathological genomics should be explored
further based on the previous findings from preclinical studies
and using an efficient network to obtain a deeper understanding
of the gene-protein interactions in metastatic cancer.
With advances in high-throughput sequencing and multi-omics

studies, the complex relationships among multiple omics layers
have been elucidated and present new opportunities for studying
complex diseases14. Systematic network biology approaches, such
as random walk and diffusion processes, have been proposed and
widely applied across multiple biological layers to facilitate the
discovery of genes involved in diseases;15–17 however, in the case

of UM, they are still in their infancy. In the present study, a
computational framework via propagation modeling on inte-
grated multi-layered molecular networks was proposed to identify
potential SGs and drugs for UM diagnosis, prognosis, and
treatment. Under the LOOCV experiments, the iUMRG achieved
superior predictive performance and yielded a higher area under
the AUC value (0.8825) for experimentally verified SGs. In addition,
using experimentally verified SGs as seeds, genome-wide screen-
ing was performed to detect novel candidate HSGs using the
iUMRG. Multi-perspective validation analysis indicated that most
of the top 50 HSGs were markedly associated with UM
carcinogenesis, progression and outcome. Several candidate SGs
have been repeatedly shown to be relevant to UM in multicenter
cohorts. For example, SNAI1 is a key regulator of epithelial-
mesenchymal transition (EMT)18, and has recently been reported
to be expressed in uveal melanoma lines19. RelA is a critical

MYC

hsa-miR-449c-5p

TP53

hsa-miR-181a-5p

SNHG1

SIRT1

GAS5

SP1

hsa-miR-27b-3p
hsa-miR-200c-3p

REL

hsa-miR-449b-5p

CTNNB1

hsa-miR-9-5p

PTEN

hsa-miR-26a-5p

ZFAS1

HIF1A

hsa-miR-940

EGR1
KRTAP1-1

RELA

SLC9A3-AS1

hsa-miR-27a-3p

AC021078.1

hsa-miR-429

OIP5-AS1

TUG1

NORAD

EZH2

KCNQ1OT1

hsa-miR-31-5p

hsa-let-7a-5p

hsa-miR-141-3p
hsa-let-7c-5p

hsa-miR-200a-3p

hsa-miR-200b-3p

NEAT1

MEG3

LNX1

MEOX2

FBXW7

SNAI1

RFPL3

MTUS2

hsa-miR-7-5p

Bac
kg

rou
nd

 

   n
etw

orkPred
ict

ed
 

ris
k g

en
es

Bac
kg

rou
nd

 

   n
etw

orkPred
ict

ed
 

ris
k g

en
es

3.9712

2.1943

0.1706

0.0007

p-value <0.001
p-value <0.001

PCGs

LncRNAs

miRNAs

4

3

2

1

0

0.20

0.15

0.10

0.05

0.00

Betweenness

N
um

be
r o

f n
od

es
M

ea
n 

D
is

ta
nc

es

D
en

si
ty

 

0.00 0.03 0.06 0.09 0.12

15

10

5

0

A
B

C

+
+
++

++

+
+

+

+
+

50 36 16 3 0 0

18 16 12 2 2 1

Low SNAI1
High SNAI1

+++

+
+

+
++

+ +

+

61 46 23 3 1 0

7 6 5 2 1 1

Low RELA

High RELA

+

+

+ + +

++
+

++

+++
+++++++ ++ + + + ++ + +

12 3 1 0

45 31 8 1

++

+
+

+
+

++++++ ++++ ++ + + ++ +

+ + ++ +

52 29 6 1

5 5 3 0

Log-rank p=0.017S
u
rv

iv
al

 p
ro

b
ab

il
it

y
0.

00
0.

25
0.

50
0.

75
1.

00

0 500 1000 1500 2000 2500

0 500 1000 1500 2000 2500
Time (Days)

0 500 1000 1500 2000 2500

0 500 1000 1500 2000 2500
Time (Days)

S
u
rv

iv
al

 p
ro

b
ab

il
it

y
0.

00
0.

25
0.

50
0.

75
1.

00

S
u
rv

iv
al

 p
ro

b
ab

il
it

y
0.

00
0.

25
0.

50
0.

75
1.

00

S
u
rv

iv
al

 p
ro

b
ab

il
it

y
0.

00
0.

25
0.

50
0.

75
1.

00

0 1000 2000 3000
Number at risk Number at risk

0 1000 2000 3000
Number at risk Number at risk

0 1000 2000 3000 0 1000 2000 3000
Time (Days) Time (Days)

Log-rank p=0.0093 Log-rank p=0.089 Log-rank p=0.07

Low SNAI1

High SNAI1

Low RELA

High RELA

D E

Fig. 5 Network analysis of novel UM-related SGs. A Histogram showing the distribution of mean distances and density of predicted SGs and
background network. B Subnetwork of novel UM-related SGs. C Distribution of betweenness of nodes in the subnetwork. UM uveal
melanoma, SGs susceptibility genes. lncRNA long non-coding RNA, miRNA/miR microRNA, PCGs protein-coding genes.

Y. Ren et al.

6

npj Systems Biology and Applications (2022)    18 Published in partnership with the Systems Biology Institute



component of NFκB pathways active in both primary and
metastatic UM20. EZH2 is a known target for cancer treatment
and the functional roles in many cancer types have been
revealed21. Still, until recently, EZH2 was found to also have
tumorigenic properties in UM22.
Drug repositioning prediction of novel UM-related SGs yielded

17 targets and 10 drugs. Six drugs (ASA, DHA, ATRA, carboplatin +
docetaxel, panobinostat and quercetin) have been approved for
UM treatment. A recent study found that ASA significantly
inhibited UM cell proliferation, invasion, and migration, demon-
strating the potential of ASA as an adjuvant therapy drug for
metastatic UM23. ATRA is a non-conventional anti-tumor agent
that has recently been used in the treatment of UM24. A recent
phase II clinical trial showed the association of docetaxel
combined with carboplatin and overall efficacy for patients with
UM25. In a study by Faiao-Flores et al. the pan-histone deacetylase
inhibitor panobinostat was identified as a promising strategy for
limiting MEK inhibitor resistance in advanced UM26.
This study had certain limitations that should be acknowledged.

First, integrated multi-layered molecular networks may be more
complete if they use varied information, such as genome-wide
association data, genome-scale chromosome conformation cap-
ture (Hi-C) data, and disease similarity data. Secondly, a suitable
propagation model may achieve superior predictive performance.

Finally, the HSGs predicted by the iUMRG need to be further
experimentally validated in vivo or in vitro.
In conclusions, the present study built an HMMN by integrating

multiple types of data and proposed a computational framework
via propagation modeling, which has been proven to predict
novel HSGs and potential drugs for the personalized diagnosis,
prognosis and treatment of UM. The iUMRG proposed in this study
may serve as an effective supplementary tool in UM precision
medicine and may assist the development of new medical
therapies and the discovery of new SGs.

METHODS
HMMN data
Known lncRNA-mRNA interaction relationships were obtained from
LncRNATarget27 and starBase28. Experimentally supported microRNA
(miRNA/miR)-target (mRNAs and lncRNAs) interactions were obtained
from miRTarBase29 and lncBase30. Known transcription factor (TF)-target
gene regulatory associations were obtained from TRANSFAC and
TranmiR31. A reference map of the human binary protein interactome
was downloaded from The Human Reference Interactome (HuRI)32. Known
cancer gene sets were obtained from COSMIC33 and MsigDB34. All these
data resources were summarized in Supplementary Table 1.
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UM molecular and patient datasets
59 experimentally supported UM-related SGs, including mRNAs, miRNAs
and lncRNAs, were retrieved from the Comparative Toxicogenomics
Database35, the Human microRNA Disease Database36, miRCancer37,
lnc2Cancer38, LncRNADisease39, and Nc2Eye40.
Transcriptomics and clinical data were obtained from The Cancer

Genome Atlas (TCGA) GDC Data Portal for 80 patients with UM, and Gene
Expression Omnibus (GEO) database for 59 patients from the GSE44295
dataset41, 63 patients from the GSE22138 dataset42 and 28 patients from
the GSE84976 dataset43.
These data resources were summarized in Supplementary Table 1 and

Supplementary Table 2.

Computational framework for detecting SGs via propagation
modeling on integrated multi-layered molecular networks
The workflow of a computational framework (hereinafter referred to as
iUMRG) via propagation modeling for detecting SGs in UM is illustrated in
Fig. 1. First, an HMMN was re-constructed by integrating known lncRNA-
mRNA, miRNA-mRNA, miRNA-lncRNA, TF-target and protein-protein net-
works. Secondly, 59 known UM-related SGs were mapped into the HMMN
as seed nodes. Thirdly, a random walk with restart-based network
propagation model was constructed on the HMMN to infer novel SGs as
follows:

RGt ¼ r ´Wm ´m ´ RGt�1 þ ð1� rÞ ´ RG0

where Wm×m is the adjacency matrix of the HMMN, m is the number of
nodes in the HMMN, RG0 is the initialization vector with length m, in which
the values of the known UM-related SGs (seed nodes) are 1/n (n is the
number of seed nodes, where n is 59) and the values of the other nodes
are 0, r is the restart probability (here r is 0.4), and RGt is the equilibrium
probability of each node after t iterations. When the procedure has
reached a steady-state, RGt represents the similarity of each node to the
seed nodes.
The leave-one-out cross-validation (LOOCV) experiment was performed

to evaluate the performance of the iUMRG. For each LOOCV trial, 58 UM-
related SGs were used as seed nodes and the remaining one UM-related
SG was considered as the testing case. The iUMRG was then used to
calculate a risk score for each candidate node (excluding 58 seed nodes) in
the HMMN. All candidate nodes were ranked according to their risk scores,
which generated a ranking list for all candidate nodes. This procedure was
repeated 59 times. All generated ranking lists derived from LOOCV were
combined to evaluate the performance of the iUMRG. For a specified risk
threshold, the true-positive rate was the fraction of correctly predicted
known SGs, and the false-positive rate was the fraction of predicted
unknown genes. Finally, a receiver operating characteristic (ROC) analysis
was performed by varying the rank threshold to examine the performance
of the iUMRG in predicting SGs.

Drug repositioning prediction
Human drug target data was collected from drugBank44. Experimentally
validated small molecule-miRNA and drug-lncRNA associations were
retrieved from SM2miR45 and D-lnc46. All these data resources were
summarized in Supplementary Table 1. The hypergeometric test was used
to predict potential drugs to test the overlap between targets of specific
drugs and candidate SGs. Drugs that significantly targeted candidate SGs
were considered as potentially promising candidates for UM treatment.

Statistical analyses
Differential expression analysis for genes was conducted using the R
package ‘limma’. Multivariate Cox regression analysis was used to evaluate
the association between SGs and OS. Kaplan–Meier survival curves were
used to estimate OS and a log-rank test was used to assess the statistical
significance of differences in OS between different patient groups. The
optimal survival risk cutoff threshold was determined using the function
‘surv_cutpoint’ in the R package ‘survminer’. Kyoto Encyclopedia of Genes
and Genomes (KEGG) functional enrichment analysis was performed and
visualized using Metascape47.
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