
REVIEW ARTICLE OPEN

Dissecting the role of adult hippocampal neurogenesis towards
resilience versus susceptibility to stress-related mood disorders
Katherine L. Jones 1, Mei Zhou1,2 and Dhanisha J. Jhaveri 1,2✉

Adult hippocampal neurogenesis in the developmental process of generating and integrating new neurons in the hippocampus
during adulthood and is a unique form of structural plasticity with enormous potential to modulate neural circuit function and
behaviour. Dysregulation of this process is strongly linked to stress-related neuropsychiatric conditions such as anxiety and
depression, and efforts have focused on unravelling the contribution of adult-born neurons in regulating stress response and
recovery. Chronic stress has been shown to impair this process, whereas treatment with clinical antidepressants was found to
enhance the production of new neurons in the hippocampus. However, the precise role of adult hippocampal neurogenesis in
mediating the behavioural response to chronic stress is not clear and whether these adult-born neurons buffer or increase
susceptibility to stress-induced mood-related maladaptation remains one of the controversial issues. In this review, we appraise
evidence probing the causal role of adult hippocampal neurogenesis in the regulation of emotional behaviour in rodents. We find
that the relationship between adult-born hippocampal neurons and stress-related mood disorders is not linear, and that simple
subtraction or addition of these neurons alone is not sufficient to lead to anxiety/depression or have antidepressant-like effects. We
propose that future studies examining how stress affects unique properties of adult-born neurons, such as the excitability and the
pattern of connectivity during their critical period of maturation will provide a deeper understanding of the mechanisms by which
these neurons contribute to functional outcomes in stress-related mood disorders.
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INTRODUCTION
The discovery of adult neurogenesis, i.e. the birth of new neurons
in the adult brain, transformed our understanding of the extent of
structural plasticity in the adult nervous system and heralded a
new era in regenerative medicine by highlighting potential brain
repair strategies for the treatment of neurodegenerative and
neuropsychiatric conditions. The long-held dogma of a hard-
wired, immutable brain was initially challenged by Joseph Altman
and colleagues in the 1960s and pioneering studies by his group
provided the first evidence supporting the generation of new
neurons in the adult rodent brain1,2. However, these findings were
largely dismissed due to the dominant views at the time and failed
attempts by others to replicate their findings3–5. The field then
remained dormant for the next two decades before its resurgence
in the 1990s, when advances in immunolabelling and microscopy,
as well as cell culture, approaches firmly established the
production and integration of new neurons in the rodent brain
(reviewed in detail in refs. 6,7). The multi-stage process of adult
neurogenesis was shown to encompass the proliferation of
endogenous populations of neural precursor cells, their differ-
entiation into neurons and their migration and integration into
existing neural circuitry7,8. This was found to occur primarily in two
regions of the adult brain—the subventricular zone of the lateral
ventricles and the subgranular zone of the dentate gyrus in the
hippocampus in most mammals9. Subsequently, several other
regions, including the basolateral amygdala10,11 and hypothala-
mus12,13, were also shown to harbour this neurogenic capacity,
albeit to a limited extent.
The hippocampus is an important brain region involved in the

regulation of cognitive processes such as learning and memory as
well as mood14. Studies in animal models have provided

overwhelming support for the role of adult hippocampal
neurogenesis in spatial and contextual learning, memory and
forgetting (for details, see reviews15–17). However, its role in mood
regulation is not fully understood. Given that deficits in learning
and memory are common to neuropsychiatric disorders, it has
been suggested that adult-born neurons could contribute to the
pathophysiology of these disorders indirectly via the regulation of
cognitive functions18,19. Thus, the potential of these adult-born
neurons to impact fundamental brain functions spurred immense
interest in establishing the occurrence and extent of neurogenesis
in the adult human hippocampus. An initial birth-dating study
using BrdU (5-Bromo-2′-deoxyuridine) to label dividing cells20, and
a subsequent 14 C dating study21 provided tantalising evidence
supporting the generation of new neurons in the adult human
hippocampus. Although there are no approaches to directly and
reliably measure levels of adult hippocampal neurogenesis in the
live human brain, these findings have been corroborated by
immunohistological studies that examined and quantified neural
precursor cells and immature neurons based on marker gene
expression in post-mortem human hippocampal tissue22–25.
However, despite accumulating evidence supporting the presence
of a sizeable population of immature neurons throughout adult
life22,24,25, the origin of these neurons and the extent of
neurogenesis in the adult human hippocampus continues to be
debated26–29.
As true for many ground-breaking biomedical discoveries, the

field of adult neurogenesis has also oscillated from discovery to
initial scepticism, and from convincing evidence in animals to
deliberation around its occurrence and significance in the human
brain. However, a feature of adult hippocampal neurogenesis that
has intrigued several neuroscientists is the unique physiology of
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adult-born neurons. These neurons exhibit heightened intrinsic
excitability and a lower activation threshold30–32, particularly
during their immature phase, which is believed to confer a high
degree of plasticity and modulate excitation/inhibition balance
with the hippocampal circuitry. Therefore, it is not surprising that
considerable efforts have been devoted to answering two major
questions. (i) how is adult hippocampal neurogenesis regulated?
and (ii) what is its functional role?—with a view to harnessing this
form of neural plasticity for promoting emotional and cognitive
functions in various neurological conditions.
The mammalian hippocampus is densely packed with stress

hormone receptors and is the key brain region involved in both
sensing and regulating the response to stress33. Chronic and
uncontrollable stress is a major risk factor for a wide range of
neuropsychiatric disorders, including anxiety and depression34. In
this review, we focus on the significance of adult hippocampal
neurogenesis in mood regulation, evaluating the role of adult-
born hippocampal neurons in mediating stress response and
recovery. Although strong links exist between exposure to chronic
stress, impairment in adult hippocampal neurogenesis and
anxiety- and depression-like behaviour35, the nature of the
relationship between this form of cellular plasticity and mood-
related disorders requires further clarification. Here, we appraise
studies that have directly examined the causal role of adult-born
hippocampal neurons in altering mood-related behaviour in
rodent models. These include both loss-of-function studies that
have used ablation approaches and gain-of-function studies that
have adopted genetic strategies to probe the function of these
cells under baseline conditions as well as following stress and
antidepressant treatment. We consider the strengths and limita-
tions of these approaches in resolving the debate around whether
adult-born neurons in the hippocampus confer resilience or
promote susceptibility to stress-induced mood dysfunction. Lastly,
we propose a unifying framework that may help to unravel the
mechanisms that link stress-induced changes in adult hippocam-
pal neurogenesis to affective behaviour, thereby paving the way
for the development of novel antidepressant and/or resilience-
promoting therapeutics.

REGULATION OF ADULT HIPPOCAMPAL NEUROGENESIS BY
STRESS AND ANTIDEPRESSANTS
Stress and clinical antidepressants have been identified as major
regulators of adult hippocampal neurogenesis, with stress
generally decreasing and antidepressants increasing the number
of newborn neurons. Landmark studies in the 1990s by Gould and
colleagues revealed that exposure to stressors decreases cell
proliferation in the adult hippocampus36,37, an effect that was
postulated to be driven by increases in the release of the stress
hormone, glucocorticoid. In support of this notion, adrenalecto-
mised animals showed an increase in cell proliferation38,39,
whereas treatment with corticosterone (the major glucocorticoid
in rodents) decreased cell proliferation38 in the hippocampus.
Since these initial findings, numerous studies have reported a
decline in adult hippocampal neurogenesis following exposure to
various stressors during the prenatal or early postnatal periods, as
well as in adult life (reviewed in ref. 40). A decrease in hippocampal
neurogenesis has commonly been observed across multiple stress
paradigms including chronic unpredictable mild stress41,42, social
defeat stress43, and restraint stress41,44 as well as following chronic
administration of corticosterone45,46. Besides affecting cell pro-
liferation, chronic stress has been shown to impair neuronal
differentiation and decrease the survival of newborn neurons43,47.
However, there have also been studies that show no effects of
stress on hippocampal cell proliferation48–51, with some even
reporting an increase in hippocampal neurogenesis following
stress52–54. Overall, stress-induced impairments in adult hippo-
campal neurogenesis appear to be influenced by multiple factors

such as the nature and duration (acute versus chronic) of the
stressors, and species, sex and strain of the animal.
The results demonstrating the deleterious effects of stress on

adult hippocampal neurogenesis raised the question of whether
antidepressant treatment could reverse or ameliorate these
effects55. The first evidence appeared in 2000 from the Duman
laboratory56, who demonstrated that the administration of
different classes of antidepressants such as a monoamine oxidase
inhibitor (tranylcypromine), a selective serotonin reuptake inhi-
bitor (fluoxetine), and a selective norepinephrine reuptake
inhibitor (reboxetine), as well as electroconvulsive therapy, led
to an increase in cell proliferation and enhancement of adult
hippocampal neurogenesis. These findings were replicated in
several subsequent studies which highlighted the requirement of
chronic but not acute administration of these clinical antidepres-
sants to produce the neurogenic effect56–59. More recently, the
fast-acting antidepressant ketamine has also been shown to
enhance hippocampal neurogenesis by accelerating the matura-
tion of adult-born neurons60. Similar to the effects of stress, these
antidepressants have been shown to regulate different stages of
adult neurogenesis, from stimulating the proliferation of neural
precursor cells61, to promoting the survival and accelerating the
maturation of the newborn neurons60,62–64. The neurogenesis-
enhancing effects of antidepressants have also been found to be
evolutionarily conserved, with post-mortem studies showing
increases in cell proliferation in the hippocampi of depressed
patients treated with antidepressants65. Interestingly, as opposed
to the neurogenesis-promoting effects of antidepressants, chronic
administration of diazepam, a commonly prescribed anxiolytic,
has been shown to have no effects on the levels of adult
hippocampal neurogenesis66,67.

EVIDENCE FOR A CAUSAL LINK BETWEEN ADULT
HIPPOCAMPAL NEUROGENESIS AND MOOD REGULATION
Evidence showing that chronic stress exerts an inhibitory effect on
adult neurogenesis36,38 and is a major risk factor for the
development of mood disorders68 together with data showing
neurogenesis-enhancing actions of antidepressants56 led to the
neurogenic theory of anxiety/depression69, which posits that
stress-induced impairment in neurogenesis is an important causal
factor in the aetiology of anxiety/depression and that restoration
of neurogenesis is necessary for the therapeutic effects of
antidepressants.
To test this theory, various approaches including chemical70–72,

X-ray irradiation45,73, and genetic strategies41,74,75 were developed
to ablate adult neurogenesis in rodents (summarised in Table 1). In
naïve non-stressed animals, most studies using methylazoxymetha-
nol acetate (MAM), a mitotic blocker, or focal X-irradiation, which
efficiently ablates adult neurogenesis reported no changes in
anxiety/depression-related behaviours (see Box 1). However, find-
ings from studies using transgenic rodent models in which adult
neurogenesis was abrogated by expressing ‘toxic’ genes under
neural precursor cell promoters such as the glial fibrillary acidic
protein (GFAP) or Nestin have proven more variable. For example, in
mice expressing a viral form of the enzyme thymidine kinase (TK)
under the control of GFAP, ganciclovir treatment led to a near-
complete abrogation of adult hippocampal neurogenesis41. An
increase in anxiety-like behaviour in the forced swim test but not in
the elevated plus maze, open field test or light/dark test was noted
in these neurogenesis-ablated mice. On the other hand, expression
of the proapoptotic protein Bax in Nestin-Bax mice led to increased
anxiety-like behaviour in the elevated plus maze and light/dark test
but not in the novelty-suppressed feeding test74, whereas inducible
expression of the Diptheria toxin A chain (DTA) in an inducible
Nestin-Cre mice resulted in increased latency to eat in the novelty-
suppressed feeding test but not in the light/dark test75. The
emergence of anxiety-like behaviour in naïve, non-stressed mice
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was therefore evident in select behavioural tests and was specific to
genetic models used for ablating adult neurogenesis. In contrast, a
study using inducible deletion of Tbr2, a T-box transcription factor
highly expressed in neural precursor cells to block adult neurogen-
esis reported a reduction in anxiety-like behaviour in neurogenesis-
ablated compared to control mice, but only when these tests were
conducted during the dark cycle76.
Taken together, the role of adult-born hippocampal neurons in

the regulation of baseline anxiety- or depression-related beha-
viour remains equivocal. Future studies using more specific
strategies that selectively target adult-born neurons in the
hippocampus while sparing those in other neurogenic niches in
the brain are therefore needed. A recent study employing

optogenetic activation of adult-born hippocampal neurons
reported no changes in baseline anxiety-like behaviour77.
Compared to studies which investigated whether the loss of

adult-born neurons is sufficient to induce anxiety- and depression-
like behaviour, the findings from those which examined whether
adult hippocampal neurogenesis is required for antidepressant
efficacy have been more consistent. Using head-focused X-rays,
Hen and colleagues were the first to show that the ablation of
adult hippocampal neurogenesis blocked some of the beneficial
effects of antidepressants fluoxetine and imipramine, in particular,
their anxiolytic effects which were evaluated using the novelty-
suppressed feeding test73. These findings were replicated by
several other studies which used different approaches to ablate

Table 1. Effects of ablating adult neurogenesis on mood-related behaviours in naïve, non-stressed animals.

Ablation approach Species Hippocampus-specific
ablation?

Behavioural tests Increased depressive/
anxious behaviours?

Reference

MAM Rats No Novelty-suppressed
feeding

Yes Bessa et al., 200970

Sucrose preference test No Bessa et al., 200970

Sucrose consumption No Jayatissa et al., 201071

Forced swim test No Bessa et al., 200970

Elevated plus maze No Shors et al., 200272

X-irradiation Mice Yes Novelty-suppressed
feeding

No David et al., 200945; Santarelli
et al., 200373; Wang et al., 200864

Yes Sucrose consumption No Noonan et al., 2010106

Yes Forced swim test No Holick et al., 2008107; David et al.,
200945

Yes Elevated plus maze No Saxe et al., 2006108

Yes Social interaction/
avoidance

Yes Lagace et al., 201052

Yes Open field test No Saxe et al., 2006108; David et al.,
200945; Fuss et al., 2010109

Yes Light/Dark test No Saxe et al., 2006108

Yes Fuss et al., 2010109

Rats Yes Novelty-suppressed
feeding

No Zhu et al., 201084

Yes Sucrose consumption No Noonan et al., 2010106

Forced swim test No Airan et al., 2007110; Zhu et al.,
201084

GFAP-TK Mice No Forced swim test Yes Snyder et al., 201141

Sucrose preference test Yes Snyder et al., 201141

Elevated plus maze No Snyder et al., 201141

No Open field test No Schloesser et al., 201043

Light/Dark test No Schloesser et al., 201043

GFAP-TK Rats No Novelty-suppressed
feeding

No Snyder et al., 201641

Sucrose preference test Yes Snyder et al., 201641

Open field test No Snyder et al., 201641

Nestin-Bax Mice No Novelty-suppressed
Feeding

No Revest et al., 200974

Forced swim test No Revest et al., 200974

Elevated plus maze Yes Revest et al., 200974

Light/Dark test Yes Revest et al., 200974

Nestin-TK Mice No Tail suspension test No Singer et al., 2009111

Nestin-CreERT2/
floxed DTA

Mice No Novelty induced
hypophagia

Yes Yun et al., 201675

Open field test No Yun et al., 201675

Tail suspension test Yes Yun et al., 201675

Light/Dark test No Yun et al., 201675
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adult neurogenesis45,64,78,79. Recently, Tunc-Ozcan et al.80 used a
chemogenetic approach to selectively modulate the activity of
adult-born neurons and found that silencing their activity using
Gi-coupled DREADDs (designer receptors exclusively activated by
designer drugs) blocked the efficacy of fluoxetine in the tail
suspension and open field tests. However, it is also worthwhile
noting that the actions of antidepressants have been shown to be
mediated via both neurogenesis-dependent and -independent
mechanisms45,78,81–83.

DO ADULT-BORN HIPPOCAMPAL NEURONS BUFFER OR
INCREASE SUSCEPTIBILITY TO STRESS-INDUCED MOOD
DISORDERS?
To fully realise the potential of adult hippocampal neurogenesis as
a therapeutic strategy for stress-induced mood disorders, several
studies have explored whether and how adult-born neurons in the
hippocampus mediate the behavioural and endocrine response to
chronic stressors (summarised in Table 2). Most studies using
nonspecific ablation strategies such as cranial X-irradiation or
cytostatic agents have reported no changes in the susceptibility to
stress-induced anxiety- or depression-related beha-
viours43,45,78,84–86. One exception was the study by Bessa and
colleagues which showed that treatment with the cytostatic agent
MAM during the last two weeks of a 6-week chronic mild stress
paradigm exacerbated stress-induced anxiety-like behaviour in
the novelty-suppressed feeding test70, suggesting the stress-
buffering actions of adult hippocampal neurogenesis. However,
adult neurogenesis has also been implicated in promoting
susceptibility to stress-induced mood dysfunction52,87. Using
cranial X-irradiation ref. 52 found that ablation of adult neurogen-
esis prevented social defeat stress-induced social avoidance
behaviour in mice. In another study, fluoxetine-induced enhance-
ment of hippocampal neurogenesis was found to increase
behavioural vulnerability, and blockade of neurogenesis using
MAM was shown to protect against maladaptive behavioural
changes induced by stress re-exposure87.
On the other hand, studies using genetic strategies have

reported that adult hippocampal neurogenesis buffers the stress
response such that blocking neurogenesis leads to an enhanced
glucocorticoid response and an increase in anxiety- and
depressive-like behaviour41,82. Corroborating these results, a
recent study found that chemogenetic silencing of adult-born
neurons specifically in the ventral dentate gyrus increased the

susceptibility to social defeat stress, resulting in avoidance of a
novel mouse in a social interaction test88. However, as opposed to
these findings supporting the stress-buffering actions of adult-
born hippocampal neurons, a decrease in stress-induced anxiety-
like behaviour has also been reported following blockade of adult
neurogenesis in GFAP-TK rats89.
Based on these conflicting findings, the question of whether

adult-born neurons in the hippocampus buffer or exacerbate the
behavioural and endocrine effects of stress remains unresolved.
Several factors may contribute to these discrepant results,
including the ablation strategy and its efficacy and selectivity,
the type of stressor and the timing and duration of both the
stressor and ablation. For example, X-irradiation which robustly
ablates hippocampal neurogenesis has also been shown to induce
inflammation and morphological and synaptic alterations that
take a long time to fully recover52,70,78,90. Moreover, it has been
also shown to impact oligodendrocyte progenitor cells in the
brain—a cell population that regulates anxiety and depressive-like
behaviours in rodents91,92. While transgenic rodent models (GFAP-
TK or Nestin-TK) have provided a more controlled approach to
ablate adult neurogenesis, they also require prolonged ganciclovir
treatment lasting up to several weeks to achieve good ablation
efficiency43. In addition to ablating neural precursor cells, the
addition of new glial cells is also impaired in these models93 which
may further confound interpretations given the important roles of
these cells in the pathophysiology of major depression94–96.
Another important confound is that global manipulations of
neurogenesis affect other neurogenic areas such as the subven-
tricular zone which in turn likely impair olfactory functions which
are known to influence emotional states97,98. These limitations
highlight the need to use specific approaches with spatial and
temporal control to either deplete or regulate the activity of adult-
born neurons in the hippocampus in order to define their role in
mediating the stress response and/or recovery.

IS ENHANCEMENT OF ADULT HIPPOCAMPAL NEUROGENESIS
SUFFICIENT TO IMPROVE MOOD-RELATED BEHAVIOUR?
Compared to loss-of-function studies, very few investigations have
examined whether selectively increasing adult hippocampal
neurogenesis is sufficient to improve mood-related behaviour. A
gain-of-function approach involving neural precursor cell-selective
deletion of the proto-oncogene Bax was developed to genetically
expand the population of adult-born neurons99. Although no
baseline improvement in mood was found, enhancing the level of
neurogenesis using this approach was shown to promote
behavioural resilience to chronic corticosterone administration46

and chronic social defeat stress88. However, these results need to
be considered carefully given that Bax has a non-apoptotic role in
the regulation of synaptic plasticity100. Interestingly, a recent study
showed that chemogenetic stimulation of adult-born neurons
alleviates depressive-like behaviour following uncontrolled
chronic mild stress in mice80, indicating that the activity of these
neurons is sufficient to promote stress resilience.

CONCLUDING REMARKS AND OUTLOOK
The connection between stress, adult hippocampal neurogenesis
and neuropsychiatric disorders has been a subject of intense
investigation over the past two decades. However, so far, the
neurogenic theory of mood disorders has fallen short in providing
a unified mechanism that links stress to affective behaviour, as
simple subtraction or addition of adult-born neurons alone is not
sufficient to lead to anxiety/depression or have antidepressant-like
effects, respectively. Moreover, the jury is still out regarding
whether and how adult-born neurons in the hippocampus
contribute towards promoting resilience or susceptibility to
stress-related mood disorders.

Box 1 Behavioural tests assessing anxiety- and depression-like
behaviour in rodents

Assessing externally measurable anxiety- and depression-related phenotypes in
rodents remains a major challenge, with widely used behavioural tasks
recapitulating only aspects of these conditions. Various strategies exhibiting
face, predictive and construct validity have now been developed112. For rodents,
environments such as bright-lit, open exposed spaces where they are more
visible to predators, are innately recognised as harbouring threats and avoided.
These environmental features (open field) have therefore been used in the
laboratory setting to elicit avoidance behaviour as a proxy for anxiety state.
Approach–avoidance tasks exploiting conflicting motivational states such as
measuring the rodent’s exploratory drive against the innate drive to avoid
danger113 have been developed to assess levels of anxiety. Such features are
present in tasks such as the novelty-suppressed feeding, elevated plus maze, and
light/dark box test. A major advantage of these tasks is that they require no prior
training, thereby assessing animals’ innate valence without the confounding
effects of extensive learning. Similarly, measuring symptoms associated with
depression, which is a complex, multifactorial, and heterogenous clinical
syndrome in rodents has been difficult. However, some of the symptoms
commonly observed in human patients are measured as depression-like
behaviour in rodents. These include social avoidance which is measured
following a chronic social defeat stress paradigm which induces avoidance
behaviour in susceptible animals, anhedonia which is measured using a sucrose
preference test, and learned helplessness and passive coping which are
measured using a forced swim test and tail suspension test.
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Several important considerations have emerged from these
studies. First, a change in the absolute number of adult-born
hippocampal neurons alone is unlikely to be the key factor linking
stress to altered behaviour. Instead, the activity of these neurons
could be a major determinant in unravelling their role in the
regulation of stress-induced changes in mood-related behaviour.
Second, off-target effects of ablation approach used in the
majority of studies, including the chronic nature of manipulations
which likely lead to compensatory mechanisms as well as brain-
wide ablation, as in the case of genetic strategies, preclude
determining the precise role of adult-born hippocampal neurons.
A third important consideration is the nature and duration of the
stressors modelled in these studies, which are likely to influence
the hypothalamic-pituitary-adrenal axis differently, resulting in
stressor-specific alterations in the neurotransmitter and neuropep-
tide signalling in the brain. These may differentially impact various
stages of adult hippocampal neurogenesis. Fourth, the timing of
ablation is also a critical variable, with most studies examining the
effects of stress on mood-related behaviour in neurogenesis-null
animals. Characterising stress-induced changes in the properties
of adult-born neurons and evaluating their causal role during
different phases (acute, sub-chronic, chronic) of stress is likely to
provide significant insights into the role of these neurons in
mediating stress susceptibility versus resilience. Finally, not all
mood-related behaviours are equally impacted following manip-
ulation of adult hippocampal neurogenesis in rodents, with
greater effects seen on anxiety-like (such as approach–avoidance)
behaviour compared to depression-related (such as passive

coping, anhedonia). Even amongst approach–avoidance type
behaviour which is evaluated using the elevated plus maze,
novelty-suppressed feeding or social avoidance tasks, differential
effects of adult neurogenesis manipulations have been reported. It
is likely that these may be driven by differences in exploration,
motivation and reward contingencies associated with these tasks,
which have distinct underlying neural circuits. Therefore, unravel-
ling specific neural circuits that are modulated by adult
hippocampal neurogenesis is an important direction for future
studies. As stress-associated neuropsychiatric disorders are com-
plex and heterogeneous in symptom criteria, defining the role of
adult-born hippocampal neurons in the regulation of specific
behaviour may therefore aid in stratifying patients who are likely
to benefit from neurogenesis-based therapeutic strategies. More-
over, changes in cognitive processes such as spatial and
contextual learning and memory that are modulated by adult-
born neurons are not usually examined in these models but are
likely to contribute towards differences in susceptibility versus
resilience to stress-related mood disorders15,19.
Another key consideration which has largely been overlooked

in previous studies is the relative contribution of adult-born
neurons at immature versus mature stages of their development
in both encoding and mediating the response to stressors101. The
connectivity of adult-born neurons within the dentate gyrus—CA3
circuit at different stages of their morphological and functional
maturation is complex but is beginning to be unravelled102,103. In
particular, adult-born neurons exhibit a critical period of
heightened intrinsic excitability and synaptic plasticity during

Table 2. Effects of ablating adult neurogenesis on mood-related behaviours in stressed animals.

Ablation
methods

Start of ablation Stress model Behavioural Test Effects of ablation on stress-induced
changes in behaviour

Reference

X-irradiation The 22nd day
of stress

5 weeks of UCMS Coat score No effects Zhu et al.,
201084Novelty-

suppressed
feeding

No effects

5 weeks
before stress

5 weeks of UCMS Splash test No effects Surget et al.,
200878Novelty-

suppressed
feeding

No effects

5 weeks
before stress

10 days of social
defeat stress

Social
interaction test

Blocked stress-induced social avoidance Lagace et al.,
201052

1 week before stress 4 weeks chronic low CORT Open field test No effects David et al.,
200945Novelty-

suppressed
feeding

No effects

Forced swim test No effects

MAM The 4th week of
chronic stress

6 weeks of UCMS Forced swim test No effects Bessa et al.,
200970Sucrose

preference test
No effects

Novelty-
suppressed
feeding

Aggravated stress-induced anxiety-like
behaviour

GFAP-TK
animal models

Before stress 14 days of social
defeat stress

Sucrose
preference test

No effects Schloesser et al.,
201043

Light-dark box No effects

Social
interaction test

No effects

The start of stress 4 weeks of unpredictable
restraint stress

Novelty-
suppressed
feeding

A trend of decreased anxiety-like
behaviour in stressed mice

Schoenfeld
et al., 201789

Sucrose
Preference Test

No effects
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their immature phase (approximately 4–6-week-old neurons) with
the capacity to profoundly influence the activity of mature
neurons within the dentate gyrus, thereby influencing the local
circuit to control behaviour88. Therefore, unravelling how stress
modifies intrinsic excitability as well as the presynaptic and
postsynaptic connectome of adult-born neurons would shed
further light on their contribution to the hippocampal circuit
regulation and the control of behaviour.
Based on collective findings from previous studies, our working

hypothesis is that the unique properties of adult-born hippocam-
pal neurons during their critical period of maturation are
functionally important and causally link chronic stress to altered
mood-related behaviour. We posit therefore that (i) chronic stress
exposure alters the cellular and physiological properties of these
neurons, and their pattern of connectivity, resulting in a
dysfunctional hippocampal circuit and that (ii) antidepressants
exert their beneficial effects, in part, by modulating distinct
cellular and functional properties of immature adult-born hippo-
campal neurons.
Thus, future studies should move beyond altering the overall

levels of adult hippocampal neurogenesis and instead focus on
monitoring and manipulating stress-induced changes in the
molecular, cellular, and physiological properties of adult-born
neurons as well as mapping their connectome. Also, given the
functional dichotomy between dorsal and ventral hippocampal
functions104 with the ventral hippocampus preferentially
involved in mood regulation, future research should consider
conducting region-specific manipulation of adult hippocampal
neurogenesis to better define their role in regulating specific
aspects of mood-related behaviour. This coupled with
approaches that allow spatial and temporal control to both
visualise and modulate the activity of newborn neurons at
various stages of their maturation during a behavioural task,
would help reveal their contribution to the stress response,
recovery, and mood regulation. Whilst historically male rodents
have been used in most studies, given the higher incidence of
stress-related mood disorders in women than men, future studies
should investigate the role of adult-born hippocampal neurons
in both sexes. Recently, there have been some efforts towards
developing new chronic stress paradigms that are effective in
both adult male and female rodents in inducing mood-related
behavioural changes105.
Collectively, the findings from this integrated approach are

likely to provide important new perspectives on the physiolo-
gical and functional significance of adult-born hippocampal
neurons in mediating the stress response. This would bring us
closer to developing treatments for stress-related mood
disorders that are founded on a deeper molecular and cellular
understanding of a defined neural subtype and circuit.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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