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The intensive pursuit for quantum advantage in terms of computational complexity has further led to a
modernized crucial question of when and how will quantum computers outperform classical
computers. The next milestone is undoubtedly the realization of quantum acceleration in practical
problems. Here we provide a clear evidence and arguments that the primary target is likely to be
condensed matter physics. Our primary contributions are summarized as follows: 1) Proposal of
systematic error/runtime analysis on state-of-the-art classical algorithm based on tensor networks;
2) Dedicated and high-resolution analysis on quantum resource performed at the level of executable
logical instructions; 3) Clarification of quantum-classical crosspoint for ground-state simulation to be
within runtime of hours using only a few hundreds of thousand physical qubits for 2d Heisenberg and
2d Fermi-Hubbard models, assuming that logical qubits are encoded via the surface code with the
physical error rate of p = 10−3. To our knowledge, we argue that condensed matter problems offer the
earliest platform for demonstration of practical quantum advantage that is order-of-magnitude more
feasible than ever known candidates, in terms of both qubit counts and total runtime.

When and how will quantum computers outperform classical computers?
This pressing question drove the community to perform random sampling
in quantum devices that are fully susceptible to noise1–3. We anticipate that
the precedent milestone after this quantum transcendence is to realize
quantum acceleration for practical problems. In this context, a remaining
outstanding question is to identify which problem we shall aim next. This
encompasses research across a range of fields, including natural science,
computer science, and, notably, quantum technology.

Research on quantum acceleration is predominantly focused on two
areas: cryptanalysis and quantum chemistry. In the realm of cryptanalysis,
there has been a substantial progress since Shor introduced a polynomial
time quantum algorithm for integer factorization and finding discrete
logarithms4–7. Gidney et al. have estimated that a fully fault-tolerant quan-
tum computer with 20 million (2 × 107) qubits could decipher a 2048-bit
RSA cipher in eight hours, and a 3096-bit cipher in approximately a day7.
This represents an almost hundred-fold enhancement in the the spacetime
volume of the algorithm compared to similar efforts, which generally
require several days5,6. Given that the security of nearly all asymmetric

cryptosystems is predicatedon the classical intractability of integer factoring
or discrete logarithm findings8,9, the successful implementation of Shor’s
algorithm is imperative to safeguard the integrity of modern and forth-
coming communication networks.

The potential impact of accelerating quantum chemistry calcula-
tions, including first-principles calculations, is immensely significant as
well. Given its broad applications inmaterials science and life sciences, it
is noted that computational chemistry, though not exclusively quantum
chemistry, accounts for 40% of HPC resources in the world10. Among
numerous benchmarks, a notable target with significant impact is
quantum advantage in simulation of energies of a molecule called
FeMoco, found in the reaction center of a nitrogen-fixing enzyme11.
According to the resource estimation that employs the state-of-the-art
quantum algorithm, calculation of the ground-state energy of FeMoco
requires about four days on a fault-tolerant quantum computer equip-
ped with four million (4 × 106) physical qubits12. Additionally, Goings
et al. conducted a comparison between quantum computers and the
contemporary leading heuristic classical algorithm for cytochrome P450
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enzymes, suggesting that the quantum advantage is realized only in
computations extending beyond four days13.

A practical quantum advantage in both domains has been proposed to
be achievable within a timescale of days with millions of physical qubits.
Such a spacetime volume of algorithm may not represent the most pro-
mising initial application of fault-tolerant quantum computers. This paper
endeavors to highlight condensed matter physics as a promising candidate
(See Fig. 1). We emphasize that while models in condensed matter physics
encapsulate various fundamental quantum many-body phenomena, their
structure is simpler than that of quantum chemistry Hamiltonians. Lattice
quantum spin models and lattice fermionic models serve as nurturing
grounds for strong quantum correlations, facilitating phenomena such as
quantum magnetism, quantum condensation, topological order, quantum
criticality, and beyond. Given the diversity and richness of these models,
coupled with the difficulties of simulating large-scale systems using classical
algorithms, even with the most advanced techniques, it would be highly
beneficial to reveal the location of the crosspoint between quantum and
classical computing based on runtime analysis.

Our work contributes to the community’s knowledge in three primary
ways: 1) Introducing a systematic analysis method to estimate runtime to
simulating quantum states within target energy accuracy using the extra-
polation techniques, 2) Conducting an end-to-end runtime analysis of
quantum resources at the level of executable logical instructions, 3) Clearly
identifying the quantum-classical crosspoint for ground-state simulation to
bewithin the range of hours using physical qubits on the order of 105, which
are both less demanding by at least order of magnitude compared to other
candidates. To the best of our knowledge, this suggests the most imminent
practical and feasible platform for the crossover.

We remark that there are someworks that assess the quantumresource
to perform quantum simulation on quantum spin systems14,15, while the
estimation is done solely regarding thedynamics; theydonot involve time to
extract information on any physical observables. Also, there are existing
works on phase estimation for Fermi-Hubbard models16,17 that do not
provide estimation on the classical runtime. In this regard, there has beenno
clear investigation on the quantum-classical crossover prior to the current
study that assesses end-to-end runtime.

Results
Our argument on the quantum-classical crossover is based on the runtime
analysis needed to compute the ground state energy within desired total
energy accuracy, denoted as ϵ. The primal objective in this section is to
provide a framework that elucidates the quantum-classical crosspoint for
systems whose spectral gap is constant or polynomially-shrinking. In this
work, we choose two models that are widely known due to their pro-
foundness despite the simplicity: the 2d J1-J2 Heisenberg model and 2d
Fermi-Hubbard model on a square lattice (see the Method section for their
definitions). Meanwhile, it is totally unclear whether a feasible crosspoint
exists at all when the gap closes exponentially.

It is important to keep in mind that condensed matter physics often
entails extracting physical properties beyond merely energy, such as mag-
netization, correlation function, or dynamical responses. Therefore, in order
to assure that expectationvalue estimations candone consistently (i.e. satisfy
N-representability), we demand that we have the option to measure the
physical observable after computation of the ground state energy is done. In
other words, for instance the classical algorithm, we perform the variational
optimization up to the desired target accuracy ϵ; we exclude the case where
one calculates less precise quantum states with energy errors ϵi ≥ ϵ and
subsequently performextrapolation. The similar requirement is imposedon
the quantum algorithm as well.

Runtime of classical algorithm
Among the numerous powerful classical methods available, we have
opted to utilize the DMRG algorithm, which has been established as one
of the most powerful and reliable numerical tools to study strongly-
correlated quantum lattice models especially in one dimension (1d)18,19.

In brief, the DMRG algorithm performs variational optimization on
tensor-network-based ansatz named Matrix Product State (MPS)20,21.
Although MPS is designed to efficiently capture 1d area-law entangled
quantum states efficiently22, the efficacy of DMRG algorithm allows one
to explore quantum many-body physics beyond 1d, including quasi-1d
and 2d systems, and even all-to-all connected models, as considered in
quantum chemistry23,24.

A remarkable characteristic of the DMRG algorithm is its ability to
perform systematic error analysis. This is intrinsically connected to the
construction of ansatz, or theMPS, which compresses the quantum state by
performing site-by-site truncation of the full Hilbert space. The compres-
sion process explicitly yields a metric called “truncation error," from which
we can extrapolate the truncation-free energy, E0, to estimate the ground
truth. By tracking the deviation from the zero-truncation result E− E0, we
find that the computation time and error typically obeys a scaling law (See
Fig. 2 for an example of such a scaling behavior in 2d J1-J2 Heisenberg
model). The resource estimate is completed by combining the actual
simulation results and the estimation from the scaling law. [See Supple-
mentary Note 2 for detailed analysis.]

We remark that it is judicious to select the DMRG algorithm for 2d
models, even though the formal complexity of number of parameters in
MPS is expected to increase exponentially with system size N, owing to its
intrinsic 1d-oriented structure. Indeed, one may consider another tensor
network states that are designed for 2d systems, such as the Projected
Entangled Pair States (PEPS)25,26. When one use the PEPS, the bond

Fig. 1 | Schematic diagram for scaling of computational resource required to
achieve quantumadvantage using fault-tolerant quantumcomputers.Wepredict
the first practical quantum advantage to occur in condensedmatter physics based on
the physical qubit count requirement and algorithm runtime.

Fig. 2 | Elapsed time scaling of DMRG algorithm in J1-J2 Heisenberg model at
J2= 0.5 with lattice size 10 × 10. Although the simulation itself does not reach
ϵ = 0.01, learning curves for different bond dimensions ranging from D = 600 to
D = 3000 collapse into a single curve, which implies the adequacy to estimate run-
time according to the obtained scaling law. All DMRG simulations are executed
using ITensor library61.
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dimension is anticipated to scale as D ¼ OðlogðNÞÞ for gapped or gapless
non-critical systems andD =O(poly(N)) for critical systems27–29 to represent
the ground state withfixed total energy accuracy of ϵ =O(1) (it is important
to note that the former would be D =O(1) if considering a fixed energy
density). Therefore, in the asymptotic limit, the scaling on the number of
parameters of the PEPS is exponentially better than that of the MPS.
Nonetheless, regarding the actual calculation, the overhead involved in
simulating the ground state with PEPS is substantially high, to the extent
that there are practically no scenarios where the runtime of the variational
PEPS algorithm outperforms that of DMRG algorithm for our target
models.

Overview of quantum resource estimation
Quantum phase estimation (QPE) is a quantum algorithm designed to
extract the eigenphase ϕ of a given unitary U by utilizing ancilla qubits to
indirectly read out the complex phase of the target system.More concretely,
given a trial state ∣ψ

�
whosefidelitywith the k-th eigenstate ∣ki of the unitary

is given as fk = ∥〈k∣ψ〉∥2, a single run of QPE projects the state to ∣ki with
probability fk, andyields a randomvariable ϕ̂whichcorresponds to am-digit
readout of ϕk.

It was originally proposed by ref. 30 that eigenenergies of a given
Hamiltonian can be computed efficiently via QPE by taking advantage of
quantum computers to perform Hamiltonian simulation, e.g.,
U ¼ expð�iHτÞ. To elucidate this concept, it is beneficial to express the gate
complexity for the QPE algorithm as schematically shown in Fig. 3 as

C∼CSP þ CHS þ CQFTy ; ð1Þ

where we have defined CSP as the cost for state preparation, CHS for the
controlled Hamiltonian simulation, and CQFTy for the inverse quantum
Fourier transformation, respectively (See SupplementaryNote 4 for details).
The third term CQFTy is expected to be the least problematic with
CQFTy ¼ OðlogðNÞÞ, while the second term is typically evaluated as
CHS =O(poly(N)) when the Hamiltonian is, for instance, sparse, local, or
constituted frompolynomiallymany Pauli terms. Conversely, the scaling of
the third term CSP is markedly nontrivial. In fact, the ground state pre-
paration of localHamiltonian generally necessitates exponential cost, which
is also related to the fact that the ground state energy calculation of local
Hamiltonian is categorized within the complexity class of QMA-
complete31,32.

State preparation cost in quantum algorithms
Although the aforementioned argument seems rather formidable, it is
important to note that theQMA-completeness pertains to the worst-case
scenario. Meanwhile, the average-case hardness in translationally
invariant lattice Hamiltonians remains an open problem, and further-
more we have nomeans to predict the complexity under specific problem
instances. In this context, it is widely believed that a significant number of
ground states that are of substantial interest in condensed matter pro-
blems can be readily prepared with a polynomial cost33. In this work, we
take a further step to argue that the state preparation cost can be con-
sidered negligible asCSP≪ CHS for our specific targetmodels, namely the
gapless spin liquid state in the J1-J2 Heisenberg model or the anti-
ferromagnetic state in the Fermi-Hubbardmodel. Our argument is based

on numerical findings combined with upper bounds on the complexity,
while we leave the theoretical derivation for scaling (e.g. Eq. (4)) as an
open problem.

For concreteness, we focus on the scheme of the Adiabatic State Pre-
paration (ASP) as a deterministic method to prepare the ground state
through a time evolution of period tASP. We introduce a time-dependent
interpolating function sðtÞ : R 7!½0; 1�ðsð0Þ ¼ 0; sðtASPÞ ¼ 1Þ such that the
ground state is prepared via time-dependent Schrödinger equation given by

i
∂

∂t
∣ψðtÞ� ¼ HðtÞ∣ψðtÞ�; ð2Þ

where H(t) =H(s(t)) = sHf+ (1− s)H0 for the target Hamiltonian Hf and
the initial Hamiltonian H0. We assume that the ground state of H0 can be
prepared efficiently, and take it as the initial state of the ASP. Early studies
suggested a sufficient (but not necessary) condition for preparing the target
ground state scales as tASP =O(1/ϵfΔ

3)34–36 where ϵf = 1− ∣〈ψGS∣ψ(tASP)〉∣ is
the target infidelity andΔ is the spectral gap. This has been refined in recent
research as

tASP ¼
Oð 1

ϵ2f Δ
2 j logðΔÞjζ Þðζ>1Þ

Oð 1
Δ3 logð1=ϵf ÞÞ

8
<
: : ð3Þ

Two conditions independently achieve the optimality with respect toΔ and
ϵf. Evidently, the ASP algorithm can prepare the ground state efficiently if
the spectral gap is constant or polynomially small as Δ =O(1/Nα).

For bothof our targetmodels, numerousworks suggest thatα = 1/237–39,
which is oneof themost typical scalings in 2d gapless/critical systems such as
the spontaneous symmetry broken phase with the Goldstone mode and
critical phenomena described by 2d conformal field theory. With the poly-
nomial scaling ofΔ to be granted, nowwe ask what the scaling ofCSP is, and
how does it compare to other constituents, namely CHS and C

y
QFT.

In order to estimate the actual cost,wehavenumerically calculated tASP
required to achieve the target fidelity (See SupplementaryNote 3 for details)
up to 48 qubits.With the aimof providing a quantitativeway to estimate the
scaling of tASP in larger sizes, we reasonably consider the combination of the
upper bounds provided in Eq. (3) as

tASP ¼ O
1

Δβ
logð1=ϵf Þ

� �
: ð4Þ

Figure 4a, b illustrates the scaling of tASP concerning ϵf and Δ, respectively.
Remarkably,wefind thatEq. (4)withβ = 1.5 gives anaccurate prediction for
2d J1-J2 Heisenberg model. This implies that the ASP time scaling is
tASP ¼ OðNβ=2 logð1=ϵf ÞÞ, which yields gate complexity of
OðN1þβ=2polylogðN=ϵf ÞÞ under optimal simulation for time-dependent
Hamiltonians40,41. Thus, CSP proves to be subdominant in comparison to
CHS if β < 2, which is suggested in our simulation. Furthermore, under
assumption of Eq. (4), we can estimate tASP to atmost a few tens for practical
system size of N ~ 100 under infidelity of ϵf ~ 0.1. This is fairly negligible
compared to the controlledHamiltonian simulation that requires dynamics
duration to be order of tens of thousands in our target models (One must
note that there is a slight different between two schemes. Namely, the time-
dependentHamiltonian simulation involves the quantum signal processing
using the block-encoding of H(t), while the qubitization for the phase
estimation only requires the block-encoding. This implies that T-count in
the former would encounter overhead as seen in the Taylorization
technique. However, we confirm that this overhead, determined by the
degrees of polynomial in the quantum signal processing, is orders of tens41,
so that the required T-count for state preparation is still suppressed by
orders of magnitude compared to the qubitization). This outcome stems
from the fact that the controlled Hamiltonian simulation for the purpose of
eigenenergy extraction obeys the Heisenberg limit as CHS =O(1/ϵ), a
consequence of time-energy uncertainty relation. This is in contrast to the

Fig. 3 | Schematic description of quantum circuit for the QPE algorithm to
compute the eigenenergy of the ground state of quantum many-body system.
Here, ancilla qubits are projected to x1 � � � xm

�� �
which gives am-digit readout of the

ground state ∣ψGS

�
of an N-qubit system.
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state preparation, which is not related to any quantum measurement and
thus there does not exist such a polynomial lower bound.

Dominant quantum resource
As we have seen in the previous sections, the dominant contribution to the
quantum resource is CHS, namely the controlled Hamiltonian simulation
from which the eigenenergy phase is extracted into the ancilla qubits. For-
tunately, with the scope of performing quantum resource estimation for the
QPE and digital quantum simulation, numerous works have been devoted
to analyzing the error scaling of variousHamiltonian simulation techniques,
in particular the Trotter-basedmethods42–44. Nevertheless, we point out that
crucial questions remain unclear; (A) which technique is the best practice to
achieve the earliest quantumadvantage for condensedmatter problems, and
(B) at which point does the crossover occur?

Here we perform resource estimation under the following common
assumptions: (1) logical qubits are encoded using the formalism of surface
codes45; (2) quantum gate implementation is based on Clifford+T formal-
ism; Initially, we address the first question (A) by comparing the total
number of T-gates, or T-count, across various Hamiltonian simulation
algorithms, as the application of a T-gate involves a time-consuming pro-
cedure known as magic-state distillation. Although not necessarily, this
procedure is considered to dominate the runtime in many realistic setups.
Therefore, we argue that T-count shall provide sufficient information to
determine thebestHamiltonian simulation technique.Then,with the aimof
addressing the second question (B), we further perform high-resolution
analysis on the runtime.We in particular consider concrete quantumcircuit
compilation with specific physical/logical qubit configuration compatible
with the surface code implemented on a square lattice.

Fig. 4 | Scaling of the ASP time tASP for 2d J1-J2
Heisenbergmodel with J2=0.5. (a) Scaling with the
target infidelity ϵf for system size of 4 × 4 lattice. The
interpolation function is taken so that the derivative
up to κ-th order is zero at t = 0, tASP. Here we con-
sider the linear interpolation for κ = 0, and for
smoother ones we take Sκ and Bκ that are defined
from sinusoidal and incomplete Beta functions,
respectively (see Supplementary Note 3). While
smoothness for higher κ ensures logarithmic scaling
for smaller ϵf, for the current target model, we find
that it suffices to take s(t) whose derivative vanishes
up to κ = 2 at t = 0, tASP. (b) Scaling with the spectral
gapΔ. Here we perform the ASP using theMPS state
for system size of Lx × Ly, where results for
Lx = 2, 4, 6 is shown in cyan, blue, and green data
points. We find that the scaling exhibits tASP∝ 1/Δβ

with β ~ 1.5.
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Let us first compute the T-counts to compare the state-of-the-art
Hamiltonian simulation techniques: (randomized) Trotter product
formula46,47, qDRIFT44, Taylorization48–50, and qubitization40. The former
two commonly rely on the Trotter decomposition to approximate the
unitary time evolution with sequential application of (controlled) Pauli
rotations, while the latter two, dubbed as “post-Trottermethods," are rather
based on the technique called the block-encoding, which utilize ancillary
qubits to encode desired (non-unitary) operations on target systems (See
Supplementary Note 5). While post-Trotter methods are known to be
exponentially more efficient in terms of gate complexity regarding the
simulation accuracy48, it is nontrivial to ask which is the best practice in the
crossover regime, where the prefactor plays a significant role.

We have compiled quantum circuits based on existing error analysis
to reveal the required T-counts (See Supplementary Notes 4, 6, and 7).
From results presented in Table 1, we find that the qubitization algorithm
provides the most efficient implementation in order to reach the target
energy accuracy ϵ = 0.01. Although the post-Trotter methods, i.e., the
Taylorization and qubitization algorithms require additional ancillary
qubits of OðlogðNÞÞ to perform the block encoding, we regard this
overhead as not a serious roadblock, since the target system itself and the
quantum Fourier transformation requires qubits of O(N) and
OðlogðN=ϵÞÞ, respectively. In fact, as we show in Fig. 5, the qubitization
algorithms are efficient at near-crosspoint regime in physical qubit count
as well, due to the suppressed code distance (see Supplementary Note 9
for details).

We alsomention that, for 2d Fermi-Hubbardmodel, there exists some
specialized Trotter-based methods that improve the performance
significantly16,17. For instance, theT-count of theQPE based on the state-or-
the-art PLAQ method proposed in ref. 17 can be estimated to be approxi-
mately 4 × 108 for 10 × 10 system under ϵ = 0.01, which is slightly higher
than theT-count required for thequbitization technique. Since the scalingof
PLAQ is similar to the 2nd order Trotter method, we expect that the
qubitization remains the best for all system size N.

The above resultsmotivate us to study the quantum-classical crossover
entirely using the qubitization technique as the subroutine for theQPE.As is
detailed in Supplementary Note 8, our runtime analysis involves the fol-
lowing steps:
(I) Hardware configuration. Determine the architecture of quantum

computers (e.g., number of magic state factories, qubit
connectivity etc.).

(II) Circuit synthesis and transpilation. Translate high-level description of
quantum circuits to Clifford+T formalism with the provided
optimization level.

(III) Compilation to executable instructions. Decompose logical gates into
the sequence of executable instruction sets based on lattice surgery.

It should be noted that the ordinary runtime estimation only involves
the step (II); simplymultiplying the execution time ofT-gate to theT-count

as NTtT. However, we emphasize that this estimation method loses several
vital factors in time analysiswhichmay eventually lead todeviationof oneor
two orders of magnitude. In sharp contrast, our runtime analysis compre-
hensively takes all steps into account to yield reliable estimation under
realistic quantum computing platforms.

Crossover under p = 10−3

Figure 6 shows the runtime of classical/quantum algorithms simulating the
ground state energy in 2d J1-J2 Heisenberg model and 2d Fermi-Hubbard
model. In both figures, we observe clear evidence of quantum-classical
crosspoint belowahundred-qubit system (at lattice size of 10 × 10 and6 × 6,

Fig. 5 | Spacetime cost of the phase estimation algorithm, namely theT-count and
physical qubit counts Nph. Here, we estimate the ground state energy up to target
accuracy ϵ = 0.01 for 2d J1-J2 Heisenberg model (J2/J1 = 0.5) and 2d Fermi-Hubbard
model (U/t = 4), both with lattice size of 10 × 10. The blue, orange, green, and orange
points indicate the results that employ qDRIFT, 2nd-order random Trotter, Tay-
lorization, and qubitization, where the circle and star markers denote the spin and
fermionic models, respectively. Two flavors of the qubitization, the sequential and
newly proposed product-wise construction (see Supplementary Note 5 for details),
are discriminated by filled and unfilledmarkers. Note thatNph here does not account
for the magic state factories, which are incorporated in Fig. 7.

Table 1 | T-count required to perform the quantum phase estimation on lattice Hamiltonians based on various Hamiltonian
simulation algorithms

Formal scaling
(Lattice system)

2d J1-J2 Heisenberg (J2 = 0.5) 2d Fermi-Hubbard (U = 4)

N:#Total qubits 6 × 6 10 × 10 20 × 20 100 × 100 6 × 6 10 × 10 20 × 20 100 × 100

qDRIFT O N2=ϵ2
� �

5.88e+12 5.31e+13 9.82e+14 7.59e+17 1.94e+12 1.68e+13 3.03e+14 2.30e+17

Random Trotter (2nd) O N2=ϵ3=2
� �

3.64e+09 3.00e+10 5.28e+11 3.89e+14 1.47e+10 1.21e+11 2.11e+12 1.57e+15

Taylorization O N2W=ϵ
� �

4.24e+09 2.59e+10 3.55e+11 2.34e+14 2.59e+09 1.86e+10 2.86e+11 2.04e+14

Qubitization (seq) O N2=ϵ
� �

1.17e+08 8.00e+08 1.21e+10 7.51e+12 8.47e+07 6.31e+08 9.97e+09 6.26e+12

Qubitization (product) O N2=ϵ
� �

9.38e+07 5.33e+08 6.85e+09 3.82e+12 5.57e+07 3.87e+08 5.71e+09 3.49e+12

Here, we denote the total qubit count by N, target energy accuracy by ϵ( = 0.01), andW ¼ logðN=ϵÞ= log logðN=ϵÞ as Taylorization order. Note that the post-Trotter methods, namely the Taylorization and
qubitization algorithms, consumeancillary qubits ofOðlogNÞ to block-encode the action ofHamiltonian simulation into truncatedHilbert space. This is comparable to those required by thequantumFourier
transformation that require ancillary qubits ofOðlogðN=ϵÞÞ. In practice, the newly proposedproduct-wise construction of the qubitization algorithmconsumes twice asmuch ancilla logical qubitswith nearly
halved T-count for the target models in this work (see Supplementary Note 5 for details).
The bold highlight indicates the algorithm with the least T-count.
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respectively) within plausible runtime. Furthermore, a significant difference
from ab initio quantum chemistry calculations is highlighted in the feasi-
bility of system size N ~ 1000 logical qubit simulations, especially in simu-
lation of 2d Heisenberg model that utilizes the parallelization technique for
the oracles (See Supplementary Note 8 for details).

For concreteness, let us focus on the simulation for systems with
lattice size of 10 × 10, where we find the quantum algorithm to out-
perform the classical one. Using the error scaling, we find that the
DMRG simulation is estimated to take about 105 and 109 seconds in 2d
Heisenberg and 2d Fermi-Hubbard models, respectively. On the other
hand, the estimation based on the dedicated quantum circuit compi-
lation with the most pessimistic equipment (denoted as “Single" in Fig.
6) achieves runtime below 105 seconds in both models. This is further
improves by an order when we assume a more abundant quantum
resource. Concretely, using a quantum computer with multiple magic
state factories (nF = 16) that performs multi-thread execution of the
qubitization algorithm (nTh = 16), the quantum advantage can be
achieved within a computational time frame of several hours.We find it
informative to also display the usual T-count-based estimation; it is
indeed reasonable to assume a clock rate of 1–10 kHz for single-thread
execution, while its precise value fluctuates depending on the problem
instance.

We note that the classical algorithm (DMRG) experiences an
exponential increase in the runtime to reach the desired total energy
accuracy ϵ = 0.01. This outcome is somewhat expected, since one must
enforce the MPS to represent 2d quantum correlations into 1d via
cylindrical boundary condition38,51. Meanwhile, the prefactor is sig-
nificantly lower than that of other tensor-network-based methods,
enabling its practical use in discussing the quantum-classical crossover.
For instance, although the formal scaling is exponentially better in var-
iational PEPS algorithm, the runtime in 2d J1-J2 Heisenberg model
exceeds 104 seconds already for the 6 × 6 model, while the DMRG algo-
rithm consumes only 102 seconds (See Fig. 6a). Even if we assume that the
bond dimension of PEPS can be kept constant for largerN, the crossover
between DMRG and variational PEPS occurs only above the size of
12 × 12. As we have discussed previously, we reasonably expect D ¼
OðlogðNÞÞ for simulation of fixed total accuracy, and furthermore expect
that the number of variational optimization also scales polynomially with
N. This implies that the scaling is much worse thanO(N); in fact, we have
used constant value of D for L = 4, 6, 8 and observe that the scaling is
already worse than cubic in our setup. Given such a scaling, we conclude
that DMRG is better suited than the variational PEPS for investigating
the quantum-classical crossover, and also that quantum algorithms with
quadratic scaling on N runs faster in the asymptotic limit.

Portfolio of crossover under various algorithmic/
hardware setups
It is informative tomodify thehardware/algorithmic requirements to explore
the variation of quantum-classical crosspoint. For instance, the code distance
of the surface code depends on p and ϵ as (See Supplementary Note 9)

d ¼ O
logðN=ϵÞ
logð1=pÞ

� �
: ð5Þ

Note that this also affects the number of physical qubits via the number of
physical qubit per logical qubit 2d2. We visualize the above relationship
explicitly in Fig. 7, which considers the near-crosspoint regime of 2d J1-J2
Heisenbergmodel and2dFermi-Hubbardmodel. It canbe seen fromFig. 7a,
b, d, e that the improvementof the error ratedirectly triggers the reductionof
the required code distance, which results in s significant suppression of the
number of physical qubits. This is even better captured by Fig. 7c, f. By
achieving a physical error rate of p = 10−4 or 10−5, for instance, one may
realize a 4-fold or 10-fold reduction of the number of physical qubits.

The logarithmic dependence for ϵ in Eq. (5) implies that the target
accuracy does not significantly affect the qubit counts; it is rather associated
with the runtime, since the total runtime scaling is given as

t ¼ O
N2 logðN=ϵÞ
ϵ logð1=pÞ

� �
; ð6Þ

which now shows polynomial dependence on ϵ. Note that this scaling is
based on multiplying a factor of d to the gate complexity, since we assumed
that the runtime is dominated by the magic state generation, of which the
time is proportional to the code distance d, rather than by the classical
postprocessing (see Supplementary Notes 8 and 9). As is highlighted in
Fig. 8, we observe that in the regime with higher ϵ, the computation is
completed within minutes. However, we do not regard such a regime as an
optimalfield for thequantumadvantage. The runtimeof classical algorithms
typically shows higher-power dependence on ϵ, denoted as O(1/ϵγ), with
γ ~ 2 for J1-J2Heisenbergmodel andγ ~ 4 for theFermi-Hubbardmodel (see
Supplementary Note 2), which both implies that classical algorithms are
likely to run even faster than quantum algorithms under large ϵ values. We
thus argue that the setup of ϵ = 0.01 provides a platform that is bothplausible
for the quantum algorithm and challenging by the classical algorithm.

Discussion
Our work has presented a detailed analysis of the quantum-classical
crossover in condensedmatter physics, specifically, pinpointing the juncture
where the initial applications of fault-tolerant quantum computers

Fig. 6 | Runtime-based quantum-classical crossover.Here we show the results for
(a) 2d J1-J2 Heisenberg model of J2/J1 = 0.5 and (b) 2d Fermi-Hubbard model of U/
t = 4. The blue and red circles are the runtime estimate for the quantum phase
estimation using the qubitization technique as a subroutine, whose analysis involves
quantum circuit compilation of all the steps (I), (II), and (III). All the gates are
compiled under the Clifford+T formalism with each logical qubits encoded by the
surface code with code distance d around 17 to 25 assuming physical error rate of
p = 10−3 (See Supplementary Note 9). Here, the number of magic state factories nF
and number of parallelization threads nth are taken as (nF, nth) = (1, 1) and (16, 16)

for “Single" and “Parallel," respectively. The dotted and dotted chain lines are
estimates that only involve the analysis of step (II); calculation is based solely on the
T-count of the algorithmwith realisticT-gate consumption rate of 1kHz and 1MHz,
respectively. The green stars and purple triangles are data obtained from the actual
simulation results of classical DMRG and variational PEPS algorithms, respectively,
with the shaded region denoting the potential room for improvement by using the
most advanced computational resource (See Supplementary Note 2). Note that the
system size is related with the lattice size M ×M as N = 2M2 in the Fermi-
Hubbard model.
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demonstrate advantages over classical algorithms. Unlike previous studies,
which primarily focused on exact simulation techniques to represent clas-
sical methods, we have proposed utilizing error scaling to estimate runtime
using one of themost powerful variational simulationmethod—theDMRG
algorithm. We have also scrutinized the execution times of quantum algo-
rithms, conducting a high-resolution analysis that takes into account the
topological restrictions on physical qubit connectivity, the parallelization of
Hamiltonian simulationoracles, amongother factors. This rigorous analysis
has led us to anticipate that the crossover point is expected to occur within
feasible runtime of a few hours when the system size N reaches about a
hundred. Our work serves as a reliable guiding principle for establishing
milestones across various platform of quantum technologies.

Various avenues for future exploration can be envisioned. We
would like to highlight primary directions here. Firstly, expanding the
scope of runtime analysis to encompass a wider variety of classical
methods is imperative. In this study, we concentrated on the DMRG
and variational PEPS algorithms due to their simplicity in runtime
analysis. However, other quantum many-body computation methods
such as quantum Monte Carlo (e.g. path-integral Monte Carlo, varia-
tional Monte Carlo etc.), coupled-cluster techniques, or other tensor-
network-based methods hold equal importance. In particular, devising
a systematic method to conduct estimates on Monte Carlo methods
shall be a nontrivial task.

Secondly, there is a pressing need to further refine quantum simulation
algorithms that are designed to extract physics beyond the eigenenergy, such
as the spacial/temporal correlation function, nonequilibrium phenomena,
finite temperature properties, among others. Undertaking error analysis on
these objective could prove to be highly rewarding.

Thirdly, it is important to survey the optimal method of state pre-
paration. While we have exclusively considered the ASP, there are

numerous options including theKrylov technique52, recursive applicationof
phase estimation53, and sparse-vector encoding technique54. Since the effi-
cacy of state preparation methods heavily relies on individual instances, it
would be crucial to elaborate on the resource estimation in order to discuss
quantum-classical crossover in other fields including high-energy physics,
nonequilibrium physics, and so on.

Fourthly, it is interesting to seek the possibility of reducing the number
of physical qubits by replacing the surface code with other quantum error-
correcting codes with a better encoding rate55. For instance, there have been
suggestions that the quantum LDPC codes may enable us to reduce the
number of physical qubits by a factor of tens to hundreds55. Meanwhile,
there are additional overheads in implementation and logical operations,
which may increase the runtime and problem sizes for demonstrating
quantum advantage.

Lastly, exploring the possibilities of a classical-quantum hybrid
approach is an intriguing direction. This could involve twirling of Solovey-
Kitaev errors into stochastic errors that can be eliminated by quantum error
mitigation techniques originally developed for near-future quantum com-
puters without error correction56,57.

Methods
Target models
Condensed matter physics deals with intricate interplay between micro-
scopic degrees of freedom such as spins and electrons, which, inmany cases,
form translationally symmetric structures. Our focus is on lattice systems
that not only reveal the complex and profound nature of quantum many-
body phenomena, but also await to be solved despite the existing intensive
studies (See Supplementary Note 1):
(1) Antiferromagnetic Heisenberg model. Paradigmatic quantum spin

models frequently involve frustration between interactions as source of

Fig. 7 | Requirements for logical and physical qubits by the phase estimation
algorithm based on the qubitization to achieve target accuracy ϵ with physical
error rate p.The panels denote (a) code distance d and (b) number of physical qubits
Nph required to simulate the ground state of 2d J1-J2 Heisenberg model with lattice
size of 10 × 10 with J2 = 0.5. Here, the qubit plane is assumed to be organized as
(nF, #thread) = (1, 1). The setup used in the maintext, ϵ = 0.01 and p = 10−3, is

indicated by the orange stars. c Focused plot at ϵ = 0.01. Blue and red points show the
results for code distance d andNph, respectively, where the filled and empty markers
correspond to floor plans with (nF, #thread) = (1, 1) and (16, 16), respectively. (d–f)
Plots for 2d Fermi-Hubbard model of lattice size 6 × 6 with U = 4, corresponding to
(a–c) for the Heisenberg model.
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complex quantum correlation. One highly complex example is the
spin-1/2 J1-J2 Heisenberg model on the square lattice, whose ground
state property has remained a persistent problem over decades:

H ¼ J1
X

hp;qi

X

α2fX;Y ;Zg
SαpS

α
q þ J2

X

hhp;qii

X

α2fX;Y ;Zg
SαpS

α
q ;

where 〈 ⋅ 〉 and 〈〈 ⋅ 〉〉 denote pairs of (next-)nearest-neighboring sites that
are coupled via Heisenberg interaction with amplitude J1(2), and Sαp is the α-
component of spin-1/2 operator on the p-th site. Due to the competition
between the J1 and J2 interaction, tje formation of any long-range order is
hindered at J2/J1 ~ 0.5, at which a quantum spin liquid phase is expected to
realize39,58,59. In the following we set J2 = 0.5 with J1 to be unity, and focus on
cylindrical boundary conditions.
(2) Fermi-Hubbard model. One of the most successful fermionic models

that captures the essence of electronic and magnetic behavior in
quantum materials is the Fermi-Hubbard model. Despite the concise
construction, it exhibits a varietyof features such as theunconventional
superfluidity/superconductivity, quantum magnetism, and
interaction-driven insulating phase (or Mott insulator)60. With this
in mind, we consider the following half-filled Hamiltonian:

H ¼ �t
X

hp;qi;σ
ðcyp;σcq;σ þ h.c. Þ þ U

X

p

cyp;"cp;"c
y
p;#cp;#;

where t = 1 is the hopping amplitude andU is the repulsive onsite potential
for annihilation (creation) operators cðyÞp;σ , defined for a fermion that resides
on site p with spin σ. Here the summation on the hopping is taken over all
pairs of nearest-neighboring sites 〈p, q〉. Note that one may further
introduce nontrivial chemical potential to explore cases that are not half-
filled, although we leave this for future work.

Data availability
All study data are included in this article and Supplementary Materials.
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