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Identification and prediction of Parkinson’s disease subtypes
and progression using machine learning in two cohorts
Anant Dadu1,2,3, Vipul Satone4, Rachneet Kaur 4, Sayed Hadi Hashemi1, Hampton Leonard2,3,5, Hirotaka Iwaki2,3,5,
Mary B. Makarious 5,6,7, Kimberley J. Billingsley5, Sara Bandres‐Ciga2,5, Lana J. Sargent2,8, Alastair J. Noyce 7,9, Ali Daneshmand10,
Cornelis Blauwendraat 2,5, Ken Marek11,12, Sonja W. Scholz 13,14, Andrew B. Singleton 2,5, Mike A. Nalls2,3,5, Roy H. Campbell 1 and
Faraz Faghri 2,3,5✉

The clinical manifestations of Parkinson’s disease (PD) are characterized by heterogeneity in age at onset, disease duration, rate of
progression, and the constellation of motor versus non-motor features. There is an unmet need for the characterization of distinct
disease subtypes as well as improved, individualized predictions of the disease course. We used unsupervised and supervised
machine learning methods on comprehensive, longitudinal clinical data from the Parkinson’s Disease Progression Marker Initiative
(n= 294 cases) to identify patient subtypes and to predict disease progression. The resulting models were validated in an
independent, clinically well-characterized cohort from the Parkinson’s Disease Biomarker Program (n= 263 cases). Our analysis
distinguished three distinct disease subtypes with highly predictable progression rates, corresponding to slow, moderate, and fast
disease progression. We achieved highly accurate projections of disease progression 5 years after initial diagnosis with an average
area under the curve (AUC) of 0.92 (95% CI: 0.95 ± 0.01) for the slower progressing group (PDvec1), 0.87 ± 0.03 for moderate
progressors, and 0.95 ± 0.02 for the fast-progressing group (PDvec3). We identified serum neurofilament light as a significant
indicator of fast disease progression among other key biomarkers of interest. We replicated these findings in an independent
cohort, released the analytical code, and developed models in an open science manner. Our data-driven study provides insights to
deconstruct PD heterogeneity. This approach could have immediate implications for clinical trials by improving the detection of
significant clinical outcomes. We anticipate that machine learning models will improve patient counseling, clinical trial design, and
ultimately individualized patient care.
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INTRODUCTION
Parkinson’s disease (PD) is a complex, age-related neurodegen-
erative disease that is defined by a combination of core diagnostic
features, including bradykinesia, rigidity, tremor, and postural
instability1,2. Substantial phenotypic heterogeneity is well recog-
nized within the disease, complicating the design and interpreta-
tion of clinical trials, and limiting patients’ counseling about their
prognosis. The clinical manifestations of PD vary by age at onset,
rate of progression, associated treatment complications, as well as
the occurrence and constellation of motor/nonmotor features.
The phenotypic heterogeneity that exists within the PD

population poses a major challenge for clinical care and clinical
trial design. A clinical trial has to be suitably powered to account
for interindividual variability, and as a consequence, trials are
either large, long, expensive, and/or only powered to see large
effects. This problem becomes particularly burdensome as we
move increasingly towards early stage trials when therapeutic
interventions are likely to be most effective. To that effect,
defining subcategories of PD and the ability to predict even a
proportion of the disease course has the potential to significantly

improve cohort selection, inform clinical trial design, reduce the
cost of clinical trials, and increase the ability of such trials to detect
treatment effects.
Attempts thus far at the characterization of disease subtypes

have followed a path of clinical observation based on age at onset
or categorization based on the most observable features3. Thus,
the disease is often separated into early-onset versus late-onset
disease, slowly-progressing “benign” versus fast-progressing
“malignant” subtypes, PD with or without dementia, or based on
the most prominent clinical signs into a tremor-dominant versus a
postural instability with gait disorder subtype4,5. This dichotomous
separation, while intuitive, does not faithfully represent the clinical
features of the disease, which are quantitative, complex, and
interrelated. A more realistic representation of the disease and
disease course requires a transition to a data-driven, multi-
dimensional schema that encapsulates the constellation of
interrelated features and allows tracking (and ultimately predict-
ing) change6,7.
Previous studies used cluster analysis, a data-driven approach,

to define two to three clinical PD subtypes8–13. Depth of
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phenotypic information and longitudinal assessments in these
studies were variable and often limited to certain clinical features
and short-term follow-ups. Moreover, many previous studies were
limited by insufficient methods to capture longitudinal changes
over multiple assessment visits. To this date, none of the previous
approaches to PD clustering were replicated in an independent
cohort with transparent code and analysis.
We have previously used multi-modal data to produce a highly

accurate disease status classification and to distinguish PD-mimic
syndromes from PD14. These efforts demonstrated the utility of
data-driven approaches in the dissection of complex traits and
have also led us to the next logical step in disease prediction:
supplementing the prediction of whether a person has or will
have PD also to include a prediction of the timing and
directionality of the course of their disease.
Here, we describe our work on delineating and predicting the

clinical progression of PD and for a workflow of the analysis,
please refer to Fig. 1. The first stage of this effort requires creating
a multi-dimensional space that captures the disease’s features
and the progression rate of these features (i.e., velocity). Rather
than creating a space based on a priori concepts of differential
symptoms, we used data dimensionality reduction methods on
the complex clinical features observed 60 months after initial
diagnosis to create a meaningful spatial representation of each
patient’s status at this time point. After creating this space, we
used unsupervised clustering to determine whether there were
clear subtypes of disease within this space. This effort identified
three distinct clinical subtypes corresponding to three groups of
patients progressing at varying velocities (i.e., slow, moderate,
and fast progressors). These subtypes were validated and
replicated in an independent cohort. Following the successful
creation of disease subtypes within a progression space, we
created a baseline predictor that accurately predicted an
individual patient’s clinical group membership 5 years later.
Further, we examined the predictive capability of biospecimen
biomarkers at baseline and the genetic information in identifying
the subtypes. Our work highlights the utility of machine learning
as an ancillary diagnostic tool to identify disease subtypes and
project individualized progression rates based on model
predictions.

RESULTS
Clustering vectors of progression
Figure 2 shows the result of the mathematical projection of PD
progression, called Parkinson’s disease progression space detailing
normalized progression trajectories of each sample relative to
others based on this unsupervised classification system. This space
shows the relative progression velocity of each patient in
60months (i.e., speed and direction). The progression velocity
level is divided into three main dimensions: motor, cognitive, and
sleep-related disturbances. Movement disorders specialists
audited component features to categorize these clinical measures
into domains of sleep, motor, and cognition disturbance after
identification by the algorithm. Based on latent variables clustered
within the Parkinson’s progression space, the projected motor
dimension was responsible for 63.58% of the explained variance,
followed by the sleep dimension (21.81%), and cognitive
dimension (14.61%). Motor symptoms are the hallmark of PD
progression, with sleep and cognitive decline being, in some
cases, elevated past that decline seen in controlled aging. The
projected motor dimension significantly contributes towards PD
progression; however, sleep and cognition are essential, account-
ing for 37% variation. Across these trajectories, the unsupervised
learning analysis reveals and classifies patients into three main
subtypes of PD, relating to rates of disease progression: slow
progressors (PDvec1), moderate progressors (PDvec2), and fast
progressors (PDvec3). This shows how we can map the clinical
features and progression velocity from the point of diagnosis. The
components of the motor, cognitive, and sleep dimensions with a
description of the latent space used to define the progression
space that may aid in interpretability are shown in Supplementary
Fig. 1 (see Supplementary Material for details).

Identified Subtypes and their Clinical Characteristics
Figure 3 shows the visualization of unsupervised learning via
Gaussian Mixture Model (GMM) in a two-dimension progression
space. In two-dimensional progression space, the projected
dimensions represent motor (y-axis) and cognitive (combined
with sleep) (x-axis) components. Projected dimensions are
normalized; the increase in values along either direction signifies
a higher decline. GMM fits the data into different subtypes relating
to velocity of decline across symptomatologies from non-PD

Fig. 1 Workflow of analysis and model development. PPMI Parkinson’s Progression Marker Initiative, PDBP Parkinson’s Disease Biomarkers
Program, BL Baseline, Y1 Year1, Y2 Year2, Y3 Year3, Y4 Year4, Y5 Year5, AUC Area under receiver operating characteristic curve.
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controls. The Bayesian information criterion has identified three
Gaussian distributions representing three PD subtypes. Further,
mean values of PD subtypes in lower dimensional progression
space are significantly different along both Motor dimension
(PDvec1= 0.43 [95%CI: 0.41–0.44], PDvec2= 0.64 [95%CI:
0.62–0.65], PDvec3= 0.89 [95%CI: 0.85–0.92)] and Cognitive/Sleep
dimensions (PDvec1= 0.40 [95%CI: 0.39–0.42], PDvec2= 0.57
[95%CI: 0.56–0.59], PDvec3= 0.71 [95%CI: 0.68–0.75]) all with
non-overlapping CIs across groups. These three groups identified
algorithmically within the case population change over time
differently within the progression space and across specific
biomarkers of progression, with PDvec3 generally progressing at
a much steeper slope (Supplementary Figs. 2, 3, 4, 5). Details of
this can be seen in the Supplementary Material section describing
the Five-Year PD Progression Space. Using our proposed
approach, 45% (134/294) of PD patients identified as PDvec1
(slow progressors), with 39% (114/294) belonging to PDvec2
(medium progressors) and PDvec3 (fast progressors) accounts for
16% (46/294) patients.

Biological characteristics of the identified subtypes
Figure 4 shows the variation of biological biomarkers for each PD
subtype over time. In terms of patients’ features, height and

weight show a significant decline over time for the fast
progressors (PDvec3) compared to other subtypes. We used a
linear mixed effects model for association testing of PD subtypes
and serum neurofilament light (Nfl) measurements. PDvec3 has a
significantly steeper slope across time than PDvec1 after adjusting
for sex, height, weight, and age at baseline (P < 0.005). More
details are described in the Association testing of Nfl with PD
subtypes section of Supplementary Material and Supplementary
Table 1. PD patients have lower values compared to healthy
controls for all CSF sample measurements such as alpha‐synuclein,
total tau protein, Aβ42, and p-Tau181.

Genetic analysis of the identified subtypes
In terms of the genetic association of PDs identified subtypes,
genetic risk scores (GRS) were calculated15–17. As a one-time
measurement, the GRS was not included during the longitudinal
clustering exercise; however, we analyzed regressions comparing
associations between the GRS and either the continuous predicted
cluster membership probability (linear regression) or the binary
membership in a particular cluster group compared to the others.
All models were adjusted for age at onset, biological sex, and
principal components as covariates to adjust for population
substructure in PPMI. The GRS was significantly associated with

Fig. 2 Different views of the Parkinson’s disease progression space in 5 years with three corresponding projected dimensions (cognitive,
motor, and sleep dimensions) on a normalized scale. Subtypes of PD are identified using unsupervised learning (PDvec1, PDvec2, and
PDvec3). a Shows the view of all three dimensions, b view of the motor and cognitive dimensions, c view of motor and sleep dimensions, and
d view of sleep and motor dimensions.
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decreasing magnitude of the sleep vector per Standard deviation
(SD) of increase in the GRS (beta=−0.029, se= 0.010, p= 0.002,
adjusted r2= 0.046). For binary models of membership, we see
that the GRS is weakly but significantly associated with a
decreased risk of membership in PDvec3 (odds ratio= 0.563 per
1 SD increase from case GRS mean, beta=−0.574, se= 0.244,
P= 0.018) and increased risk of membership in PDvec1 (odds
ratio= 1.341, beta= 0.293, se= 0.134, P= 0.0282) all relative to
the moderate progressing group as a reference. The lack of a
strong genetic association is due to the small sample size, and that
genetic variants relating to risk do not necessarily affect
progression.

Replication in an independent cohort
In order to ensure the generalizability and validity of the results,
we replicated the subtype identification in an independent PDBP
cohort. Details on differences between the training (PPMI) and
replication (PDBP) cohorts can be found in the appropriately
named Supplementary Material section. In the PDBP cohort, 46%
(121/263) of PD patients were identified as PDvec1, 23% (60/263)
belonged to PDvec2, and the remaining 31% (82/263) were
classified into the PDvec3 group. We observed less manifested
separation of PDvec2 (medium progressors) in the PDBP cohort. In
the progression space, the spatial differences between subtypes
become more apparent with increased longitudinal data. The
reason can be attributed to the fact that the PDBP cohort has
3 years of longitudinal data compared to 5-year data in the PPMI
cohort.
Figure 5 shows the identified subtypes in the independent

PDBP cohort using the model developed on the PPMI dataset. We
see that the identified subtypes in the PDBP cohort are similar to
the ones in the PPMI dataset in terms of progression. Due to the
limited length of the PDBP study (36 months), the visualization of
progression space is shown through the 36months follow-up
from the baseline. The PPMI and PDPB cohorts are clinically
different cohorts and recruited from different populations. The
replication of our results in the PDBP cohort that was recruited
with a different protocol shows the strength of our study’s

methodology. We demonstrate that if we ascertain the same
phenotypes using standardized scales, we can reliably discern the
same subtypes and progression rates. This suggests that our
results may be generalizable and the clinical subtypes
reproducible.

Supervised early subtype prediction
Following the data-driven organization of subjects into progres-
sion subtypes and clustering them into three subtypes, we
developed three models to predict patient progression class after
60months based on varying input factors: (a) from baseline
clinical factors, (b) from baseline and year one clinical factor, (c)
biological and genetics measurements. Figure 6a and Fig. 6b show
the ROC (Receiver Operating Characteristic) curves of our multi-
class supervised learning predictors. We correctly distinguish
patients with PD based on baseline only input factors and predict
their 60-month prognosis with an average AUC of 0.92 (95% CI:
0.94 ± 0.01 for PDvec1, 0.86 ± 0.01 for PDvec2, and 0.95 ± 0.02 for
PDvec3) at cross-validation. The predictor built on baseline and
year 1 data performs even better with an average AUC of 0.953
(95% CI: 0.97 ± 0.01 for PDvec1, 0.91 ± 0.02 for PDvec2, and
0.97 ± 0.01 for PDvec3) also at cross-validation. In Fig. 6d, we have
shown the PD subtype predictive performance at baseline, only
using baseline data, and years after, as more data becomes
available and combined with the baseline. The increased accuracy
trend is due to the availability of more information about a
subject. This approach is also practical in a clinical setting, as
physicians will provide a better prognosis for patients after a one-
year follow-up. Out of identified top-20 features, 11 belong to the
motor dimension, 5 are from the sleep dimension and 4 are a part
of cognitive dimension, which is in line with the amount of
variability explained by each dimension (Supplementary Tables 2,
3, 4). Further details on feature importance contributing to the
accuracy of these models can be found in the Supplementary
Material section entitled Feature Importance and Supplementary
Figs. 6, 7, 8.
Besides the cross-validation of predictive models in the PPMI

cohort, we have also validated the accuracy of the predictive
model in the independent PDBP cohort. The predictive model
trained on the PPMI baseline data correctly distinguished PDBP
patients with an AUC of 0.84 (ROC curves in Fig. 6c). The replicated
predictive model performs very well for PDvec1 and PDvec3 (AUC
of 0.91 and 0.88, respectively). However, due to the small sample
size, the predictive model does not predict as well on PDvec2
(AUC of 0.73). Fewer samples make up the PDvec2 cluster in the
replication cohort, and it has been easier for the predictive model
to predict the more extreme subtypes (i.e., PDvec1 and PDvec3).
Despite the smaller sample size of the PDBP cohort, the results
strongly validate our previous observations of distinct, computa-
tionally discernible subtypes within the PD population. This
finding indicates that our methodology is robust, and our unique
progression analysis and clustering approach result in the same
clusters. In summary, we have mined data to identify three
clinically related constellations of symptoms naturally occurring
within our longitudinal data that summarize PD progression
(63.58%, 21.81%, 14.61% variance loadings) comprised of factors
relating to motor, sleep, and cognitive.

Biomarker based prediction
The performance of PD progression prediction models using
biomarkers and genetic measurements for the PPMI cohort is
shown in Fig. 7 and Fig. 8. Additional notes on model
interpretation as well as how the models deal with participants
in the study that have changed diagnoses over time can be found
in the Supplementary Material in the appropriately named
sections and Supplementary Fig. 9.

Fig. 3 PD five-year progression space. Visualization of unsuper-
vised learning via GMM on two-dimensional progression space and
identification of three Gaussian distributions representing three
distinct PD subtypes. An increase in value along either direction
reflects the increase in the disturbance on a normalized scale.
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Fig. 4 Shows the biological biomarker variation of each PD subtype over time. The graphs demonstrate the actual clinical values of each
subtype overtime for vital signs (DIASTND standing diastolic blood pressure (BP), DIASUP supine diastolic BP, HRSTND standing heart rate,
HRSUP supine heart rate, SYSSTND standing systolic BP, SYSSUP supine systolic BP, HTCM height in cm, TEMPC: temperature in C, WGTKG
weight in kg), cerebrospinal fluid (abeta_42 β-amyloid 1–42, alpha_syn alpha-synuclein, p_tau181p phospho-tau181, total_tau total tau
protein), and serum neurofilament light levels (serum_nfl). BL: Baseline. V04 visit number 4 after 12months. V06: visit number 6 after
24months. V08 visit number 8 after 36months. V10 visit number 10 after 48months. V12 visit number 12 after 60 months. In all panels, data is
presented as mean ± s.e.m.
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A trained machine learning model using only UPDRS can
predict subtypes with a 0.77 AUC score (Fig. 7b) compared to 0.92
with the model that uses all symptomatic clinical measures at
baseline on five-fold cross-validation. It demonstrates the utility of
machine learning models in integrating features from multiple
dimensions to provide an optimal classification performance.
Biomarkers, such as age, height, weight, and CSF measurements,
are shown to be essential features in predicting the subtypes at
baseline (shown in Fig. 8). The mean AUC score is 0.67 (Fig. 7e)
using biospecimen, vital signs, and demographics. In comparison,
genetic features show slightly lower performance (AUC score 0.66,
Fig. 7d). A combination of demographics, biospecimen, vital signs,
genetics, and UPDRS is the best performing model (AUC score
0.80, Fig. 7a). It is important to note that segregating PDvec3 (fast
progressive subtype) has shown similar performance with only the
UPDRS model and that model that includes other biomarkers and
genetic measurement. It might be valuable to evaluate the UPDRS
model’s performance in a clinical setting, as UPDRS is a standard
measure of PD diagnosis and disease severity. Further, the
individual components (clinical questionnaire responses) of
UPDRS are crucial, and machine learning models exploit and
utilize their complex interaction to form a composite score of PD
subtypes prediction. A simple aggregation (average) of UPDRS

individual responses might not have similar subtype prediction
power. Based on the ease of availability in real-world clinical
settings, we suggest combining UPDRS, genetics, biomarkers, and
demographics as a subtype diagnostic model, which has a 0.80
AUC score (Fig. 7a). Further validation of the model is necessary to
improve generalizability in other cohorts to make it an application
for clinicians.

DISCUSSION
Prediction of disease and disease course is a critical challenge in
the patient counseling, care, treatment, and research of complex
heterogeneous diseases. Within PD, meeting this challenge would
allow appropriate planning for patients and symptom-specific care
(for example mitigating the chance of falls, identifying patients at
high risk for cognitive decline or rapid progression, etc.). Perhaps
even more importantly at this time, prediction tools would
facilitate more efficient execution of clinical trials. With models
predicting a patient-specific disease course, clinical trials could be
shorter, smaller, and would be more likely to detect smaller
effects, thus, decreasing the cost of phase 3 trials dramatically and
essentially reducing the exposure of pharmaceutical companies to
a typically expensive and failure-prone area.

Fig. 5 Shows the identified subtypes in the independent PDBP cohort using the model developed on the PPMI dataset. Similar PDBP and
PPMI subtypes in terms of progression. a Shows the view of all three dimensions, b view of the motor and cognitive dimensions, c view of
motor and sleep dimensions, and d view of sleep and cognitive dimensions. The normalized progression space is shown through the
36months follow up from baseline for both PPMI and PDBP datasets.
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We previously had considerable success in constructing,
validating, and replicating a model that allows a data-driven
diagnosis of PD and the differentiation of PD-mimic disorders,
such as those patients who have parkinsonism without evidence
of dopaminergic dysfunction14. We set out to expand this work by
attempting to use a novel approach to (1) define natural subtypes
of the disease, (2) attempt to predict these subtypes at baseline,
and (3) identify progression rates within each subtype and project
progression velocity.
While the work here represents a step forward in our efforts to

sub-categorize and predict PD, much more needs to be done. The
application of data-driven efforts to complex problems such as
this is encouraging; however, the primary limitation of such
approaches is that they require large datasets to facilitate model
construction, validation, and replication. These datasets should
include standardized phenotype collection and recording to
achieve the most powerful predictions. Longer follow-ups, more
ancestral diversity in samples, and large sample series are crucial
to broadening the applicability of this work. Collecting such data is
a challenge in PD, with relatively few cohorts available with deep,
wide, well-curated data. Thus, a critical need is the expansion or
replication of efforts such as PPMI or PDBP, importantly with a
model that allows unfettered access to the associated data; the
cost associated with this type of data collection is large, but these
are an essential resource in our efforts in PD research. Global

Parkinson’s Genetics Program (GP2) project has the potential to
address some of these limitations in the future (https://gp2.org/).
A study used cluster analysis to identify patient subtypes and

their corresponding progression rates10, although these used
percentile cutoffs and are not completely data-driven in nature.
However, this study evaluated clusters according to only two-time
points, baseline, and short-term follow-up, that were aggregated
into a Global Composite Outcome score. In return, the subtypes
did not capture the fluctuations in the prognosis of subtypes.
More recently, a study used a Long-Short Term Memory-based
deep learning algorithm to discover PD subtypes, with each
subtype showing different progression rate18. The loss of
interpretability with deep learning models makes their approach
less suitable for practical purposes. Another study proposed a
trajectory-based clustering algorithm to create patient clusters
based on trajectory similarity19. The algorithm gives equal
importance to all the features; however, PD is a multi-
dimensional spectrum of symptoms with overlapping features
derived from simultaneous pathological processes20. Finally, in
order to be used in practice, subtyping solutions need to be
replicated in a different cohort to show the reliability of methods
in assigning individual patients to a subtype. Additionally, none of
these previous studies used completely independent
replication data.
Our findings can also have implications for the day-to-day

practice of clinicians. Movement disorders specialists often use

Fig. 6 Shows the performance of Parkinson’s disease progression prediction models. a The ROC (receiver operating characteristic) for the
predictive model at baseline developed on the PPMI cohort evaluated using five-fold cross-validation. b The ROC for the predictive model
developed on the baseline, and first-year data of the PPMI cohort evaluated using five-fold cross-validation. c The ROC for the predictive
model developed on the PPMI baseline and tested on the PDBP cohort. d Performance of predictive models using data starting from baseline,
only using baseline data, and years after, as more data becomes available and combined with the baseline. The y-axis shows the average AUC
score across PD subtypes in the PPMI dataset. e Contribution of important features to achieve high accuracy. By including only 20 features, we
can achieve an AUC of greater than 0.90. In all panels, data is presented as mean ± s.e.m.
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screening tools such as MDS-UPDRS to assess a patient’s
progression and response to treatment. However, performing
these clinical assessments requires experience, expertize, and
time, which hinders its widespread use by other clinicians (and
even neurologists who are not trained in movement disorders).
Underutilization of clinical assessment tools can lead to the
suboptimal characterization of PD patients and their clinical
course, which in turn impacts their care. Our study is one of the
first of its kind which systematically assessed the accuracy of each
feature of MDS-UPDRS in predicting PD’s course. For example,
daytime sleepiness (NP1SLPD) was found to have the highest
importance in clinical progression, followed by doing hobbies and
activities (NP2HOBB), dressing (NP2DRES), and urinary problems
(NP1URIN). Knowing the clinical features with the highest yield in
course prediction can help clinicians to tailor their assessment and
better inform patients about their disease course. In addition,
shortened versions of comprehensive assessment tools can be
utilized to address specific clinical questions. Surprisingly, none of
the genetic markers studied had high accuracy in clinical course
prediction. Our work initiates multiple questions that are worth
exploring in the future. The progression space seems to stabilize
after 3 years from the baseline. It will be interesting to predict how
much time (from baseline) is required to provide reliable
predictions about the PD subtypes. Secondly, fast progressors
do not worsen with the multiple symptoms such as Epworth and
MDS-UPDRS scores (Supplementary Fig. 5) from the fourth to the
5th year, while other subtypes do. It raises the question of whether
the fast progressors reach the saturation point after some time
from baseline. It will be useful if we can look for similar patterns in
other PD datasets. Incorporating imaging data for PD subtypes is
also an exciting direction to pursue in the future. Finally, dramatic
increases in Nfl and high baseline levels of Nfl could be an
indicator of potential rapid progression.

In this study, we addressed the complexities of PD. We
integrated unlabeled, multimodal, and longitudinal data. The
longitudinal data had a long-term nature, and we were interested
in capturing the overall pattern of the individual’s trajectories.
Vectorization and NMF methods were the most successful
approaches for extracting long-term trajectories. Using compre-
hensive multi-modal data helped us to develop an embedded
space. This space was crucial for understanding the trajectories
and dimensions in which the individuals traverse. Having this
easily interpretable space, we were able to use a GMM
unsupervised learning approach to identify new subtypes of the
disorder based on disease progression. We also provided an in-
depth analysis of these subtypes. Furthermore, we developed
predictive models for early diagnosis, prognosis, and clinical trial
stratification.
This work provides data-driven subtypes in distinct progression

stages of PD and discusses an approach to predict the future rate
of progression years from baseline using longitudinal clinical data.
Predicting disease progression is a paramount challenge in
treating and curing several complex diseases. This study is a step
forward toward designing sophisticated machine-learning para-
digms to facilitate the early diagnosis of PD progression and
longitudinal biomarker discovery such as our finding of elevated
Nfl in fast progressors (both at baseline and with regard to the rate
of change per year). Predicting PD progression rates would lead to
better patient-specific attention by recognizing the patients with a
swift rate of progression at an early stage. The proposed disease
progression and trajectory prediction algorithms can help
healthcare providers to develop a methodical and organized
course for clinical tests, which can be much more concise and
effective in detection. These adaptations and modifications in
clinics may help to diminish treatment and therapy costs for PD.
Further, the capability to anticipate the trajectory of impending PD
progression at the early stages of the disease is an advancement

Fig. 7 Shows the performance of Parkinson’s disease progression prediction models using biomarkers and genetic measurements for the
PPMI cohort. All models are evaluated using five-fold cross-validation. From top left to bottom right: a The ROC for the predictive model using
a combination of demographics (education, year, sex, race), biospecimen (cerebrospinal fluid, serum Nfl levels), genetics (hg genotype), vital
signs (weight, height, blood pressure) and UPDRS measurements. b The ROC for the predictive model developed on UPDRS scores. c The ROC
for the predictive model developed using demographics, genetics, vital signs, and biospecimen measurements. d The ROC for the predictive
model developed on genetic measurements e The ROC for the predictive model uses only demographics, vital signs, and biospecimen
measurements. In all panels, data is presented as mean ± s.e.m.
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toward uncovering novel treatments for PD modification. The
proposed analysis provides insights to inhibit or decelerate the
progression of PD-related symptoms and subsequent deteriora-
tion in the characteristics of life that are accompanied by the
disease.

METHODS
Study design and participants
This study included clinical data from the Parkinson’s Progression
Marker Initiative (PPMI, http://www.ppmi-info.org/) and the
Parkinson’s Disease Biomarkers Program (PDBP, https://
pdbp.ninds.nih.gov/). Both cohort’s data went through triage for
missing data, 60-month assessment (36-month in PDBP), and
comprehensive phenotype collection. Only data from participants
with 60 months of follow-up for PPMI and 36months for PDBP
were included in the study. Overall, in the PPMI (n= 294 PD cases
including 99 (34%) female; 154 controls including 58 (38%)
female), and in the PDBP (n= 263 PD cases including 112 (43%)
female; 115 controls including 64 (56%) female) passed the triage.
The PPMI average age at the screening of PD cases was
61 ± 9.7 years and 60.3 ± 11 years for controls. The PDBP average
age of PD cases was 64.3 ± 8.6 years and 63.6 ± 9.5 years for
controls. The PPMI data also included 28 patients with other
enrollments (10 PRODROMA; 8 GENPD; 6 GENUN; 3 SWEDD; 1
REGPD), which were excluded. The PPMI and PDBP cohorts consist
of observational data from comprehensively characterized PD
patients and matched controls. All PD patients fulfilled the UK
Brain Bank Criteria21. PD subjects enrolled in PPMI were drug naïve
(i.e., not much treated with dopaminergic medications) for at least
2–3 years after enrollment. Being drug naïve is beneficial as we
propose to build a disease progression tool for PD subtypes
during early stages without complications from pharmacological
interventions. Control subjects had no clinical signs suggestive of
parkinsonism, no evidence of cognitive impairment, and no first-
degree relative diagnosed with PD. Age and MDS-UPDRS Part III
(objective motor symptom examination by a trained neurologist)
distribution of cohorts at baseline were investigated using Kernel
Density Estimation (KDE) to show that these independent cohorts
are identically distributed and ensure the integrity of replication
and validation (Supplementary Fig. 10, Supplementary Table 5).
Each contributing study abided by the institutional review boards’
ethics guidelines. All participants gave informed consent for
inclusion in their initial cohorts and subsequent studies. Figure 1
provides an overview of the analyses and study design.

Dataset construction
The discovery and replication cohorts include visit data collected
every 12months starting from baseline to 60 months (36 months
for PDBP) follow-up. In PPMI, visits at the 6 and 9-month time
points from baseline were excluded in our analysis due to the high
data missingness rate (>50%).
For each cohort, a comprehensive and shared set of long-

itudinally collected common clinical data elements were selected
for analysis. Overall, 122 clinical features were available across six
visits for PPMI (Supplementary Table 6) and 120 features across
four visits for PDBP. We used the following features for the
subtype identification stage:

(i) International Parkinson’s disease and Movement Disorder
Society Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS) Part I, Part II, and Part III22

(ii) Cranial Nerve Examination (CN I-XII)
(iii) Montreal Cognitive Assessment23

(iv) Hopkins Verbal Learning Test24

(v) Semantic Fluency test25

(vi) WAIS-III Letter-Number Sequencing Test26

(vii) Judgment of Line Orientation Test27

(viii) Symbol Digit Modalities Test28

(ix) SCOPA-AUT29

(x) State-Trait Anxiety Inventory for Adults30

(xi) Geriatric Depression Scale31

(xii) Questionnaire for Impulsive-Compulsive Disorders in Par-
kinson’s Disease32

(xiii) REM-Sleep Behavior Disorder Screening Questionnaire33

(xiv) Epworth Sleepiness Scale34.

In addition to these clinical measurements, biological and
genetic-based features were included in the baseline subtype
interpretation and the subtype prediction. These additional
features include genotypes using imputed Illumina NeuroX array,
vital signs, serum, CSF, and urine measurements. For genotyping
data, we used the variants mapped to human genome build 38
(hg38) genotyping from unrelated European ancestry imputed
genotype data passing standard QC metrics used to construct the
genetic risk score (GRS)15–17. The values indicate the number of
copies of the minor allele of each variant for each subject. We
used these values as categorical features. Patient characteristics
include height, weight, blood pressure, and demographic details.
For biological biomarkers, we assessed alpha‐synuclein, total tau
protein, β-amyloid 1–42 (Aβ42), phospho-tau181 (p-Tau181) in
CSF, serum neurofilament light (NfL), and urine levels of di-22:6-bis
(monoacylglycerol) phosphate total in the urine. We studied the
longitudinal variation of biomarkers and patients’ characteristics

Fig. 8 Heatmap plot showing significant contributing clinical parameters (refer to Supplementary Table 6 for feature description) based
on demographics, vital signs, baseline biospecimen, baseline MDS-UPDRS scores, and genetic measurements. The importance score of
each feature is relative. BL baseline, HTCM height in cm, serum_nfl serum neurofilament light levels, age_at_screeing Age at screening,
DIASTND standing diastolic blood pressure (BP), urine_totaldi urine levels of di-22:6-bis (monoacylglycerol) phosphate, WGTKG weight in kg,
SYSSUP supine systolic BP, csf_abeta_42 cerebrospinal fluid β-amyloid 1–42, KIDSNUM number of kids, dna_grs genetic risk score.
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measurements across the identified PD subtypes. Furthermore, we
investigated the biological measurements’ role in discriminating
PD subtypes.

Procedures and statistical analysis
The data analysis pipeline for this work was performed in Python
(version 3.8) with the support of several open-source libraries
(NumPy, pandas, matplotlib, seaborn, plotly, scikit-learn, UMAP,
XGBoost, LightGBM, H2O, streamlit). To facilitate replication and
expansion of our work, we have made the notebook publicly
available on GitHub at https://github.com/anant-dadu/
PDProgressionSubtypes. The code is part of the supplemental
information; it includes the rendered Jupyter notebook with full
step-by-step data preprocessing, statistical, and machine learning
analysis. For readability, machine learning parameters have been
described in the Python Jupyter notebook and not in the text of
the paper. Our results are available on an interactive web browser
(https://anant-dadu-pdprogressionsubtypes-streamlit-app-
aaah95.streamlitapp.com/), which allows users to browse the PD
progression space. In addition, the browser also includes
predictive model interpretations allowing readers to explore
feature contributions to model performance. For the streamlit
website, we designed a surrogate XGBoost classification model for
subtype prediction, which uses a single split with 70% training and
30% test data. The reported subtype classification performance in
the manuscript is based on a more stringent nested loop
procedure.

Data preprocessing
As the clinical features have varying directionalities, features were
transformed to ensure the highest values uniformly represent the
worst outcome while the lower value corresponds to greater
health. To identify the features not following this pattern, we
conducted a two-sample one-tailed t-test (null hypothesis:
µ_HC >= µ_PD) with cases versus controls as two samples. We
transformed those features that showed a p-value of less than 0.05
(5% significance test). We further verified the transformations by
manually reviewing the distribution of each feature. We
performed feature clipping to minimize the influence of extreme
outliers in the data. We limited all the features values between the
range given by the second and 98th percentiles.
Only a few features had residual missingness that was

distributed randomly across the patients at a rate of <5%. For
these features, we performed data imputation using linear
interpolation longitudinally (i.e., across visits) for each feature.
Then, we transformed the dataset into a mathematically mean-
ingful and naturally interpretable format. To achieve this objective,
we (a) vectorized and (b) normalized all longitudinal data.
Specifically, we first vectorized by transforming all observations
of a particular parameter in a column vector, then appended all
parameters together. We then used the min-max method to
normalize the data.

Non-negative matrix factorization
Mathematically, NMF factorizes (deconstructs) the data into two
matrices. Given a non-negative matrix X 2 Rm ´ n, a non-negative
decomposition of the matrix X is a pair of non-negative matrices
U 2 Rm ´ p and V 2 Rp ´ n such that X ¼ UV . A large number of
patient parameters are aggregated in a model that represents the
underlying progression concept. In this particular use case of NMF,
the matrix U contains the progression space latent vectors, and
the second matrix V contains progression stand indicators
corresponding to the latent vectors. Latent variables link
observation data in the real world to symbolic data in the
modeled world. By further looking into the matrix with progres-
sion space’s latent vectors, we can identify the mapping and,

consequently, the implications (symbolic dimensions of the
modeled progression space).

Latent space adjustment
The progression of space latent vectors (matrix U) learned by NMF
shows some weight sharing among the projected dimensions.
This weight sharing can be attributed to the presence of
correlation in the data between symptomatologies. To represent
the progression space so that each progression indicator shows
progression velocity for each symptom, we need to adjust the
progression space. We performed transformation on NMF learned
progression space by taking the weighted sum of the progression
indicators. These weights represent the contribution of each
dimension for distinct symptomatology.
isymptom s

new ¼ Σd csymptom s
dimension d � idimension d

old .
Here, csymptom type

dimension ðkÞ denotes the contribution of dimen-
sion k for features belonging to symptom s, idimension d

old is the
latent indicator learned by NMF, and isymptom s

new is the new
indicator after the adjustment. The component contribution is
calculated using the learned U matrix.
Through our use of NMF, we identified progressive features

based on motor, cognitive, and sleep-based disturbances. Follow-
ing this, unsupervised learning via Gaussian Mixture Models
(GMM)35 allowed the data to naturally self-organize into different
groups relating to velocity of decline across these three
categories, from non-PD controls representing normal aging to
PD subtypes. GMM is a variant of mixture models, compared to
other methods, the parametrization of a GMM allows it to
efficiently capture products of variations in natural phenomena
where the data is assumed generated from an independent and
identically distributed (i.i.d.) mixture of Gaussian (normal) distribu-
tions. The assumption of normal distribution (and therefore, the
use of GMM) is often used for population-based cohort
phenomenon (Prentice 1986). We use the Bayesian Information
Criterion (BIC) to select the number of PD clusters (subtypes)36.
The BIC method recovers the true number of components in the
asymptotic regime (i.e., much data is available, and we assume
that the data was generated i.i.d. from a mixture of Gaussian
distributions). To replicate the subtype identification, we applied
the GMM model developed in the PPMI data to an independent
cohort with varying recruitment strategy and design: the PDBP
cohort.

Unsupervised subtype identification
We used dimensionality reduction techniques to develop an
interpretable representation of high modality longitudinal data.
Dimensionality reduction techniques helped us to build the
“progression space” where we can approximate each patient’s
position relative to both controls and other cases after the 60-
month period in one-year intervals. We used the Non-negative
Matrix Factorization (NMF) technique to achieve this aim37,38.
Alternative methods, such as principal component analysis and
independent component analysis, did not perform as well as NMF
on longitudinal clinical data due to the non-negative nature of our
clinical tests. This process essentially collapses mathematically
related parameters into the same multi-dimensional space,
mapping similar data points close together.

Supervised early subtype prediction
After identifying progression classes using unsupervised learning,
we built predictive models utilizing multiple supervised machine
learning methods, including the ensemble learning approach. This
method combines multiple learning algorithms to generate a
better predictive model than could be obtained using a single
learning algorithm39. To do this, we used stacking ensembles of
three supervised machine learning algorithms (Random forest40,
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LightGBM41, and XGBoost42) to predict PD clinical subtypes using
the data obtained at the time a neurologist first reviewed the
patient as the input (combining baseline and varied time points).
This approach outperformed other methods in preliminary testing,
such as support vector machines (SVM) and simple lasso-
regression models. Besides the predictive performance, we chose
an ensemble approach due to the nature of our data and problem:
(i) decision trees are intrinsically suited for multiclass problems,
while SVM is intrinsically two-class, (ii) they work well with a
mixture of numerical, categorical, and various scale features, (iii)
they can be used to rank the importance of variables in a
classification problem and in a natural way which helps the
interpretation of clinical results, and (iv) it also gives us the
probability of belonging to a class, which is very helpful when
dealing with individual subject progression prediction. We
developed three predictive models to predict the patient’s
progression class after 60months based on varying input factors:
(a) from baseline clinical factors, (b) from baseline and first-year
clinical factors, and (c) from biomarkers and genetic
measurements.
To validate the effectiveness of our predictive models, we used

a nested cross-validation (CV) approach with 5 folds in both inner
and outer loops. Specifically, we randomly divided the dataset into
five subsamples (outer folds). Each of the subsamples was used as
the testing data exactly once, while the remaining (training) data
was used for hyperparameter tuning and model training. The
hyperparameters were chosen based on their average perfor-
mance on training data during the inner cross-validation loop. The
workflow of the approach is depicted in Supplementary Fig. 11.
The performance of the algorithm was measured by the area
under the receiver operating curve (AUC) generated by plotting
sensitivity vs. (1 − specificity). We used a macro-average AUC
score computed by averaging the metric independently for each
class (hence treating all classes equally for predicting fast,
moderate, and slow progressing cases). The five results from the
multiple iterations were averaged to produce a single estimation
of performance across these three classes.
To conclusively validate the algorithm, we also evaluated the

performance of the predictive models (trained on the PPMI
measurements) on the independent PDBP cohort. To replicate, we
trained the supervised model on PPMI latent weights (at baseline)
and then used the same model on the PDBP latent weights (at
baseline). We show that the predictive models preserve their high
accuracy applied to another dataset.

Biomarker based prediction
There were 448 observations in total. We did not include plasma,
CSF hemoglobin, and CSF glucosylceramide features because of
their high missing data (>35%). Baseline CSF data were missing for
p-tau in 51 patients, for total-tau in 26 patients, for abeta-42 in 20
patients, and alpha syn in 15 patients. Serum Nfl is missing in 22
participants, 17 participants did not have data for DNA GRS scores,
and 36 participants had missing APOE status. The overall missing
percentage for the above measurements was ~5%. We imputed
the missing predictor variable data with means for numerical
features and used most frequent category for categorical features.
The remaining features include demographic information (educa-
tion year, biological sex, birthdate, race), vital signs (weight,
height, blood pressure), and family history (parents’ PD status)
with no patients having missing data for them. For hg-38 genetic
measurements, data was missing for 8 participants. We removed
these patients from our study. Finally, we had 440 participants and
39 and 64 features for biomarkers and genetics measurements,
respectively. All the genetic features are considered as categorical
except DNA GRS. For the combined model, we concatenated both
the biospecimen and genetic features. This concatenated vector
was used as input for the classification of PD subtypes.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The data used in this study was access-controlled from the Parkinson’s Progression
Marker Initiative (PPMI, http://www.ppmi-info.org/) and the Parkinson’s Disease
Biomarkers Program (PDBP, https://pdbp.ninds.nih.gov/), and require individual sign-
up to access the data. Additionally, we have developed an interactive website
[https://anant-dadu-pdprogressionsubtypes-streamlit-app-aaah95.streamlitapp.com/]
where researchers can investigate components of the predictive model and can
investigate feature effects on a sample and cohort level.

CODE AVAILABILITY
To facilitate replication and expansion of our work, we have made the notebook
publicly available on GitHub at [https://github.com/anant-dadu/
PDProgressionSubtypes]. It includes all code, figures, models, and supplements for
this study. The code is part of the supplemental information; it includes the rendered
Jupyter notebook with full step-by-step data preprocessing, statistical, and machine
learning analysis.
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