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Machine learning assisted discovery of high-efficiency
self-healing epoxy coating for corrosion protection
Tong Liu1,2,3, Zhuoyao Chen1,2, Jingzhi Yang1,2, Lingwei Ma1,2,4, Arjan Mol 5 and Dawei Zhang 1,2,4✉

Machine learning is a powerful means for the rapid development of high-performance functional materials. In this study, we
presented a machine learning workflow for predicting the corrosion resistance of a self-healing epoxy coating containing ZIF-8@Ca
microfillers. The orthogonal Latin square method was used to investigate the effects of the molecular weight of the polyetheramine
curing agent, molar ratio of polyetheramine to epoxy, molar content of the hydrogen bond unit (UPy-D400), and mass content of
the solid microfillers (ZIF-8@Ca microfillers) on the low impedance modulus (lg|Z|0.01Hz) values of the scratched coatings, generating
32 initial datasets. The machine learning workflow was divided into two stages: In stage I, five models were compared and the
random forest (RF) model was selected for the active learning. After 5 cycles of active learning, the RF model achieved good
prediction accuracy: coefficient of determination (R2)= 0.709, mean absolute percentage error (MAPE)= 0.081, root mean square
error (RMSE)= 0.685 (lg(Ω·cm2)). In stage II, the best coating formulation was identified by Bayesian optimization. Finally, the
electrochemical impedance spectroscopy (EIS) results showed that compared with the intact coating ((4.63 ± 2.08) × 1011 Ω·cm2),
the |Z|0.01Hz value of the repaired coating was as high as (4.40 ± 2.04) × 1011 Ω·cm2. Besides, the repaired coating showed minimal
corrosion and 3.3% of adhesion loss after 60 days of neutral salt spray testing.
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INTRODUCTION
Epoxy (EP) resin is widely used in the field of corrosion protection
because of strong adhesion properties, high corrosion resistance,
excellent mechanical properties and low cost. However, cracks
may arise inside or at the surface of the EP matrix during long-
term service and reduce its corrosion protection performance with
time, thus increasing potential safety hazards during its service
life1. The application of self-healing coatings will be the most
common and cost-effective method of improving the corrosion
protection and thus the durability of metallic structures. A wide
range of engineering structures from vehicles to aircrafts, from
factories to house-hold equipment can be effectively protected via
the self-healing coating systems. Recent efforts have focused on
improving the durability of EP coatings in the presence of damage
by granting them self-healing functions, which can be realized
through intrinsic repair of the material matrix by reversible
covalent bonds2 and noncovalent bonds3, or via extrinsic
strategies depending on the release of healing agents4 and
corrosion inhibitors5 into coating defects. In contrast to these
extrinsic self-healing mechanisms, the intrinsic one endows the
coating with the ability to simulate natural systems and repeated
repairability. Such mechanisms are typically based on reversible
covalent bonds via disulfide bonds6, Diels–Alder reactions7, and
hydrazone bonds8, or non-covalent interactions via metal-ligand9

and hydrogen bonding10–12. Among these mechanisms, the most
promising one is based on dynamic hydrogen bonds because of
their high reversibility and mild repair conditions, in combination
with their directional and tunable self-association properties13. As
an indication of the self-healing ability of the coating, the low-
frequency impedance modulus, such as according to the
electrochemical impedance spectroscopy (EIS) data measured at

0.01 Hz (|Z|0.01Hz), were extensively used to estimate the overall
corrosion resistance of the test area14,15. A higher |Z|0.01Hz value
represents a higher barrier ability of the coating. Based on the
previous studies16, in our view the design of an ideal self-healing
corrosion protective coating should have the following main
index: (1) The |Z|0.01Hz value of the self-healed coating is nearly
close to that of the intact coating; (2) excellent barrier ability,
|Z|0.01Hz value more than 1010 Ω·cm2; (3) long-term stability in
corrosive environments both before and after repair. For example,
in a previous work by our group11, an intrinsic self-healing EP
coating was developed by grafting 2-ureido-4[1H]-pyrimidinone
(UPy) as a quadruple hydrogen bonding unit onto the backbones
of an EP-matrix. The UPy/EP coating demonstrated high-efficient
self-healing functionality within 5 min in 3.5 wt.% NaCl solution.
The self-healed coating still had high |Z|0.01Hz value of 4.8 × 1010

Ω·cm2 even after 60 days of immersion in NaCl solution.
Often, the achievement of the target performance of self-

healing implies synergy between multiple components of the EP
coating formulation, including different resins, curing agents,
liquid/solid additives, etc. The conventional trial-and-error design
strategy for coating formulation is time-consuming and labor-
intensive. Recently, machine learning methods have show to
represent a promising option for materials design and optimiza-
tion, especially for systems with complex properties or composi-
tions17–21. For example, Haik et al.22 developed a machine learning
model to predict the stress relaxation properties of EP matrix
composites, based on a three-layer neural network model using
initial stress, test temperature and operating time as input
variables and stress relaxation behavior as output. The final model
was obtained by training 9000 experimental data samples. This
model can predict efficiently the time-dependent mechanical
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behavior of a viscoelastic or a viscoplastic material. Kan et al.23

constructed a molecular recognition model for predicting 2000
molecular descriptors from chemical structures using a gated
graph neural network, and extracted 32-dimensional vectors
representing 2000 molecular descriptors through the molecular
recognition model to complete the dimension reduction. This 32-
dimensional vector was used as the input value for the next
Gaussian regression, and the machine learning model for
predicting electrical conductivity was finally built by training a
large amount of data. Typically, the establishment of an accurate
machine learning requires vast training data, which is difficult to
be obtained for polymer resin formation considering the heavy
experimental workload in the synthesis and characterization24,25.
Therefore, the construction of small sample datasets in the
machine learning aspect of the research method has major
implications for polymer design.
The problem of machine learning under small sample data

conditions (<1000 samples) has received much attention in recent
years26,27. For the processing of small sample data, the most
common methods are the neural-network-based methods28,
hierarchical machine learning29, active-learning-based method30

and so on. For instance, Li et al.31 proposed a model combined
with nearest neighbor interpolation (NNI), synthetic minority
oversampling technique (SMOTE) and extreme gradient boosting
(XGBoost) models to predict the abrasion of rubber composites
with small samples. NNI and SMOTE are two classical models in
image processing that aim at increasing the sample size and
solving the problem of sample unevenness. Combining these two
models, the original dataset was expanded from 23 to 710 sam-
ples. Finally, the abrasion was predicted by the XGBoost model to
yield a better prediction accuracy (MSE= 0.001). Similarly, active
learning has been applied to discover EP adhesive strength30,
polymer molecular dynamics32, high-Tg polymers33,34 and among
others from the small initial datasets.
Herein, we employed a machine learning framework to develop

self-healing composite coatings for corrosion protection applica-
tions. A flowchart of the machine learning workflow is shown in
Fig. 1. In the machine learning framework, active learning and
Bayesian optimization to model and maximize the common
logarithm of the low-frequency impedance modulus (lg|Z|0.01Hz)
obtained from EIS measurements for various scratched self-
healing EP composite coatings to improve its self-healing
property. This coating formulation consists of an EP resin,
polyetheramines, amino-terminated urea-pyrimidinone mono-
mers (UPy-D400) and ZIF-8@Ca microfillers. The EP resin mixed

with polyetheramine can react to form an EP-based polymer, and
the UPy-D400 acts as a quadruple hydrogen bonding unit that can
be grafted into the EP network to provide a self-healing function
for the EP polymer via the self-association process; The ZIF-8@Ca
microfiller, which is an empty CaCO3 carbonate microcontainer
with ZIF-8 nanoparticles assembled on the surface, is incorporated
as a model filler that can not only enhance the barrier property of
EP coating, but also present a pH-sensitive response to release
loaded substance (e.g., inhibitors) to achieve useful functions. For
the machine learning process, four-parameter variables, molecular
weights of polyetheramine, the molar ratio of polyetheramine to
EP, UPy-D400 content, and ZIF-8@Ca content, were used as input,
and the lg|Z|0.01Hz value of the scratched coatings was used as
output; 32 initial dataset were obtained from the preliminary
experiment. Among the five common models, the model with the
best accuracy was selected, and trained to achieve the best
accuracy by active learning. Subsequently, the Bayesian optimiza-
tion method was used to search for the scratched self-healing EP
composite coating with an extremely high lg|Z|0.01Hz value. Finally,
the self-healing and corrosion protective properties of the optimal
coating were verified by EIS and salt spray testing.

RESULTS AND DISCUSSION
Experimental results from the initial dataset
As seen in Table 1, four parameters with four initial condition
levels were set (total experimental conditions = 44= 256 sets).

Fig. 1 A machine learning workflow for performance optimization in self-healing EP composite coating. Four steps are involved in
machine learning workflow, from a data acquisition, b active learning, c Bayesian optimization, and d experimental verification.

Table 1. Summary of variable parameters for coating formulation
used at the active learning stage.

Serial
number

Variable parameter

MWc

(g·mol–1)
r UPy-D400

content (mol%)
ZIF-8/Ca
content (wt.%)

1 230 0.55 5 5.5

2 400 0.70 10 7.0

3 2000 0.85 15 8.5

4 4000 1.00 20 10.0

Variable parameters include the molecular weight of polyetheramine
curing agent, molar ratio of polyetheramine to EP (r), molar content of UPy-
D400 and mass content of ZIF-8/Ca microfillers.
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Four parameter variables included the molecular weight of
polyetheramine, molar ratio of polyetheramine to EP, the molar
content of UPy-D400, and mass content of the ZIF-8@Ca
microfillers. An initial 32 sets of experimental conditions were
extracted from the 256 sets by orthogonal Latin square design
method35. This is a method based on mathematical statistics and
the orthogonality principle, which can achieve the equivalent
results of a large number of comprehensive tests with the
minimum number of tests. It selects a part of points which can
represent the whole experiment according to the orthogonality of
the experiments. And these selected points are uniformly
distributed in the whole space36,37. Then, the coatings were
prepared for EIS measurements according to these 32 conditions,
the corresponding the low impedance modulus (lg|Z|0.01Hz value)
of different scratched coatings was obtained. The reason for
selecting lg|Z|0.01Hz value as the output instead of using |Z|0.01Hz
value is to eliminate the undesirable effects caused by sample
dataset with high variability.

Measurements of lg|Z|0.01Hz experimental values of scratched
coatings that comprise our initial dataset are reported in Table 2.
Figure 2 shows the distribution of lg|Z|0.01Hz experimental values.
As shown in Fig. 2, the average lg|Z|0.01Hz experimental values
were widely distributed in the range of 4.75–10.87 (lg(Ω·cm2)).
According to a previous experimental study11, the scratched
coatings with different self-healing abilities are involved in this
distribution, indicating that the selection of the initial preparation
conditions using the orthogonal Latin square method is
reasonable.

Assessment and selection of an lg|Z|0.01Hz values
prediction model
Next step, different experimental conditions and corresponding
lg|Z|0.01Hz value of scratched coating were used as the input and
output of the machine learning process, respectively, and five
common machine learning models were trained using 32 initial
datasets. A comparison of the predicted and measured lg|Z|0.01Hz
values for each model is shown in Fig. 3a, e. A black dashed
straight line indicates equal measured and predicted values. A
comparison of the accuracy of each model is shown in Fig. 3f.
Compared with the other models, the RF model yielded the best
accuracy in terms of a higher coefficient of determination (R2)
value, and lower mean absolute percentage error (MAPE) and root
mean square error (RMSE) values. This may be due to its deeper
layers of model structure than general machine learning models;
RF models possessed a good processing ability for data with high
variability38,39. Hence, the RF model was chosen to predict the
lg|Z|0.01Hz values in subsequent steps.

Active learning and machine learning model performance
For the active learning process, the RF model first predicted the lg|
Z|0.01Hz values of all (256 – 32= 224 sets) possible experimental
conditions from the 32 initial dataset. The predicted lg|Z|0.01Hz
values were ranked in descending order. The five top-ranked
experimental conditions from 224 sets of conditions were selected
as proposals for subsequent measurements to be performed in
the laboratory. These five measurements were added to the initial
32 datasets. Then, the machine learning model for the prediction
of the lg|Z|0.01Hz values was trained again on this improved
(32+ 5) dataset. The new measurements were re-used in the RF
model to improve the accuracy, as this can enhance the prediction
accuracy for high-target performance samples in a targeted
manner and improve the active learning efficiency. This process,
from the prediction phase to the reuse phase, represents one

Table 2. Experimental results of lg|Z|0.01Hz values of scratched
coatings prepared under various conditions (32 initial dataset), the
lg|Z|0.01Hz values represent the average ± standard deviations.

Serial
number

Variable parameter

MWc

(g·mol–1)
r UPy-D400

content
(mol%)

ZIF-8/Ca
content
(wt.%)

Measured
lg(|Z|/Ω·cm2)

1 230 0.55 5 5.5 4.89 ± 0.72

2 230 0.70 10 8.5 5.12 ± 0.69

3 230 0.85 15 10.0 6.06 ± 0.22

4 230 1.00 20 7.0 8.91 ± 0.76

5 400 0.55 10 7.0 4.75 ± 0.83

6 400 0.70 5 10.0 5.39 ± 0.45

7 400 0.85 20 8.5 10.08 ± 0.72

8 400 1.00 15 5.5 10.55 ± 0.52

9 2000 0.55 15 8.5 8.35 ± 0.41

10 2000 0.70 20 5.5 10.05 ± 0.76

11 2000 0.85 5 7.0 9.12 ± 0.69

12 2000 1.00 10 10.0 7.23 ± 0.82

13 4000 0.55 20 10.0 8.94 ± 0.70

14 4000 0.70 15 7.0 8.04 ± 0.59

15 4000 0.85 10 5.5 8.43 ± 0.28

16 4000 1.00 5 8.5 6.44 ± 0.65

17 230 0.55 20 7.0 4.88 ± 0.70

18 230 0.70 5 5.5 4.93 ± 0.63

19 230 0.85 10 8.5 5.59 ± 0.69

20 230 1.00 15 10.0 7.97 ± 0.70

21 400 0.55 15 5.5 5.01 ± 0.81

22 400 0.70 10 7.0 7.31 ± 0.42

23 400 0.85 5 10.0 8.12 ± 0.62

24 400 1.00 20 8.5 10.87 ± 0.80

25 2000 0.55 10 10.0 6.14 ± 0.75

26 2000 0.70 15 8.5 9.29 ± 0.62

27 2000 0.85 20 5.5 8.98 ± 0.74

28 2000 1.00 5 7.0 6.92 ± 0.70

29 4000 0.55 5 8.5 6.93 ± 0.62

30 4000 0.70 20 10.0 8.35 ± 0.52

31 4000 0.85 15 7.0 9.15 ± 0.66

32 4000 1.00 10 5.5 6.95 ± 0.79

Fig. 2 Distribution of lg|Z|0.01Hz experimental values from the 32
initial dataset. This task aims to confirm the distribution of target
property values under initial experimental conditions.
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cycle of active learning (see Table 3). This active learning process is
repeated until the preliminary goal of the best accuracy of the
machine learning model is achieved. In this study, the active
learning cycle was stopped if all the evaluation indices (MAPE,
RMSE and R2) stopped increasing.
Figures 4a–g present scatter plots of the predicted versus

measured lg|Z|0.01Hz values from the initial dataset to the last cycle.
The blue and red dots indicate existing and new measurements,
respectively. The evolution of the corresponding R2, MAPE and
RMSE values for each cycle is summarized in Fig. 4h, i. As shown in
Figs. 4a–g, the predicted and measured values gradually
approached the black dashed straight line from the initial dataset
to the last cycle, indicating that an increase in the dataset size
resulted in predicted lg|Z|0.01Hz values that are closer to measured
lg|Z|0.01Hz values. As the dataset size increased, R2 clearly
increased, and the MAPE and RMSE decreased gradually. After
five active learning cycles, the R2, MAPE and RMSE values reached
equilibrium, at this time, the active learning process was
terminated. For the dataset of 62 samples, the RF model achieved
R2, MAPE and RMSE values of 0.709, 0.081 and 0.685 (lg(Ω·cm2)),
respectively. Compared to the accuracy of the initial dataset,
improvements of 246%, 51% and 47% were achieved for R2, MAPE,
and RMSE, respectively. In this case, R2 was greater than 0.7 and
both MAPE and RMSE were stabilized at a low level, indicating that
the RF model reached acceptable accuracy. Therefore, the active
learning procedure was stopped at this stage and the RF model
was fixed based on the existing dataset.
In addition, Table 3 lists the top-five proposed experiments for

the five cycles of active learning with the corresponding predicted
and measured lg|Z|0.01Hz values. Several measured lg|Z|0.01Hz

values in Table 3 that were greater than 11.00 (lg(Ω·cm2)), which
is greater than the highest value in the initial dataset, showed that
the RF model allowed us to predict the experimental conditions of
the coating with a potentially high self-healing ability. These
additional data on high-performance self-healing coatings are
beneficial for further maximization using Bayesian optimization. In
addition, the proposed experiments required polyetheramine of
molecular weights 400 and 2000 g·mol–1, with an r value greater
than 0.85, 10-20 mol% of UPy-D400, and ZIF-8@Ca microfiller
content in the full range. This provided the main guidance for
refining the test conditions in the subsequent step.

Bayesian optimization for screening optimal candidate
In this step, three experimental conditions were refined: r values,
molar ratio of UPy-D400, and microfiller content were varied from
0.85 to 1.00, 10 to 20 mol%, and 5.5 to 10.0 wt.%, by increments of
0.1, 1 mol%, and 0.1 wt.%, respectively. The molecular weights
of the polyetheramine curing agents were fixed at 400 and
2000 g·mol–1. Obviously, this search space for the coating
formulation is vast, and the machine learning model has limited
utility if it do not incorporate uncertainty and the expected
improvement process. Since a machine learning model is built
using a limited amount of training data, the selection of candidates
using that model may be limited to a local search. Therefore, we
speculate that Bayesian optimization may give better results
because this optimization technique considers the uncertainty of
the prediction and the balance between local and global search40.
Bayesian optimization works on a surrogate model and

evaluates a utility function41. The utility function uses the mean
and standard deviation of the candidates estimated by the

Fig. 3 The selection of the best machine learning model. Distribution of predicted versus measured lg|Z|0.01Hz values from successive test
sets used in the 10-fold cross-validation using different machine learning models, a–e correspond to artificial neural network (ANN), linear
regression (LR), support vector regression (SVR), decision tree (DT) and random forest (RF) model, respectively. f A comparison of the accuracy
for each model, including R2, MAPE, and RMSE values.
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surrogate model. The utility function encodes a trade-off between
the exploitation (candidate searching at points with high mean)
and exploration (candidate searching at points with high
uncertainty). Herein, we have used RF as the surrogate model
and expected improvement (EI) as a utility function. The EI is
defined as the following Eqs. (1)-(2)42:

EIðxÞ ¼ σðxÞ½zΦðzÞ þ ϕðzÞ� (1)

z ¼ ½μðxÞ � fðxþÞ � ε�=σðxÞ (2)

where EI(x) represents the expected improvement value for each
coating formulation candidate. μ and σ are the predicted output
and standard deviation of the candidates obtained from the
surrogate model, f(x+) is the maximum value of the target material
property observed in the training data set. Φ represents the
cumulative distribution function and ϕ is the probability distribu-
tion function assuming the target property values follows the
normal distribution. The term ε regulates the amount of
exploration, higher the value of ε more is the exploration. In this
method, the largest EI value represents the most promising
coating formulation candidate. Here, we use 1000 iterations for BO

run, as this was sufficiently many to predict the optimal
experimental conditions with high accuracy (see Data Availability
section for where to access this code), and a series of experiments
were conducted starting from rank 1 (Table 4). The new highest lg|
Z|0.01Hz values of 11.58 ± 0.28 (lg(Ω·cm2)) was observed, that is,
(4.40 ± 2.04) × 1011 Ω·cm2. This impedance modulus value was
considerably high compared with those reported in previous
studies on EP-based self-healing coating11,43–46, which reported a
typical lg|Z|0.01Hz value range of 7.48–10.68 (lg(Ω·cm2)). The
suggested experimental conditions from Bayesian optimization
showed that a relatively low molecular weight of polyetheramine
and a high molar ratio of polyetheramine to EP were promising
conditions for achieving a high lg|Z|0.01Hz value, whereas the molar
ratio of UPy-D400 and microfillers content should be in the middle
of their defined range. According to previous studies47,48,
excessive amine addition improves the shape recovery rate of
EP materials. The intrinsic self-repair process mentioned in this
study is realized by a self-healing unit (hydrogen bond) self-
association process on the premise that the damage can be
physically closed. A high shape recovery rate is beneficial for the
physical closure of scratched material surfaces11. Excess amine

Table 3. Experimental results of predicted and measured lg|Z|0.01Hz values of scratched coatings prepared under various proposed conditions.

Cycle Rank Variable parameter

MWc (g·mol–1) r UPy-D400 content (mol%) ZIF-8/Ca content (wt.%) Predicted lg(|Z|/Ω·cm2) Measured lg(|Z|/Ω·cm2)

Initial 1 400 1.00 20 5.5 10.49 ± 0.32 10.15 ± 0.30

2 400 1.00 20 7.0 9.96 ± 0.24 10.88 ± 0.44

3 400 0.85 10 5.5 9.71 ± 0.14 10.3 ± 0.41

4 2000 0.85 15 5.5 8.93 ± 0.29 8.35 ± 0.62

5 2000 0.85 20 8.5 9.33 ± 0.20 9.05 ± 0.75

Cycle 1 1 400 0.85 20 7.0 10.14 ± 0.19 10.11 ± 0.44

2 400 1.00 20 10.0 9.88 ± 0.17 10.24 ± 0.13

3 400 1.00 15 7.0 9.52 ± 0.20 10.52 ± 0.46

4 2000 1.00 10 7.0 9.57 ± 0.18 8.23 ± 0.29

5 400 0.85 20 10.0 9.65 ± 0.17 9.52 ± 0.51

Cycle 2 1 400 0.85 15 5.5 10.27 ± 0.21 10.08 ± 0.30

2 400 1.00 15 8.5 10.23 ± 0.25 11.03 ± 0.38

3 400 0.85 15 7.0 10.03 ± 0.15 10.76 ± 0.46

4 400 1.00 15 10.0 9.90 ± 0.20 9.63 ± 0.64

5 400 0.85 15 8.5 10.31 ± 0.12 10.26 ± 0.71

Cycle 3 1 400 0.85 15 10.0 9.44 ± 0.24 10.25 ± 0.75

2 2000 0.85 15 7.0 9.12 ± 0.35 9.62 ± 0.54

3 2000 0.85 15 8.5 9.37 ± 0.36 9.94 ± 0.48

4 2000 1.00 15 5.5 8.91 ± 0.44 9.41 ± 0.38

5 2000 1.00 15 8.5 9.43 ± 0.18 9.22 ± 0.15

Cycle 4 1 2000 0.85 15 10.0 9.40 ± 0.30 9.68 ± 0.80

2 2000 0.85 20 8.5 9.30 ± 0.25 9.03 ± 0.68

3 2000 1.00 15 10.0 9.30 ± 0.20 9.84 ± 0.51

4 2000 1.00 15 7.0 9.24 ± 0.22 9.10 ± 0.74

5 2000 1.00 20 8.5 9.00 ± 0.18 9.62 ± 0.48

Cycle 5 1 2000 0.85 20 7.0 9.04 ± 0.10 9.18 ± 0.84

2 2000 0.85 20 10.0 9.28 ± 0.08 9.45 ± 0.54

3 2000 1.00 20 10.0 9.06 ± 0.15 9.21 ± 0.69

4 2000 1.00 20 5.5 8.99 ± 0.18 9.30 ± 0.50

5 2000 0.85 20 7.0 9.16 ± 0.20 9.09 ± 0.25

Initial step: the top-five proposed experiments were obtained by a model trained on initial 32 samples in the range of remaining 224 untested experiments;
Cycle 1: From the remaining 219 untested experiments, the another top-five proposed experiments were obtained by a model trained on 37 samples. Cycle
2 ~ 5 utilized the same method to obtain new proposed experiment and train the model.
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(excessive r value) leads to higher flexibility but lower mechanical
strength of EP materials47, an optimum combination of high
strength and good flexibility can be achieved by adjusting the r
value precisely through Bayesian optimization. The introduction of

self-healing units and microfillers may also affect the various
performance indicators of the coatings, which can balance each
addition amount simultaneously to achieve a reasonable design
for target property.
Figure 5 shows the distribution of lg|Z|0.01Hz values of scratched

coatings from the initial dataset, after the five active learning
cycles, and after a Bayesian optimization process. The lg|Z|0.01Hz
values from the initial dataset were spread randomly from 4.75 to
10.87 (lg(Ω·cm2)). By comparison, all samples that followed an
active learning cycle exhibited a high lg|Z|0.01Hz value (>8.23
(lg(Ω·cm2))), and one sample from the Bayesian optimization
dataset showed an exceptionally high lg|Z|0.01Hz value. These
results demonstrate the potential of our machine learning
framework for the design and optimization of high-performance
functional materials based on small sample conditions.

Interpretation of machine learning model for coating design
EIS measurements were conducted on the scratched pure
commercial EP and ZIF-8@Ca/EP coatings and their corresponding
intact coatings to study the self-healing and corrosion resistance

Fig. 4 Active learning process. a–g Correlation scatter plots of predicted and measured lg|Z|0.01Hz values using different datasets, including
initial dataset and cycle 1-6 datasets. h, i Comparison of the accuracy (R2, RMSE and MAPE value) of the RF model for different datasets.

Table 4. Proposed preparations of a composite coating at Bayesian
optimization stage with the related experimental lg|Z|0.01Hz values of
scratched coatings.

Rank Variable parameter

MWc

(g·mol–1)
r UPy

content
(mol%)

ZIF-8/Ca
content
(wt.%)

Predicted
lg(|Z|/
Ω·cm2)

Measured
lg(|Z|/Ω·cm2)

1 400 0.94 14 7.8 11.01 11.58 ± 0.28

2 400 0.97 17 8.0 10.92 11.15 ± 0.65

3 400 1.00 16 8.0 10.92 10.98 ± 0.40

4 400 0.95 20 8.8 10.88 10.85 ± 0.74

5 400 1.00 16 7.4 10.88 10.90 ± 0.68

T. Liu et al.

6

npj Materials Degradation (2024)    11 Published in partnership with CSCP and USTB



properties. The ZIF-8@Ca/EP coating was prepared based on the
best formulation selected by Bayesian optimization. Nyquist and
Bode plots of the intact coatings were obtained by EIS after 30 min
of immersion in 3.5 wt.% NaCl solution (Fig. 6a–c). Figure 6d–i
show the Nyquist and Bode plots of the steels with scratched
coatings after immersion for 1, 15, 30 and 60 d. The as-used pure
EP coating was prepared by mixing E51 with D400 polyether-
amine curing agents at a molar ratio of 5:3. For the pure EP
sample, the intact coating initially showed a high barrier property
with large capacitive arc in the Nyquist plot (Fig. 6a) and the high
|Z|0.01Hz value (3.98 × 1010 Ω·cm2) in the Bode plot (Fig. 6b). The
phase angles in the high frequencies (105Hz) were close to –90°
which indicates the capacitive character of the coatings. In
contrast to the intact pure EP coating, intact ZIF-8@Ca/EP coating
exhibited a slightly larger capacitive arc in terms of Nyquist plot,
and |Z|0.01Hz value rose to 3.82 × 1011 Ω·cm2, indicating substantial
improvement in the barrier property of the coating after the
machine learning adjustment. The average and standard deviation
of the |Z|0.01Hz value for intact coating were calculated using six
parallel samples, expressed as (4.63 ± 2.08) × 1011 Ω·cm2.
In terms of the scratched coatings, the capacitive arcs of the

pure EP coating shrank and the |Z|0.01Hz values declined gradually
over the entire immersion time, demonstrating the continuous
deterioration of the barrier property (Figs. 6d–e). Subsequently, for
the phase diagrams in Fig. 6f, scratched pure EP showed two-time
constants: one related to the charge transfer process at the
coating/substrate interface (10−2−100 Hz), and the other related
to the resistance increase by means of corrosion product
formation in the artificial defect (101−105Hz)49. Compared with
the Bode plots for pure EP coating, the Bode plots of the scratched
coating showed approximately –45° straight lines with |Z|0.01Hz
values in excess of 3.80 × 1011 Ω·cm2 at the beginning of
immersion. The corresponding phase angles were –90◦ over the
frequency range of 10–1−105 Hz. This implies that during the
immersion, a conductive pathway is not formed through the
coating, which largely exhibits a capacitive behavior similar to that
of an intact coating50. During the 60 d of immersion, the |Z|0.01Hz
values of the ZIF-8@Ca/EP coating only slightly decreased from
3.80 × 1011 Ω·cm2 to 1.23 × 1011 Ω·cm2, confirming that the

scratched ZIF-8@Ca/EP coating had been well repaired and
possessed a satisfactory corrosion resistance.
After scratching, the pure EP and ZIF-8@Ca/EP coatings were

subjected to salt spray tests following the ASTM B117/
D1654 standard. Figures 6b and 7a show the optical images of
the coatings after exposure to the salt spray chamber for different
periods. According to the visual assessment in Fig. 7a, green
corrosion products were observed at the scratches of the pure EP
coating within the 1 d of the salt spray test. After 60 d, large-scale
coating delamination and corrosion products appeared in the
scratched region, indicating that the scratched location of the
pure EP coating was highly vulnerable to attack by corrosive
species. Compared with pure EP, only slight scratch traces were
observed at the scratched positions, and the ZIF-8@Ca/EP coating
did not show any signs of degradation (delamination, corrosion, or
blistering) after 30 d (Fig. 7b). Furthermore, as the salt spray
exposure time increased to 60 d, only one slight corrosion spot
was observed at the scratched site, indicating the corrosion of the
scratched ZIF-8@Ca/EP coating could be controlled in a salt spray
environment for a long time.
The adhesion strength, an important indicator of coating

properties, can be measured using a pull-off test. Figure 7d shows
the adhesion strength/loss values of intact pure EP and ZIF-8@Ca/
EP coating before and after the 60 d salt spray test. The optical
images of the remaining coatings following the pull-off test are
presented in Fig. 7c. As shown in Fig. 7c, none of the samples
exhibits cohesive failure. As shown in Fig. 7c, the dry adhesion
strength of the ZIF-8@Ca/EP coatings (9.82 MPa) is higher than
that of pure EP (4.70 MPa). This is because the introduction of
branched-chain amines and UPy units enhanced the hydrogen
bonding between the coating and the metal surface51. After salt
spraying, the pure EP coating exhibited a considerable adhesion
loss of 79.4% (0.97 MPa). In contrast, the ZIF-8@Ca/EP coating
demonstrated not only the highest wet adhesion strength
(9.50 MPa) but also minimal adhesion loss (3.3%) after a 60 d of
salt spray test.
In summary, the design of experimental techniques combined

with an active learning and Bayesian optimization was proposed
to predict and optimize the lg|Z|0.01Hz values of scratched EP self-
healing coatings composed of different molecular weights of
polyetheramine curing agent, molar ratios of polyetheramine to
E51 EP resin, molar content of UPy-D400 and mass contents of ZIF-
8@Ca microfillers. The active learning process yielded the
preferred experimental conditions to build a predictive RF model
of lg|Z|0.01Hz values with satisfactory accuracy (R2= 0.709, MAPE=
0.081, RMSE= 0.685 (lg(Ω·cm2))) after five cycles of active
learning. Then, an extremely high lg|Z|0.01Hz values of 11.58
(|Z|0.01Hz= 3.80 × 1011 Ω·cm2) was achieved using the experi-
mental conditions that were refined by Bayesian optimization. As
confirmed by EIS, the ZIF-8@Ca/EP coating exhibited a great
healing effect in barrier property (intact sample: 3.82 × 1011 Ω·cm2,
repaired sample: 3.80 × 1011 Ω·cm2). In addition, in terms of the
corrosion resistance after repair, the ZIF-8@Ca/EP coating exhib-
ited slight corrosion after 60 d of the salt spray test, and the
adhesion loss of the composite coating after the salt spray test
was 3.3%, which was considerably lower than that of the pure EP
coating (79.4%).

METHODS
Materials
Polyetheramine curing agents with four different molecular
weights (230, 400, 2000 and 4000 g·mol–1) were sourced from
the Aladdin Industrial Corporation. The E51 EP resin was sourced
from Jiangsu Heli Resin Co., ltd. The ZIF-8@Ca microfillers and the
UPy-D400 monomers were obtained using previously published
methods11,51. The Q235 mild steel was used as the substrate.

Fig. 5 Comparison of the measured target performance for each
machine learning stage. Distribution of measured lg|Z|0.01Hz values
from the initial dataset (blue), after active learning process (dark
blue) and after Bayesian optimization (red).

T. Liu et al.

7

Published in partnership with CSCP and USTB npj Materials Degradation (2024)    11 



Preparation of coatings and EIS test
Based on the selected 32 experimental conditions, the preparation
process of the self-healing EP coating containing ZIF-8@Ca
microfillers (ZIF-8@Ca/EP) is shown in Fig. 8. In each case, the
ZIF-8@Ca microfillers were first mixed with the E51 EP resin under
magnetic stirring. The polyetheramine curing agent and UPy-D400
were then added to the mixture using a mechanical agitator at
500 rpm for 10min. Prior to the coating preparation, the steel
specimens were wet-polished sequentially with 150-, 240- and
400-grit sandpapers, washed with ethanol and blow-dried in an N2

atmosphere. The resulting mixture was applied to a steel piece
using a bar coater. The coated samples were obtained by drying at
room temperature for 48 h. The final thickness of each of the dry
films was approximately 85 μm.
EIS tests were performed to measure the low-frequency

impedance (|Z|0.01Hz) values of the coated steel with/without an
artificial scratch. Herein, all scratches of the EIS tests are made by a
scalpel, and they are reproducible. The EIS results were obtained
using a 3.5 wt.% NaCl solution and a CHI-660E electrochemical
workstation with a three-electrode cell system comprising a
coated steel substrate as a working electrode, a platinum plate
electrode as a counter electrode and a saturated calomel
electrode (SCE) as a reference electrode. The test parameters
were set in the 10−2−105 Hz range with a 0.02 V root mean square
amplitude. Prior to EIS measurements, artificial through-coating

scratches (approximately 3 mm in length and approximately
60 µm in width) were made on the different coated steels using
a scalpel. The measurements were conducted on the coated steels
at least five times to ensure the reproducibility of the EIS results. In
EIS results, the |Z|0.01Hz value in the Bode plot usually represents
the main performance index for the corrosion resistance of a
coating, that is, a higher |Z|0.01Hz value reflects a higher barrier
property52. Therefore, this index was used to characterize the
repair effect of the barrier properties of the coating after
scratching.
To further verify the self-healing and long-term anti-antic-

orrosion ability of the scratched composite coating after machine
learning process, salt spray test was performed on the coatings via
exposing the samples to salt spray for 60 d in accordance with
ASTM D1654.

Data pre-processing, data splitting and machine
learning models
Data pre-processing and data splitting were performed and
different machine learning models were simulated using the
Python package scikit-learn (version 1.1.1). The four variable
parameters (Table 4) in this study were standardized following a
standard Gaussian distribution of a mean of 0 and a variance of
153. The purpose of normalization is to make the preprocessed
data be limited to a certain range (e.g., [0,1] or [–1,1]), thus

Fig. 6 EIS characterizations of the different intact/scratched coatings. a Nyquist plots and b, c Bode plots of the intact pure EP and intact
ZIF-8@Ca/EP coatings after 30min of immersion in 3.5 wt.% NaCl solution. Nyquist plots and Bode plots of different d–f scratched pure EP and
g–i scratched ZIF-8@Ca/EP coating during immersion in 3.5 wt.% NaCl solution for 60 d.
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eliminating the undesirable effects caused by sample dataset with
high variability. The validity and accuracy of all employed machine
learning models were evaluated using k-fold cross-validation. In
this step, the data were randomly arranged and divided into 10

groups. Nine groups were allocated for training purposes, and the
remaining group was assigned to validate of the model. The
average value was obtained by repeating the same process 10
times. To obtain the performance level of the model, the MAPE,

Fig. 7 Salt spray analysis of the different intact/scratched coatings. a, b Optical images of the pure EP and ZIF-8@Ca/EP coating. c Optical
images of the pure EP and ZIF-8@Ca/EP coating after pull-off test at the end of salt spray test. d The adhesion strength values of the pure EP and
ZIF-8@Ca/EP coating before and after 60 d of salt spray exposure, the adhesion strength values represent the average ± standard deviations.

Fig. 8 Schematic illustration of the preparation process for self-healing EP composite coating. The coating formulation consists of the EP
resin, polyetheramines, hydrogen bond unit (UPy-D400) and ZIF-8@Ca microfillers.
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RMSE and R2 were introduced to evaluate the k-fold cross-
validation, using the following Eqs. (3)-(5):54–56

MAPE ¼ 1
n

Xn

i¼1

jyi�ŷij
jyij

(3)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

ðyi�ŷiÞ2
s

(4)

R2 ¼ 1�
Pn

i¼1ðyi�ŷiÞ2Pn
i¼1ðyi � yÞ2 (5)

where n is the number of samples, and yi and ŷi are the
experimental and predicted values of the ith sample, respectively.
The accuracy of the machine learning model was accessed

using its MAPE (MAPE value is in between 0 and 1, a value closer
to 0 indicates greater accuracy57) and RMSE (a lower value of each
indicates greater accuracy30) and R2 (a value closer to 1 indicates
greater accuracy; when the R2 coefficient is greater than 0.7, the
model represents acceptable accuracy58.)
Five machine learning models were applied as regression tools

to the dataset: LR, ANN, SVR, DT and RF models. The machine
learning methods are described in detail in the related
reference59. The interested reader should refer to the Data
Availability section for where to access our code used to run
these algorithms.

Bayesian optimization
Bayesian optimization40 was used to determine the highest lg|Z|0.01Hz
values by refining the variable conditions from Table 1. Bayesian
optimization was performed using the Python package GPyOpt.

DATA AVAILABILITY
Source codes for this article are publicly available at https://github.com/
lt1037870521/manuscript-code-EP-Lt.
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