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Parametric simulation of electron backscatter diffraction
patterns through generative models
Zihao Ding1 and Marc De Graef 1✉

Recently, discriminative machine learning models have been widely used to predict various attributes from Electron Backscatter
Diffraction (EBSD) patterns. However, there has never been any generative model developed for EBSD pattern simulation. On one
hand, the training of generative models is much harder than that of discriminative ones; On the other hand, numerous variables
affecting EBSD pattern formation make the input space high-dimensional and its relationship with the distribution of backscattered
electrons complicated. In this study, we propose a framework (EBSD-CVAE/GAN) with great flexibility and scalability to realize
parametric simulation of EBSD patterns. Compared with the frequently used forward model, EBSD-CVAE/GAN can take variables
more than just orientation and generate corresponding EBSD patterns in a single run. The accuracy and quality of generated
patterns are systematically evaluated. The model does not only summarize a distribution of backscattered electrons at a higher
level, but also mitigates data scarcity in this field.
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INTRODUCTION
Since its first-ever observation in 1928, electron backscatter
diffraction (EBSD) has gradually become one of the most powerful
tools to study crystal texture and material anisotropy1. By
analyzing the diffraction pattern after the electrons have
interacted with the sample, the orientation of the material being
characterized can be determined, since it is closely correlated with
the trajectories of backscattered electrons, and thus their
distribution in space2. The modern popularity of this technique
stems from the development of CCD/CMOS imaging sensors and
fully automated computer-based data analytics3,4; the implemen-
tation of a Hough-transform-based method5 replaced the tedious
manual indexing of EBSD patterns. In addition to orientation
mapping, another important application of EBSD is evaluating
plastic deformation processes, since local lattice misorientations
are closely correlated to plastic strain or strain-induced changes6,7.
High angular resolution EBSD (HR-EBSD) is currently the leading
approach to measurement of residual strain states at a high
resolution and sensitivity8.
Although being widely used, characterization of a material’s

texture via EBSD does pose some challenges. On the one hand,
the requirement of a flat surface to maximize the backscatter yield
makes sample preparation time-consuming and leads to a danger
of introducing extra deformation in the near-surface region9. On
the other hand, the field of view studied in EBSD is typically
limited to a few square millimeters (and, often, significantly less
than that) which makes it difficult to collect sufficient data to fully
characterize a material’s texture. Individual EBSD patterns are
affected by the crystal symmetry, the 3D orientation of the crystal
lattice with respect to the incident electron beam, the energy of
the incident beam as well as geometrical parameters of the
detector system. Thus, most applications of EBSD are discrimina-
tive tasks, i.e., to extract attributes from experimental observations
through classification or regression. Statistically, the indexing
algorithms aim to optimize and compute the conditional
probability, pðattrjobsÞ, of the attributes, given the observations.
In order to extended the reach of EBSD to more data intensive

tasks, as well as studying the relationship between all the variables
mentioned above and the spatial distribution of backscattered
electrons, an accurate and efficient method to simulate EBSD
patterns is needed.
Currently, the mainstream approach for EBSD pattern simula-

tion is through a physics-based forward model10,11; the model in11

first computes the backscattered yield over all directions via a
Monte Carlo simulation, and then solves the dynamical electron
scattering problem for a sampling of orientations on the Kikuchi
sphere; the resulting intensity distribution is refered to as the
“EBSD master pattern.” Individual patterns are then obtained
through a gnomonic projection from the Kikuchi sphere. The
algorithm is available as a core component in the open source
software EMsoft12 and lays a solid foundation for Dictionary
Indexing (DI)13,14 and Spherical Indexing (SI)15,16. Both indexing
approaches outperform the Hough-transform-based method in
terms of accuracy and robustness against noise17.
Statistically, an ideal generative method should accurately

estimate pðobs; attrÞ first and then determine the conditional
distribution pðobsjattrÞ via Bayes rule so that, given an arbitrary
set of attributes, it can generate the corresponding observation.
Since the forward model separates attributes involving the
electron interactions with the sample from attributes related to
the gnomonic projection from the Kikuchi sphere onto the
detector, each step is only able to provide the conditional
distribution pðobs; attr2jattr1Þ, where attr1 and attr2 are attributes
used in two stages respectively. Thus, each EBSD master pattern is
specific to the given set of attributes; in particular, master patterns
are typically computed for a discrete number of microscope
accelerating voltages. This feature leads to a significant increase of
time consumption when attributes in attr1 are not fixed, as the
forward model needs to run simulations from scratch for each
different configuration.
The past decade has witnessed a sustained rapid development

of machine learning theory. As model architectures and training
algorithms become mature and modularized, it is exciting to see
more and more applications in science and engineering fields,
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including those in material characterization. Specifically in EBSD,
we have proposed two models, EBSD-CNN18 and EBSDDI-CNN19,
to realize end-to-end and hybrid pattern indexing, respectively.
Other groups have put forth models with various output spaces to
predict other attributes from EBSD patterns, such as crystal
symmetry20 and phase identification21. The success of these
approaches engenders confidence in the capability of deep neural
networks to extract features and determine fitting functions with
high-dimensional input/output spaces.
Similar to the applications implemented with non-ML methods

mentioned above, almost all these ML models are still for
discriminative purposes only. As they just need to distinguish
decision boundaries and optimize pðattrjobsÞ directly, even if the
model is not sufficiently expressive, after significant training, these
discriminative approaches still lead to superior recognition
performance. Different from discriminative models, which com-
press the information volume during the forward propagation, a
generative model is intended to reproduce the observations from
random noise and given attributes in a top-down approach that
gradually accumulates the information22. Thus, constructing and
training generative models is usually much harder. Our main
purpose in this contribution is to generate EBSD patterns with
particular specified attributes. Machine learning studies with a
similar goal include generative models which are conditioned on
class labels23 and text24, allow editing of facial features25 and
outdoor scenery attributes26, and even support 3D-aware scene
manipulation27. In materials science, Ziatdinov and Kalinin28,29

have also shown that features related to material properties can
be disentangled from characterization data via ML approaches.
In this study, we propose a deep generative model (EBSD-CVAE/

GAN) to realize analytic and parametric EBSD pattern simulation.
Its great flexibility and scalability in architecture makes it possible
to extend the dimension of manipulated attributes under the
same training algorithm. Compared with the EBSD forward model,
EBSD-CVAE/GAN allows users to change more attributes involved
with the formation of EBSD patterns in a single run. The model
represents the progress towards the ideal generative method in
statistics, i.e., narrowing down attr1 on which the probability is
conditioned. Such an approach does not only provide a way to
summarize a distribution of backscattered electrons at a higher
level, but also expands applications of EBSD to situations where
multiple parameters are subjected to change.

RESULTS AND DISCUSSION
EBSD-CVAE/GAN architecture
Among all generative models, the variational autoencoder (VAE)30

and generative adversarial networks (GAN)31 are most frequently
used to learn the true distribution through two different
divergence measurements. The manipulation of attributes is
achieved by decoding the latent representation from the encoder,
conditioned on the expected attributes. The key here is to
disentangle the attributes with physical meanings that we want to
control from other latent representations. Accordingly, the
distribution presented becomes conditioned on these manipu-
lated attributes. Conditional generative models based on VAE and
GAN are collectively referred to as variants of CVAE32 and CGAN33.
Usually, the attributes manipulated are formed as a vector, which
is defined as the difference between the mean latent representa-
tions with and without them. Then, by integrating the vector to a
latent representation, the decoded image from the modified
representation is expected to have the corresponding attributes. A
potential problem is that an attribute vector may contain highly
correlated attributes, inevitably leading to unexpected changes of
other attributes left in the latent representation, especially for
attributes in EBSD pattern formation, which could be highly
complex and closely dependent. Meanwhile, it should be realized

that another difficulty in simulating EBSD patterns through
generative models is the high demand of location accuracy of
features, which is also encoded in the patterns and orientation.
Since the encoder-decoder architecture is viable in both CVAE

and CGAN, and the decoder/generator parts in the two models
share many similarities, we propose a general learning framework,
combining a CVAE and a CGAN with good scalability on attributes.
Figure 1 shows a schematic of its architecture. In the full model,
the decoder of CVAE is shared as the generator of CGAN. Thus by
adjusting the coefficient of each item in the loss function during
the training, the model can readily be turned into a single CVAE, or
CGAN, or a combination of both. In addition, to cope with the
conditional distribution via manipulation of certain attributes and
then concatenating them to the random latent representation
after preliminary transformation in the generator, alongside the
discriminator we also place a classifier to predict all the
manipulated attributes encoded in the patterns. After the model
is properly trained, only the decoder/generator part is necessary
when simulating EBSD patterns, which further lowers the
demands on computational resources and memory when
deployed for inference.

Training of model conditioned on orientations only
From the training history in Fig. 2a, after fluctuations of
Kullback–Leibler divergence (KL divergence) in the initial epochs,
it can be seen that both the reconstruction loss and the KL
divergence are gradually decreasing, and finally converge to a
stable state. To visually represent this process, patterns generated
with random orientations in different stages of training are
recorded as an animation in Supplementary Movie 1. Here we
choose to use random orientations in each frame, as it is the only
manipulated attribute at the first stage of the study. The filters are
first trained to generate band features, and then gradually the
main Kikuchi bands and zone axes are formed. Finally more
attention is paid to other features that are less obvious in the
background. The generated patterns after over 45 epochs of
training are shown in Fig. 3a. Compared with patterns generated
by models trained with fixed coefficients in the loss function, even
patterns generated from a standard normal distribution are highly
consistent with original patterns. The overall pattern quality
indicates the encoder’s ability to standardize latent representation
((μ, σ)→ (0, 1)) and the decoder’s ability to recover EBSD patterns
conditioned on orientation.

Generated pattern quality analysis
The quality of the generated patterns can be evaluated further
with more quantitative metrics. Comparing the real and generated
patterns in Fig. 3b, it can be seen in the difference part that pixels
with a larger deviation are more concentrated around the zone
axes and edges of the Kikuchi bands, where the contrast rapidly
changes. In real patterns, the pixel value is calculated using
interpolation based on the master pattern simulated with the
forward model, thus the edges of the main features are usually
very sharp. As mentioned in the Supplementary Information, CVAE
models tend to generate blurry edges, thus the pixel deviations of
these areas are larger than elsewhere. This is also in concord with
Fig. 3c, the distribution of pixel values in the original and
generated patterns with orientations from the testing data set.
Because the original patterns have gone through a contrast
limited adaptive histogram equalization (CLAHE)34, the intensity
distributions of the original patterns are uniform in a normalized
range from 0 to 1. The patterns generated by the trained CVAE
model, while looking very similar to the original ones, have a
distribution with more pixels aggregating at the middle part of the
intensity range. This can be explained by the choice of binary
cross-entropy for the reconstruction loss, of which the optimal
value is depicted by the red spline in the figure. Compared with
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the other commonly used mean squared error (MSE), although it
shows a better optimization behavior, the loss itself is biased
towards 0.5 whenever the ground truth is not binary35. For
orientations in the testing data set, the average optimal
reconstruction loss for each pattern (60 × 60 pixels) is 0.503.
Currently, for generated patterns, the average reconstruction loss
is 0.541.
Since the cross-entropy is not uniform throughout the pixel

value range, a more straightforward way is to directly check the
pixel value deviation between real and generated patterns. In
most studies on generative models, such a pixel-wise comparison
is very rare, since location of the features is not a major concern.
Figure 3d shows the overall distribution based on the statistics
from the whole testing data set, which is a nearly normal fashion;
over 80% of the pixels are within 15% from the ground truth.

Finally, the quality of generated patterns is evaluated by the
accepted indexing method DI. After applying DI to patterns
generated by the trained CVAE model, the disorientation is
calculated between the input (i.e., ground truth) orientations and
the indexing results of DI. Figure 3e is the original distribution
when using a dictionary of n= 100 (same density of dictionary for
training). The mean and standard deviation are 0.650° ± 0.257°. To
further get rid of the limitation set by the sampling density of the
dictionary, a refinement process is performed based on the
BOBYQA (bound optimization by quadratic approximation)
optimization algorithm36. The distribution after the refinement is
shown in Fig. 3f, with a mean and standard deviation of only
0.142° ± 0.061°. Considering the high accuracy and robustness of
DI, the extra low average disorientation angle from the orienta-
tions input is a powerful endorsement for the pattern quality of
the generated patterns.

Fig. 2 Training history for different generative models. Training history of: a a pure CVAE model, b physics-based loss items of a CVAE/GAN
model, and c ML-based loss items of a CVAE/GAN model (Lossdis= D(real)− D(fake)).
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Fig. 1 Generative model schematic. Schematic of the generative model combining CVAE and GAN with attributes manipulation in the
latent space.
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Fine tuning through introduction of GAN
To compensate for the problem of blurry edges in patterns
generated by the CVAE model, based on the pre-trained
discriminator and classifier, the loss items of GAN can be added
to the training. Since all components in the model are pre-trained,
model collapse is very rare during the fine tuning process. Another
important advantage when the loss of GAN is involved is that the
orientation, together with other attributes encoded can be directly
optimized through items provided by the classifier. When trained
on a pure CVAE model, the restoration of EBSD patterns is the
priority and there is no item in the loss function directly related to
these variables.

From the training history shown in Fig. 2b, c, it can be seen that
after the discriminator and classifier are involved, in the fine
tuning step both the disorientation loss and reconstruction loss
are gradually getting lower, indicating the further improvement in
pattern quality; the latent loss remains low at the edge of step
function applied as its adaptive coefficient. It is observed that the
loss term for discriminator drops quickly in the first several epochs
of training and finally stabilizes at a relatively low level, indicating
comparable progress of the discriminator and generator during
alternating training.
Figure 4a compares patterns generated by the CVAE model and

the CVAE/GAN model. As mentioned, before GAN is introduced

Fig. 3 Quantitative analysis of pattern generated by CVAE model. a Generated patterns from a pure CVAE model with adaptive coefficient
of KL divergence applied, b difference between original and generated patterns, c distribution of pixel values in original and generated
patterns, d distribution of pixel value deviation with kernel density estimation, e, f distribution of disorientation angle between orientations
input and DI results on generated patterns with/without refinement.
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into the training, the CVAE model can already generate patterns
with high quality. Thus the only difference that the naked eye can
barely identify from the generated patterns is the mitigation of
blurry edges of Kikuchi bands. This is also revealed by the
distribution of pixel values (Fig. 4b vs. Fig. 3c), as fewer pixel values
are aggregating in the middle of the range. We speculate that this
is because the bias towards 0.5 caused by the latent loss is
partially balanced by the disorientation loss as well as the
discriminator loss.

The improvement brought by GAN is further analyzed with the
help of the same quantitative metrics proposed. Figure 4c–e
enumerates the distribution from the testing data set and the
corresponding statistic is listed in Table 1. Compared with the
CVAE model, the distribution of most metrics from the CVAE/GAN
model maintains the same trend, but with an obvious progress.
Besides the improvement in reconstruction which can be
characterized by cross entropy and pixel deviation, the orientation
indexed by DI is also closer to the orientation input. Without
refinement, two models show almost the same average

Fig. 4 Quantitative analysis of pattern generated by CVAE/GAN model. a Comparison of ground truth, patterns generated by CVAE model,
and patterns generated by CVAE/GAN model, b distribution of pixel values in original and generated patterns, c distribution of pixel value
deviation with kernel density estimation, d, e distribution of disorientation angle between orientations input and DI results on generated
patterns with/without refinement.
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disorientation angle, because the resolution of DI is restricted by
the sampling density of dictionary, which is the same as the one
for training data set. After the indexing result is refined, the
difference in accuracy of generating patterns before and after the
fine tuning can be observed.

Model performance on multiple manipulated attributes
Having verified the model architecture and training strategy for
the orientation-only case, next we include the accelerating voltage
in the tensor of manipulated attributes. This increase in
dimensionality almost does not change the model size, except
for the number of trainable parameters in the last layer of the
encoder, the first layer of the decoder/generator, and the last layer
of classifier, which directly connect to the attribute tensor. The
training history of the model is also very similar to that without the
accelerating voltage, as long as each component in the loss
function can be balanced to avoid model collapse. The animation
in Supplementary Movie 2 indicates a trend similar to that of the
model which only takes orientation as the manipulated attribute.
Different from Supplementary Movie 1, to better show how the
model accommodates to variation introduced by the accelerating
voltage, here we focus on EBSD patterns generated with four
randomly pick orientations under five different accelerating
voltages. Visually, the generated patterns maintain a very high
pattern quality. The model is able to isolate the impact of the
rising accelerating voltage from that of orientation change, as the
location of all Kikuchi bands is maintained, but their widths shrink.

To further quantify the pattern quality in terms of feature
location and feature size, we employ once again the DI with
refinement algorithm to get the orientation prediction on
generated patterns, and then calculate the disorientation angle
between it and the corresponding orientation input. Because the
accelerating voltage turns into a variable, out of curiosity we also
record the result when there is a mismatch between the
accelerating voltage set in DI and attribute input; the results are
listed in Fig. 5. Each cell is colored from green (low) to red (high)
based on its value. It can be seen that disorientation angle is
optimal when the indexing accelerating voltage is the same as the
one in the attribute input of generative model. Compared with
the CVAE/GAN model which only takes orientation as input, the
performance here is very close. This demonstrates the great
potential and scalability of the model to handle a more complex,
multi-dimensional input space. The performance drop caused by
the mismatching accelerating voltage for indexing is caused by
the change in the width of Kikuchi bands which will lead to the
decrease in the dot product value, even if the band center remains
the same, and thus it is likely for DI to produce a false prediction.
Finally, to analyze the reaction of the model to varying

accelerating voltages, we track the width change of the main
Kikuchi bands in both ground truth and generated patterns with a
random orientation. It is found that the trend shown in the
generated patterns conforms to that in real ones; details are
provided in the Supplementary Information.
To sum up, a deep generative model (EBSD-CVAE/GAN) is

proposed in this study to realize analytic and parametric EBSD
pattern simulation. We demonstrate that with proper training, the
model is able to generate EBSD patterns with high fidelity based
on the manipulated attributes given. The quality of the generated
patterns was evaluated through various means. We also demon-
strate that the dimension of the manipulated attributes can be
easily extended without much change in model architecture,
while maintaining a high pattern quality. As summarized in
Table 2, compared with the forward model, which only allows
constant value for some parameters at a time, the generative
model is more flexible and able to represent a more complete
distribution of backscattered electrons. Although extra time is
required at the model training stage, it is extremely useful and
efficient when multiple parameters are subjected to change in a

Table 1. The average and standard deviation of quantitative metrics
before/after the fine tuning via the introduction of GAN.

Metric

Model CVAE CVAE/GAN

Crossentropy 0.541 ± 0.081 0.529 ± 0.065

Absolute pixel deviation 0.092 ± 0.0079 0.077 ± 0.0065

Disorientation angle 0.650° ± 0.257° 0.635° ± 0.253°

Disorientation angle refined 0.142° ± 0.061° 0.102° ± 0.050°

Mean disorientation angle after refinement, °

Standard deviation of disorientation angle after refinement

Fig. 5 Comparison of input and indexed orientations as a function of accelerating voltage. The refined average and standard deviation of
disorientation between orientation input and DI results with different indexing accelerating voltages used.
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single simulation (e.g., simulating EBSD patterns under different
accelerating voltages, with a step of 1 kV), or extrapolation from
the known variable space is required.

METHODS
Model modules
The design of the encoder is similar to our end-to-end orientation
determination model EBSD-CNN18, consisting of convolutional
blocks and fully connected layers. Its main function is to extract
features from EBSD patterns for training, and map them into the
latent space by outputting parameters of its distribution. The
convolution block is composed of depth-wise separable 2D
convolution layers with leaky ReLU activation37. A 2D convolution
residual block is added to alleviate the vanishing-gradient and
overfitting problem in a deep structure by skipping connections.
When the attribute vector is detached from the output of

encoder, it is hoped that the rest forms the parameters of an
underlying probability distribution. With these parameters of the
distribution determined, we can easily sample random latent
representations that are ideally separated from the attributes we
want to manipulate as part of the input for the decoder/generator.
This is also known as the biggest difference between VAE and
original autoencoder38. Before being fed into the decoder/
generator, the attribute vector is concatenated with the latent
representation, forming the composite representation condi-
tioned on the specific attributes. To adjust the number of
attributes being manipulated, we only need to change the
number of weights in the first layer of the decoder/generator;
hence, the model can be flexibly scaled up to control multiple
attributes without the need for drastic changes.
The decoder/generator reconstructs EBSD patterns from latent

representations with arbitrary attribute vector. Since the repre-
sentation is conditioned, besides pattern quality, the decoder/
generator is also responsible for generating patterns with the
correct attributes. In terms of the structure, the biggest difference
is that the convolution filters are replaced by deconvolution
(transposed convolution) filters in the transposed convolution
block. An intuitive description is taking the opposite direction of
convolution, which encodes extra information, offers an option to
increase the output size, and maintains a connectivity pattern
compatible with convolution39.

The discriminator and classifier are inside a single sub-network.
After the convolutional blocks for feature extraction from real and
generated patterns, they each have fully connected layers to
predict the authenticity of patterns and the attributes encoded,
respectively. If multiple attributes are manipulated in the latent
space, the number of classifiers can be accordingly scaled up,
which makes the construction of loss functions for different
attributes more convenient. For the detailed configuration of each
module used in this study, please refer to “Code availability”
section.

Datasets
Initially, only orientation is mutable, thus we generate a equal-
volume cubical grid that densely covers the cubic Rodrigues
fundamental zone (FZ) through the EMsampleRFZ function in
EMsoft40. With a sampling density of n= 100, in total 333,227
unique orientations are generated with a mean disorientation
angle of ≈1°. Then, EBSD patterns for all these orientations are
simulated via the EMEBSD module12 to compose the training data
set. The datasets for validating and testing are constituted in a
similar way, only with different sampling densities so that there is
no duplicate in any of them. This avoids potential overfitting and
leak of the validating/testing data set during the training phase. In
all figures, patterns generated by EMsoft are referred to as “Real,”
as opposed to patterns from the generative model with the same
orientations and accelerating voltages input marked as “Fake.”
Out of all parameters other than orientation, accelerating

voltage is taken to be the extra parameter in this study, because
the change in accelerating voltage does not affect the location of
the Kikuchi bands, but only their widths. From Fig. 6, it can be
seen that with other parameters fixed, a higher accelerating
voltage will lead to Kikuchi bands with smaller width. The
unchanged center of Kikuchi bands makes it easier to observe
whether the model handles this extra parameter well. More
importantly, because the changes resulting from the accelerating
voltage are relatively small, it is possible to discretize the
parameter space, thus avoiding an exponential increase in the
size of the training data set. In this study, 5 accelerating voltages
are used to cover the range of 10–30 kV, which is used in most
EBSD pattern acquisitions.

Table 2. The comparison of forward model and generative model and their usage scenarios.

Forward model Generative model

Variables allowed in one model Orientation and parameters of detector location All previous, accelerating voltage, etc.

Resources required Computational Computational and sufficient patterns for
training

Main time consumption Simulation of “Master” pattern under different
configurations

Model training

Accuracy in disorientation (DI with
n= 100)

~0.1°17 0.15°

Usage scenario Orientation is the only variable; high accuracy required Multiple variables with large range

Fig. 6 Master patterns as a function of voltage. Master patterns of Pt under different accelerating voltages.
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Loss function
Before decomposing the loss function, we will define the training/
testing formulation. Given the pattern x for training, the encoder
Genc will output the parameters (μ, σ) of the distribution D in the
latent space:

ðμ;σÞ ¼ GencðxÞ (1)

Then, the latent representation is sampled based on the choice of
the distribution and its parameters:

z � Dðμ;σÞ (2)

Based on the latent representation z and the attribute vector attr,
the decoder/generator Gdec will try to reconstruct the input, i.e.,
generating “fake” patterns:

x̂ ¼ Gdecðz; attrÞ (3)

Taking both “real” patterns and “fake” patterns as input, the
discriminator Gdis and the classifier Gcls will predict their
authenticity ŷ and manipulated attributes ^attr, respectively:

ŷ ¼ Gdisðx; x̂Þ (4)

^attr ¼ Gclsðx; x̂Þ (5)

It can be seen that there are multiple inputs and outputs, thus
various losses can be configured to guarantee the correct update
of weights in each component.
The KL divergence is a type of statistical distance used to

measure the difference between two probability distributions41. A
decrease of the KL divergence indicates that the parameterized
distribution in the latent space approaches a standard or uniform
distribution. Once minimized, the generation of the latent
representation can eliminate the real pattern input and the
encoder, and only needs to sample from the standard or uniform
distribution. Although we define the loss as a KL divergence, when
it is intractable, the evidence lower bound (ELBO) is actually
optimized during training. For normal distribution, its loss is given
by:

L1ðGaussianÞ ¼ logðσ�1Þ þ σ2 þ μ2

2
(6)

With the latent representation and attribute vector, the
decoder/generator should produce realistic images with correct
attributes, which are expected to approach the original input of
encoder. Thus, the reconstruction learning is set up based on the
difference between output of the decoder and input of the
encoder:

L2 ¼ ℓrecðx; x̂Þ
¼ Crossentropyðx; x̂Þ
¼ � 1

n
1
hw

Pðx log x̂þ ð1� xÞ logð1� x̂ÞÞ
(7)

where n is the number of images in a training batch and h, w
mean height and width of an image respectively. Here the binary
cross-entropy is used for better optimization performance. Besides
cross-entropy, there are other alternatives, such as mean squared
error (MSE). The reconstruction loss helps make the latent
representation z conserve information for the later recovery of
the attribute-excluding details.
The attribute classifier constrains the generated patterns to

encode the desired attributes. The loss function verifies whether it
is able to identify attributes from “real” patterns, as well as the
decoder’s capability of generating patterns with the attribute
input correctly. Since currently we have orientation and accel-
erating voltage as variables in the attribute vector, for the former
the loss function is the disorientation angle, while for the latter the

loss function is the mean squared error:

attr ¼ ðo; avÞ (8)

L3;o ¼ Disorientationðo; ôÞ (9)

L3;av ¼ MSEðav; âvÞ (10)

The adversarial loss between the generator/decoder and the
discriminator is introduced to make the generated patterns
visually realistic. Here, we follow the loss function used in
WGAN42, which characterizes the Wasserstein distance and has
its advantages over the Jensen-Shannon divergence (JS diver-
gence) in the original GAN:

L4;dis ¼ �Ex�pdataðxÞ½DðxÞ� þEz�pzðzÞ½DðGdecðzÞÞ�
¼ �yþ ŷ

(11)

L4;dec ¼ �Ez�pzðzÞ½DðGdecðzÞÞ�
¼ �ŷ

(12)

The first is minimized when training the discriminator, so that it
tends to assign a higher probability to the original patterns, while
a lower one to generated patterns. The second is minimized when
training the decoder/generator, which aims at achieving a higher
probability from the discriminator using generated patterns.
To allow for flexibility in the tuning model and to place

emphasis on a certain aspect of the generated pattern quality, a
coefficient is needed for each loss item mentioned. Thus, the
overall loss expression for the encoder and decoder/generator can
be written as:

L ¼ α1L1 þ α2L2 þ α3;oL3;o þ α3;avL3;av þ α4;decL4;dec (13)

As the discriminator and classifier are placed behind the encoder
and decoder/generator, the overall loss expression when training
them is:

L ¼ α3;oL3;o þ α3;avL3;av þ α4;disL4;dis (14)

Training
The initial training takes the orientation in the form of a
quaternion as the only manipulated attribute. To verify the
feasibility and determine an appropriate model size, we trained a
model with a latent representation size of 500 (i.e., z 2 R500), and
set a high ratio for the reconstruction loss, while neglecting the
adversarial and attribute losses. This is because mode collapse is
common in the training of a GAN when the generator fails to
generalize, or the performance gap between the generator and
the discriminator keeps expanding, yet sometimes the solution is
hard to find43. Thus, we start from a pure CVAE to validate the
encoder-decoder architecture in this study. To balance the
reconstruction loss and KL divergence, we applied an adaptive
coefficient in the final loss function (detail discussed in the
Supplementary Information).
Both discriminator and classifier are essentially end-to-end

discriminative models, thus they are pre-trained using the same
recipe as the one for EBSD-CNN, our orientation determination
model18. After CVAE part and discriminator/classifier are trained
separately, they are integrated and trained in parallel following a
specific frequency as a CGAN model. Weight clipping with
constant minimum/maximum is used to enforce a Lipschitz
constraint and maintain a stable training of the model. It is
expected that through adversarial training both parts can gain
further progress at a similar pace.
All hyperparameters used in different sections throughout the

training are provided in the Supplementary Information.
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DATA AVAILABILITY
The data that support the findings of this study for model training, and testing can be
generated via the open source package EMsoft following the instructions in
“Datasets” under the “Methods” section. It is also available on request from the
corresponding author M.D.G.

CODE AVAILABILITY
The source code to train the generative model EBSD-CVAE/GAN is provided open
source under non-restrictive licenses. The source code, together with the
documentation, can be obtained from the GitHub repository: https://github.com/
Darkhunter9/EBSD_CVAE_GAN_Public.
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