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Inverse design of metal–organic frameworks for C2H4/C2H6

separation
Musen Zhou 1 and Jianzhong Wu 1✉

Efficient separation of C2H4/C2H6 mixtures is of paramount importance in the petrochemical industry. Nanoporous materials,
especially metal-organic frameworks (MOFs), may serve the purpose owing to their tailorable structures and pore geometries. In
this work, we propose a computational framework for high-throughput screening and inverse design of high-performance MOFs for
adsorption and membrane processes. High-throughput screening of the computational-ready, experimental (CoRE 2019) MOF
database leads to materials with exceptionally high ethane-selective adsorption selectivity (LUDLAZ: 7.68) and ethene-selective
membrane selectivity (EBINUA02: 2167.3). Moreover, the inverse design enables the exploration of broader chemical space and
identification of MOF structures with even higher membrane selectivity and permeability. In addition, a relative membrane
performance score (rMPS) has been formulated to evaluate the overall membrane performance relative to the Robeson boundary.
The computational framework offers guidelines for the design of MOFs and is generically applicable to materials discovery for gas
storage and separation.
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INTRODUCTION
The efficiency of C2H4/C2H6 separation is important for the
petrochemical industry because high-purity C2H4 is used as the
primary feedstock for the synthesis of diverse chemical products,
including plastics, polyesters, and rubber materials1,2. Conven-
tional processes for C2H4/C2H6 separation are mostly based on
high-pressure cryogenic distillation, which requires extensive
energy input while suffering from low separation efficiency. To
reduce the energy cost and increase the selectivity, it is desirable
to develop alternative approaches such as adsorption or permea-
tion processes based on nanoporous materials3–5.
Metal–organic frameworks (MOFs) are ideal candidates for

efficient separation of C2H4/C2H6 because they have good
mechanical stability, large specific surface area, and tailorable
pore structure and geometry6–8. In particular, such materials show
promising performance for separating molecules with similar size
and interaction energy, such as the mixtures of H2/D2 isotopes,
noble gases (Ar/Kr/Xe), and of xylene isomers9–12. For C2H4/C2H6

separation, promising MOF candidates have been identified by
experiments3,4,13,14. Whereas the possible variations of MOFs are
virtually unlimited, and the separation efficiency is sensitive to the
atomic details, it is practically infeasible to explore the design
space only through experimentation. Previously, computational
methods have been used to identify the best material candidates
for the separation process through high-throughput screen-
ing9,15,16. While the adsorption isotherms predicted by the
computational methods are found in good agreement with
experimental measurement17, membrane processes are often
considered more efficient to separate C2H4 from C2H6, leveraging
the difference in both adsorption affinity and gas diffusivity18. To
the best of our knowledge, previous research on the computa-
tional screening of MOF databases is mostly concerned with the
separation of C2H4/C2H6 by adsorption17,19–22. From the computa-
tional perspective, the assessment of MOF materials for mem-
brane separation is much more demanding than that for gas
adsorption because the evaluation of gas diffusivity in confined

geometry is typically more time-consuming. In particular, the
strong confinement makes it computationally prohibitive to
predict the diffusion coefficients of gas molecules in a large
library of nanoporous materials using conventional methods such
as molecular dynamics (MD) simulation23,24.
Although computational methods (e.g., MD, grand canonical

Monte Carlo simulation, and classical density functional theory)
have been well established for accurate prediction of gas
adsorption and diffusivity25–28, the inverse design of nanoporous
materials for separation processes remains a theoretical challenge
from both computational and practical perspectives. While the
generative adversarial network (GAN) shows early success in the
inverse design of zeolites for methane storage29, its computational
complexity increases significantly with the number of elements in
the crystal structure. Besides, GAN easily breaks down and fails to
converge for complicated crystalline materials such as MOFs
because a large number of atomic types need to be considered. In
contrast, variational autoencoder (VAE) can well accommodate the
complex topology and molecular structure of the secondary
building blocks (SBUs) by compressing the MOF structure into a
text string and projecting it into the latent space30. However, VAE
requires accurate projection (viz., encode and decoder) between
the crystal structure and the latent space, and the training of VAE
would become infeasible when a vast number of SBUs are
considered for the MOF design. Alternatively, evolutionary
algorithms, such as the genetic algorithm (GA), are promising
for the inverse design of MOFs because they can not only
accommodate a large number of SBUs for the MOF design, but
also find the solution in a nonlinear space consisting of the
material topologies and SBUs31,32.
In previous work25,26, we developed the computational

procedure with GPU acceleration that offers a fast and accurate
evaluation of sorption and diffusion properties of gas molecules in
nanoporous materials. Empowered by the developed computa-
tional capability, here we perform high-throughput screening of
the computational-ready experimental (CoRE 2019) MOF database
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(over 10k MOFs) for the separation of C2H4/C2H6 with adsorption
and membrane processes. Compared with the state-of-art
materials from the literature4,33, the best MOFs identified in this
work have significantly higher separation selectivity. The highest
ethane-selective adsorption selectivity in LUDLAZ is up to 7.68,
and the highest ethene-selective membrane selectivity in
EBINUA02 can reach 2167.3. Leveraging the high-throughput
capability, a GA is incorporated into our computational workflow
to achieve the inverse design of MOF membranes with both high
membrane selectivity and permeability. The inverse design allows
us to explore a broader chemical space in comparison with high-
throughput screening and identify MOFs with even higher
membrane selectivity and permeability. The structural analyses
of MOFs with the best separation performance offer useful
guidelines for the experimental design of MOFs for adsorption and
membrane separation.

RESULTS AND DISCUSSION
Screening CoRE MOF 2019 database
We first perform the high-throughput screening of the CoRE MOF
2019 database for the separation of C2H4/C2H6 through adsorption
and membrane processes. While high-throughput screening has
been commonly used to find the best material candidates for gas
adsorption, the procedure is more challenging for membrane
separation because of the steep computational cost of evaluating
the diffusion coefficients. Figure 1 shows the separation selectivity
versus capacity for both adsorption and membrane separations. In
Fig. 1a and Supplementary Fig. 1, we removed MOFs with Henry’s
constant for ethene smaller than 1 × 10−5molm−3 Pa−1 or the
largest cavity diameter (LCD) less than the hard-sphere diameter of
ethene. Those structures can hardly accommodate ethane/ethene
molecules and thus are not further considered in this work. The hard-
sphere diameters of ethane and ethene are calculated from the
Barker–Henderson theory34 based on their Lennard–Jones (LJ)
parameters, and more details are provided in Supporting Information.

As shown in Fig. 1a, the maximum selectivity is less than 30 for
ethene-selective MOFs suitable for adsorption separation. It decreases
exponentially with the increase of the separation capacity (viz.
adsorption amount) because highly confined pores are needed in
order to achieve high ethene-selectivity. The structural properties of
top ethene-selective and ethane-selective MOFs are shown in
Supplementary Table 2 and Supplementary Table 3, respectively.
Such materials offer little pore volume to achieve high adsorption
capacity. Table 1 lists the properties of the top 5 ethene-selective
MOFs for the adsorption separation of C2H4/C2H6 at room
temperature (300 K).
Although ethene-selective materials yield high selectivity in the

separation of C2H4/C2H6 by gas adsorption, industrial applications
desire ethane-selective processes because they can significantly
reduce energy costs. Supplementary Fig. 1 shows that consistent
with the literature4,5,20, the highest selectivity of ethane-selective
MOFs identified in this work is much smaller than that of ethene-
selective MOFs because the stronger adsorption of smaller
molecules (e.g., ethene) yields a larger adsorption selectivity of
C2H4/C2H6 via the ultra-small pores of promising MOFs. It is worth
noting that, different from ethene-selective MOF for the separa-
tion of C2H4/C2H6 via adsorption, the selectivity of ethane-
selective MOFs increases with the capacity and none of the CoRE
MOFs have the ethane-selective adsorption selectivity above 8.
Table 2 lists the top 5 ethane-selective MOFs with the highest

adsorption selectivity of C2H6/C2H4 at 300 K. Although MOF
candidates with high adsorption selectivity of C2H4/C2H6 have
been reported before17,19–22, the materials identified in this work
yield much higher selectivity for both ethene-selective and
ethane-selective separations. Previously, the computational
screening was carried out either on a smaller structural database
or a subset of the large structural library (e.g., CoRE MOF 2019)
that was restricted by certain structural and chemical criteria.
While the application of these criteria would speed up the
computation by reducing the number of materials to be
evaluated, they ignore promising candidates due to the complex

Fig. 1 Selectivity vs. capacity for CoRE MOFs used in C2H4/C2H6 separation. a Adsorption selectivity. The green line is fitted with
αIM= 0.2516e−0.7411log(K). b Membrane selectivity. The red line denotes the Robeson boundary, and the color stands for the percentile of
relative membrane performance score (rMPS): the red, gray, and blue represent the highest, intermediate, and lowest rMPS, respectively. The
dashed line marks the membrane selectivity of 1.

Table 1. Henry’s constants (Kh), ideal selectivity (αIM), and self-diffusivity (D0) of top ethene-selective MOFs for adsorption separation of C2H4/C2H6 at
300 K (The diffusion coefficients are shown only if they are larger than 1 × 10−20 m2 s−1).

MOF Kh(C2H4) (mol m−3 Pa−1) Kh(C2H6) (mol m−3 Pa−1) αIM(C2H4/C2H6) D0(C2H4) (m
2 s−1) D0(C2H6) (m

2 s−1)

PIRYOF 5.474 × 10−2 2.027 × 10−3 27.01

BADHIA 3.454 × 10−4 1.325 × 10−5 26.07

BADHOG 4.205 × 10−4 1.766 × 10−5 23.81

EBINUA02 1.682 × 10−2 9.829 × 10−4 17.11 9.342 × 10−15 7.377 × 10−17

FEDKAB 9.997 × 10−2 6.036 × 10−3 16.56
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topology and structure. For the adsorption separation of C2H4/
C2H6, the selectivity also declines with the increase in loading
amount. The reduction in adsorption selectivity can be attributed
to the smaller difference between the adsorbate-adsorbate
interactions in comparison to that between adsorbate and
adsorbent interactions.
According to the structural analysis of the promising materials

(results shown in Supplementary Fig. 2 and Supplementary Fig. 3),
the ethane-selective MOFs have less confined geometry in terms
of the pore limit diameter (PLD), the largest cavity diameter (LCD)
and pore size distribution in comparison with the ethene-selective
MOFs. The increase in pore size leads to a much higher adsorption
capacity for those MOFs with higher ethane selectivity. It is worth
mentioning that the highest adsorption selectivity of ethane-
selective MOF [LUDLAZ: αIM(C2H6/C2H4)= 7.68] identified in this
work is about 60% higher than the best nanoporous material
found by the previous computational screening22, a hypothetical
zeolite structure [αIM(C2H6/C2H4)= 4.86]. The adsorption selectivity
is more than 70% higher than that of the state-of-art nanoporous
material reported in the experimental literature4, Fe2(O2)(dobdc)
with C2H6/C2H4 adsorption selectivity of 4.4. Besides, LUDLAZ has
a much larger Henry’s constant [Kh(C2H6)= 4.6056 cm3 g−1 Pa−1]
than Fe2(O2)(dobdc) [Kh(C2H6)= 0.0147 cm3 g−1 Pa−1], meaning
much higher gravimetric adsorption capacity. We note in passing
that LUDLAZ was originally synthesized by McKellar and cow-
orkers to examine how ligand exchange affects the stability and
compressibility of MOF materials35. For the top five ethane-
selective MOFs, their pore size distributions characterized by N2

adsorption are shown in Supplementary Fig. 3b. These materials
have similar micropores between 5 and 7 Å, rendering higher
selectivity of ethane over ethene in adsorption separation.
Compared with adsorption, gas separation via permeation

through MOF membranes may achieve not only higher selectivity
but also larger separation capacity. In addition, a membrane splits
the feed stream into two purified sub-streams (viz., retentate
stream and permeate stream) such that it does not require a
recovery process even for ethene-selective operations. Therefore,
the membrane process is often much less energy-intensive in
comparison with adsorption. Figure 1b shows the membrane
selectivity versus membrane permeability in the units of the
barrer. The red line in Fig. 1b denotes the Robeson boundary, a
semi-empirical upper limit summarized by Rungta et al.2 based on
the state-of-art polymer membranes for specifically separating
ethane and ethene. We see that many MOFs in the CoRE MOF

2019 database surpass the Robeson boundary, indicating their
superior performance compared with the polymer membranes.
The highest membrane selectivity of C2H4/C2H6 is 2167.3 in MOF
—EBINUA02, which was synthesized by Tian et al.36, with the 1D
rhombic channel in the 3D diamond topology network. The
selectivity is several orders of magnitude larger than the state-of-
art membrane materials discovered by previous computational
screening and experimental synthesis19,33. Table 3 lists the top 5
MOFs with the highest membrane selectivity of C2H4/C2H6.
In our previous work25,26, we proposed the membrane

performance score (MPS) to evaluate the overall performance of
nanoporous materials by combining the membrane selectivity and
permeability. Although MPS offers a direct comparison of
nanoporous materials with different permeability and selectivity,
it does not evaluate the membrane performance relative to the
upper limit of the state-of-art polymer membranes (viz., the
Robeson boundary). Here, we propose a modification of MPS,
which is originally defined as MPS ¼ kfast=slow ´ Pfast. The relative
MPS (rMPS) is defined as

rMPS ¼ kfast=slow � kRobesonfast=slow

� �
´ Pfast (1)

where k represents the membrane selectivity, P stands for the gas
permeability, and the fast component refers to the one with
higher permeability in the binary mixture. Since rMPS evaluates
the overall performance of nanoporous materials relative to the
Robeson boundary, MOFs with a selectivity below the Robeson
boundary would have a smaller and negative rMPS compared with
MPS if the membrane selectivity is larger than 1. When the
membrane selectivity is smaller than 1, MOFs with membrane
selectivity below the Robeson boundary would have a higher
rMPS because the selectivity of the fast component over the slow
component is larger than that on the Robeson boundary with the
same value of permeability. Because in rMPS the membrane
selectivity is defined in terms of the fast component over the slow
component, and the identity of the fast component might change
for different materials, rMPS reflects the relative separation
efficiency of the fast component in a MOF membrane compared
to that in the state-of-art polymer membrane at the same
permeability. For the separation of C2H4/C2H6, Figure 1b shows
that a high rMPS value favors MOFs with high permeability but
intermediate selectivity (bottom right) instead of intermediate
permeability and high selectivity (top center). Because ethane and
ethene have similar molecular size and interaction energy, the
increase of diffusion selectivity from an intermediate value

Table 2. Top ethane-selective MOFs for the separation of C2H4/C2H6 at 300 K by gas adsorption.

MOF Kh(C2H4) (mol m−3 Pa−1) Kh(C2H6) (mol m−3 Pa−1) αIM(C2H6/C2H4) D0(C2H4) (m
2 s−1) D0(C2H6) (m

2 s−1)

LUDLAZ 4.374 × 101 3.360 × 102 7.68 4.350 × 10−9 6.313 × 10−9

EFILUA 1.863 × 102 1.301 × 103 6.98 1.956 × 10−9 1.188 × 10−9

XUJSAY 3.360 × 101 2.107 × 102 6.27 6.291 × 10−9 2.145 × 10−9

ZAZNUL 2.735 × 101 1.697 × 102 6.20 6.604 × 10−9 2.134 × 10−9

KAXQIL 5.689 × 101 3.479 × 102 6.12 1.362 × 10−9 1.088 × 10−9

Table 3. Top MOFs for C2H4/C2H6 separation with the highest membrane selectivity (kIM) at 300 K.

MOF Kh(C2H4) (mol m−3 Pa−1) Kh(C2H6) (mol m−3 Pa−1) D0(C2H4) (m
2 s−1) D0(C2H6) (m

2 s−1) kIM(C2H4/C2H6)

EBINUA02 1.682 × 10−2 9.828 × 10−4 9.342 × 10−15 7.377 × 10−17 2167.3

HAZGOF 9.344 × 10−4 1.939 × 10−4 1.438 × 10−12 4.202 × 10−15 1649.1

ALOLES 2.770 × 10−2 6.686 × 10−2 8.276 × 10−15 3.271 × 10−18 1048.2

EBINUA 1.030 × 10−2 7.678 × 10−4 4.007 × 10−14 5.599 × 10−16 960.1

EBINUA01 2.056 × 10−2 2.320 × 10−3 3.033 × 10−13 6.128 × 10−15 438.2
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requires a larger energy barrier along the minimum energy path
(MEP), which leads to a significant reduction of the diffusion
coefficient and rMPS. Conversely, the increase in diffusion
coefficient results in the reduction of diffusion selectivity due to
the absence of a large energy barrier for molecular sieving. As
shown in Supplementary Fig. 1, only the ideal adsorption
selectivity of C2H6/C2H4 increases with the capacity. Therefore,
we conclude that MOFs with high rMPS are mostly ethane-
selective and that the membrane selectivity is mostly attributed to
their difference in the adsorption amount. Table 4 lists the top 5
MOFs with the highest rMPS.

Structural features of promising MOF membranes
As discussed above, the selectivity of MOF membranes is less
compromised (and much higher) at high separation capacity in
comparison with MOF adsorbents. To explore the synergetic
effects between adsorption and diffusion, we have further
examined the structural features of top MOFs with the highest
membrane selectivity and rMPS.
Figure 2 shows the distributions of PLD and LCD for all MOFs in

the CoRE MOF 2019 database and MOFs with the top 5%
membrane selectivity and rMPS. Compared with the distributions
of PLD and LCD for all CoRE MOFs, it is clear that MOFs with the
top 5% membrane selectivity (and rMPS) have significantly
different structural features. The PLD and LCD distributions
suggest that MOFs with the top 5% membrane selectivity have
much smaller pores than those with the top 5% rMPS. However,
their void fractions are rather similar, both in the range from 0.4 to
0.7 (shown in Supplementary Fig. 4). For MOFs with top 5%
membrane selectivity, the PLD mostly distributes between 2.75
and 3.5 Å, where the narrow end is even slightly smaller than the
LJ diameter of the methylene group in ethene. It is worth
mentioning that nanoporous materials do not prohibit gas
adsorption even when the PLD is slightly smaller than the LJ
diameter of the gas molecules37. As a matter of fact, the selectivity
is maximized for MOFs with the PLD slightly smaller than the LJ
diameter because the extremely narrow pore aperture magnifies

the difference in the potential energy between C2H4 and C2H6 at
the transition state. By contrast, MOFs with the top 5% rMPS have
a PLD distribution spanning from 3.75 to 4.75 Å. Compared with
MOFs with top 5% membrane selectively, the slightly larger PLD
for MOFs with top 5% rMPS leads to a smaller difference in the
potential energy between ethane and ethene at the transition
state, and, therefore, much higher permeability with intermediate
membrane selectivity. Similar to the PLD distribution, the LCD
distribution for the MOFs with top 5% membrane selectivity is
mostly localized at the smaller pore size than those with top 5%
rMPS. For MOFs with the top 5% membrane selectivity, the ultra-
narrow pore apertures contribute to a larger membrane selectivity
but a smaller diffusion coefficient and lower permeability.
Figure 3 shows the minimum energy path (MEP), molecular

orientation along the MEP, and the energy landscape for gas
diffusion in MOFs with the highest membrane selectivity
[EBINUA02: kIM(C2H4/C2H6)= 2167.3 and rMPS= 1012.4 barrer]
and the highest rMPS [LUDLAZ: kIM(C2H6/C2H4)= 11.1]. Supple-
mentary Fig. 5 presents the energy barrier along the MEP for
EBINUA02 and LUDLAZ. For both EBINUA02 and LUDLAZ, only one
direction along the lattice vector can accommodate the diffusion
of ethane or ethene molecule. Figure 3a, b shows that, despite the
significant difference between EBINUA02 and LUDLAZ in the
energy landscape along the MEP, their MEPs inside MOFs are
almost identical. Both EBINUA02 and LUDLAZ yield near straight
trajectories for the molecular center of mass on the MEP with a
minimal change of the molecular orientation, suggesting that the
high membrane selectivity is attributed to extremely narrow
pores. It is worth noting that the local chemical environments are
very similar along the MEP in EBINUA02 and LUDLAZ, and their
different pore structures result in the distinct energy landscapes
along the MEP.
Although EBINUA02 and LUDLAZ have a similar void fraction,

their pore structures (e.g., PLD and LCD) are very different, thus
resulting in different separation mechanisms. According to the
solution-diffusion theory18, the membrane selectivity can be
improved by increasing the difference in adsorption, diffusion,

Table 4. Top MOFs with the highest relative membrane performance score (rMPS) for the separation of C2H4/C2H6 at 300 K.

MOF Kh(C2H4) (mol·m−3·Pa−1) Kh(C2H6) (mol·m−3·Pa−1) D0(C2H4) (m
2·s−1) D0(C2H6) (m

2·s−1) kIM(C2H6/C2H4) rMPS (barrer) ×1010

LUDLAZ 4.374 × 101 3.360 × 102 4.350 × 10−9 6.313 × 10−9 11.1 5.597

PARMIG 9.666 × 101 5.599 × 102 1.404 × 10−8 1.333 × 10−8 5.5 5.484

BEKSAM 4.511 × 102 1.892 × 103 9.052 × 10−9 4.231 × 10−9 2.0 1.339

MIMVEJ 2.869 × 101 1.443 × 102 1.291 × 10−8 1.276 × 10−8 5.0 1.268

MORZID 1.842 × 102 8.200 × 102 7.613 × 10−9 6.568 × 10−9 3.8 1.046

Fig. 2 The structural characteristics of CoRE MOFs and MOFs most promising for membrane separation. Distributions of the pore limit
diameter (a) and the largest cavity diameter (b) for all CoRE MOFs and MOFs with top 5% ideal membrane selectivity and relative performance
score (rMPS) for C2H4/C2H6 separation.
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or a combination of both quantities. EBINUA02 has a much smaller
pore aperture (PLD: 2.91 Å and LCD: 3.96 Å) than LUDLAZ (PLD:
4.18 Å and LCD: 5.96 Å), which leads to the preferential diffusion
and adsorption (viz. solubility in solution-diffusion theory) of C2H4

and the extremely high membrane selectivity of C2H4 over C2H6.
Whereas in LUDLAZ, its interaction with the gas molecules is
attractive even at the transition state and the difference in the
energy barrier between C2H4 and C2H6 is almost negligible
(Fig. 3d). The relatively spacious pore structure in LUDLAZ results
in a slightly faster diffusion of C2H6 than C2H4 because ethane
experiences a stronger van der Waals attraction. As a result, the
membrane selectivity of LUDLAZ is mostly contributed by the
difference in adsorption (viz., Henry’s constant) between C2H4 and
C2H6. According to the above analysis of the top MOFs with high
membrane selectivity and rMPS, a large energy barrier (viz.,
extremely narrow pore aperture) is not preferred for the design of
an ideal MOF membrane (with both high selectivity and
permeability). The trend is intuitively understandable because a
narrow pore aperture significantly reduces the gas diffusion
coefficient and permeability; for the rational design of ideal MOF
membranes for C2H4/C2H6 separation, the selectivity and perme-
ability need to be harnessed by enhancing the difference in
adsorption and diffusion, respectively.

Inverse design of MOF membranes
In comparison with adsorption, the membrane process has major
advantages in terms of both separation selectivity and capacity (viz.
permeability). As a result, our inverse design is concerned only with
MOF membranes. To find nanoporous materials ideal for C2H4/C2H6

separation (viz., high separation selectivity and capacity), we use the

genetic algorithm (GA) with the fitness score of

Ftotal ¼ 0:5Fk
IM þ 0:5FP: (2)

In Eq. (2), the total fitness score, Ftotal, is evenly weighted
according to the member selectivity and permeability. The
member selectivity fitness score is formulated as

Fk
IM ¼ kIM � 5ð Þ2þ2 kIM � 5

ek
IM�5 þ 1 kIM<5

(

where kIM stands for the (ethene-selective) membrane selectivity.
Conversely, the permeability fitness score is defined by

FP ¼ log Pð Þ P � 100

eP�100 þ 1 P<100

�
:

In this work, the membrane selectivity of 5 and permeability of
100 barriers are used as threshold values because most CoRE
MOFs have a permeability larger than 100 barrier but few have a
membrane selectivity larger than 5. For materials with perme-
ability or selectivity lower than the corresponding threshold value,
the exponential form allows for a smooth variation of the fitness
score. Such a smooth form is important, especially for materials
with an extremely small value of permeability. Compared with
improving permeability, it is much more difficult to improve
membrane selectivity. Therefore, for permeability and selectivity
larger than the threshold values, the fitness score of selectivity is
constructed in the quadratic form, while the natural logarithm is
used for the permeability. According to this formulation of the
fitness score, a relatively small increase in selectivity would lead to
a large increase in fitness, thus allowing GA to generate MOFs with
both high membrane selectivity and permeability instead of MOFs
with solely high permeability.

Fig. 3 Diffusion pathways of ethane and ethene molecules through MOFs in the CoRE MOF 2019 database with the highest adsorption
selectivity (LUDLAZ) and with the highest membrane selectivity (EBINUA02). The position and orientation of an ethene molecule along the
MEP in EBINUA02 (a) and in LUDLAZ (b). Here, the detailed molecular structures are only guides to the eye. The energy landscape along the
MEP for ethane and ethene in EBINUA02 (c) and in LUDLAZ (d) at 300 K.
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Figure 4 shows how each MOF is represented as a ‘chromo-
some,’ i.e., in terms of the MOF topology, node and edge. The
schematic flowchart elucidates the computational steps in the
inverse design of MOF membranes. Compared with the CoRE MOF
database or other existing MOF structural databases, a much
larger chemical space can be explored for the inverse design. In
this work, the SBU database consists of 1,687 topologies, 648
nodes, and 219 edges. As each MOF is defined by a topology, and
up to two types of metal nodes and three types of edges,
enormous combinations are possible for the MOF construction.
Although the number 7.4 × 1015 does not necessarily reflect the
actual size of the design space because many combinations of the
edges, nodes, and topology cannot lead to the construction of
synthesizable MOFs, it shows the extensiveness of the design
space in the enumeration of all possible combinations of the
topology and building blocks. Not all chromosomes would lead to
a successful MOF design owing to the unmatched coordination
number and/or bonding distance between the topologies, nodes,
and edges. Invalid chromosomes were identified during the
construction of MOF structures with PORMAKE based on the
compatibility criteria for the building blocks and topology37. The
percentage of invalid chromosomes is about 70% on average
among all generations of chromosomes sampled by GA. In
general, the successful rate increases with the GA evolution. For
valid chromosomes, we obtain the MOF structure and cell
parameters from PORMAKE that is able to accommodate the
nodes and linkers in arbitrary topologies while avoiding clashing
atoms and distorting bonds. The structures generated by
PORMAKE were optimized during the MOF construction. No
further geometry optimization was attempted in this work.
Figure 5 shows the membrane selectivity and permeability of

the designed MOFs in comparison with CoRE MOFs. Here, we
consider only materials in the region where the scale of

permeability is similar to the experiment results. Supplementary
Fig. 6 shows the same figure with the full ranges of permeability
and selectivity. Figure 5a compares the properties of MOF

Fig. 5 Membrane selectivity vs. capacity for CoRE MOFs and inverse-designed MOFs for C2H4/C2H6 separation. a Membrane separation
selectivity vs. permeability for CoRE MOFs (filled dots) and inverse designed MOFs (open symbols). The distribution of membrane selectivity
(b) and permeability (c) for inversed designed MOFs. The red line denotes the Robeson boundary, and the color spectrum stands for the
percentile of relative membrane performance score (rMPS): the red, white, and blue represent the highest, intermediate, and lowest rMPS,
respectively. Brown box, purple circle, green triangle, and gold star stand for inverse-designed MOFs in generations 0, 1, 2, and 3, respectively.

Fig. 4 Schematic diagrams for the chromosome representation of
MOF and the genetic algorithm used in this work. a Chromosome
representation of MOFs investigated in this work where topology,
node, and edge are treated as genes in the chromosome.
b Workflow of the genetic algorithm (GA) for the inverse MOF
design. Here, square boxes represent the secondary building blocks
(SBUs) used for MOF construction. In analogy to the genes in the
chromosome, the choice of SBUs directly determines the physio-
chemical properties and separation performance. Black, brown, and
green boxes represent the topology, node, and edge, respectively.
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structures generated by GA with those from the CoRE MOF library
in terms of membrane selectivity and permeability. Clearly, GA is
able to identify MOF structures with the targeted properties, i.e.,
high selectivity and high capacity, as shown in the area above the
Robeson boundary. Because no constraint was imposed in
sampling the design space, GA sampling does not always lead
to the successful construction of MOF structures. For those
chromosomes not generating valid MOFs, their fitness scores
would be assigned to the lowest value.
Figure 5b, c presents the percentages of MOF structures in

different generations of GA sampling. Similar plots are given in
Supplementary Fig. 6b, c, but for the entire ranges of membrane
selectivity and permeability. As the area under each curve
represents the percentage of valid MOF structures in each
generation, the successful evolution of GA is evident not only
because it generates more valid MOF structures after each round
of evolution but because the designed materials show noticeable
improvement in both permeability and membrane selectivity.
Although many MOF structures do not surpass the Robeson
boundary even in the final generation (gold stars), GA is able to
create successful candidates with high membrane selectivity and
permeability. Importantly, GA is computationally much more
efficient than conventional approaches of material discovery, such
as high-throughput screening, because it avoids enumeration of
the entire design space.
The best MOF identified by the inverse design (yfk-N379)

significantly improves the overall membrane separation performance
in terms of both membrane selectivity and permeability. Table 5 lists
the detailed properties of yfk-N379. It should be noted that the best
materials identified by GA may vary with the initial generation. In this
work, we tested the efficiency of the inverse design with a different
initial generation (shown in Supplementary Fig. 8). Whereas different
sets of materials were sampled during the evolution, it seems that
GA sampling is robust to meet the goal of the inverse design
independent of the initial condition. Although the final MOF
structures are not identical, they have similar performance in terms
of both membrane selectivity and permeability.
Figure 6 shows molecular orientation and energy landscape for

the diffusion of gas molecules along the MEP. In yfk-N379, the
metal node, (CO2-κ2O)TbO2(μ-CO2-κ2O)4TbO2(CO2-κ2O), is con-
nected with the yfk topology network to form a 1D channel for the
diffusion of C2H4 and C2H6 molecules. The energy landscape along

the MEP in yfk-N379 is similar to that in LUDLAZ, where the
intermolecular interaction along the MPE is all attractive. Also, like
that in LUDLAZ, the difference in the energy barrier between C2H4

and C2H6 is relatively small. As discussed above, in order to design
an ideal MOF membrane with both high membrane selectivity
and permeability, the separation selectivity shall be harnessed by
the difference in the adsorption (viz., solubility), and the high
permeability should be obtained by fast diffusion. As shown in
Fig. 6b, the 1D channel in yfk-N379 offers strong attraction and a
relatively moderate energy barrier along the MEP, which results in
the extremely fast diffusion of gas molecules. The distinct
difference of adsorption properties (viz., Henry’s constant)
between C2H4 and C2H6 in yfk-N379 leads to an exceptionally
high membrane selectivity compared to the CoRE MOFs. Although
the membrane selectivity yfk-N379 is not much larger than those
corresponding to the top 5 CoRE MOFs, its permeability (8420
barrier) is at least three orders of magnitudes higher. Conversely,
the membrane selectivity of yfk-N379 is 30% higher than those of
CoRE MOFs with similar permeability. The synergetic effects from
adsorption and diffusion help yfk-N379 achieve both high
membrane selectivity and permeability simultaneously, making it
promising for industrial applications.
We have performed molecular dynamics (MD) simulation to

further validate the diffusion coefficients of ethane and ethene in
the top 5 MOFs with the highest rMPS and in the best MOF
candidate identified from the inverse design (yfk-N379). As shown
in Supplementary Fig. 7, the diffusion coefficients predicted by the
transition-state theory (TST) agree well with the MD results. In
comparison with MOF-5 tested in our earlier work, these MOFs
have a more complicated pore structure and topology, indicating
the accuracy of MEPs calculated by the simplified string method.
Compared with high-throughput screening, the inverse design via

GA is computationally much more efficient. For example, the ideal
MOF candidate (both high membrane selectivity and permeability)
for the membrane separation of C2H4/C2H6 can be found with only
8000 attempts in the much larger chemical space. The computa-
tional workflow thus demonstrates that with the efficient theoretical
tools for high-throughput evaluation of materials performance, how
the inverse design can significantly accelerate the material
discovery, especially for the construction of reticular materials (e.g.,
MOFs and COFs) for the gas storage and separation.

Table 5. Properties of designed MOFs with both high membrane selectivity and permeability for the separation of C2H4/C2H6 at 300 K.

MOF Kh(C2H4) (mol m−3 Pa−1) Kh(C2H6) (mol m−3 Pa−1) D0(C2H4) (m
2 s−1) D0(C2H6) (m

2 s−1) kIM(C2H4/C2H6)

yfk-N379 1.682 × 10−2 9.828 × 10−4 1.677 × 10−9 1.467 × 10−9 20.8

Fig. 6 The minimum energy path (MEP) and diffusion energy landscapes of C2H6 and C2H4 in the MOF membrane identified by the
inverse design (yfk-N379). a The position and orientation of an ethene molecule along the MEP (yellow line) in yfk-N379. b Energy landscape
along the MEP for ethane and ethene in yfk-N379 at 300 K.
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In this work, we have integrated high-throughput screening and
inverse design to find the best MOFs for C2H4/C2H6 separation.
Both adsorption and membrane processes have been considered
in the high-throughput screening of the CoRE 2019 MOF database.
For the adsorption separation, the separation selectivity of ethene-
selective MOF decreases with the increase of separation capacity
because highly ethene-selective materials have extremely small
pores with low adsorption capacity. While the selectivity of
ethane-selective MOF increases with the adsorption capacity, the
highest adsorption selectivity of ethane-selective MOF (LUDLAZ)
[αIM(C2H6/C2H4)= 7.68] is smaller than that of ethene-selective
MOF (PIRYOF) [αIM(C2H4/C2H6)= 27.01]. Nevertheless, LUDLAZ is
more than 70% higher than the state-of-art ethane-selective MOF
identified by previous work.
Compared with that in the adsorption process, the selectivity of

the membrane process is less compromised by the increase of the
separation capacity. Through high-throughput screening, we find
that EBINUA02 yields the highest membrane selectivity [kIM(C2H4/
C2H6)= 2167.3]. To evaluate the overall membrane performance,
we introduced an rMPS in terms of selectivity and permeability
with respect to the Robeson boundary. For the separation of C2H4/
C2H6, high rMPS favors MOFs with high permeability and
intermediate membrane selectivity because high membrane
selectivity requires a large energy barrier along the minimum
energy path (MEP) and leads to slow diffusion. According to the
structural analysis, MOFs with top 5% membrane selectivity have a
much more confined diffusion path in terms of PLD and LCD than
those with top 5% rMPS, despite their similarity in the distribution
of void fraction. The separation mechanism is quite different
between EBINUA02 and the MOF (LUDLAZ), with the highest
rMPS. While a small pore aperture (PLD: 2.91 Å and LCD: 3.96 Å) in
EBINUA02 results in faster diffusion and stronger adsorption of
C2H4 over C2H6, the less confined diffusion path in LUDLAZ (PLD:
4.18 Å and LCD: 5.96 Å) leads to a negligible difference in the
diffusion. In that case, the membrane selectivity is mostly
contributed by its ethane-selective solubility.
The computational efficiency of the theoretical tools for

predicting the sorption and diffusion properties of gas molecules
in nanoporous materials enables the design of MOF membranes
with both high membrane selectivity and permeability using the
GA. Compared with high-throughput screening, not only can GA
explore the material design space with targeted properties, but it
takes fewer attempts to identify the most promising candidates as
well. The best MOF discovered by GA consists of metal node—
(CO2-κ2O)TbO2(μ-CO2-κ2O)4TbO2(CO2-κ2O) with the yfk topology.
The designed material has both permeability and membrane
selectivity significantly larger than the threshold values set in the
fitness function. Besides, its overall membrane separation
performance is better than all existing experimental MOF
candidates. The computational workflow used in work thus
demonstrates the capability of inverse design to accelerate the
discovery of nanoporous materials, especially reticular materials
(such as MOFs and COFs) for gas storage and separation.

METHODS
Molecular models
In this work, ethane (C2H6) and ethene (C2H4) molecules are
modeled as two united-atom groups separated by a fixed bond
length38. The detailed force field parameters can be found in
Supplementary Table 1. These force-field parameters are able to
reproduce the adsorption isotherms of ethane and ethene in
nanoporous materials39. They also predict reasonable diffusion
coefficients in comparison with limited experimental data. For
example, the diffusivity predicted in this work agrees well with
that from the experiment for C2H6 in MOF-5 [2.42 × 10−8 m2/s vs.
1.8–2.1 × 10−8 m2/s (exp)]. MOFs are considered to be rigid with

the universal force field (UFF) for all nonbonded interactions40.
While the flexibility of MOFs may play an important role in
determining the efficiency of gas separation, a reliable description
of such effects is computationally prohibitive for high-throughput
screening because it would require input from high-level
quantum-mechanical calculations41. Recently, a systematic exam-
ination of the impacts of MOF flexibility on molecular diffusivities
indicates that the rigid-structure assumption yields reasonable
diffusion coefficients for rigid molecules such as ethane and
ethene investigated in the present work42. As mentioned above,
the diffusivity of C2H6 in MOF-5 predicted in this work agrees well
with that from the experiment.
The LJ 12–6 potential is truncated and shifted to zero at 12.9 Å,

and the Lorentz–Berthelot mixing rule is used for the energy and
size parameters between different kinds of atoms. The periodic
boundary condition is applied to all cell axes. The unit cell is
duplicated such that the length along each lattice axis is at least
two times the cutoff distance. The structural properties, such as the
PLD, the LCD, and the void fraction, are calculated with Zeo++43.

Adsorption separation
Nanoporous materials have been widely used as adsorbents in
industrial applications. In the low-pressure region, the adsorption
selectivity for an equimolar mixture of two gas species can be
measured with the ratio of Henry’s constants34

αIM ¼ Kh;2
Kh;1

(3)

where Kh,i represents Henry’s constant of component i. For a gas
molecule with a rigid conformation, Henry’s constant can be
calculated via the integration of the external potential due to its
interaction with the nanoporous material44

Kh ¼ 1
8π2kBTV

Z
dω

Z
dr exp �βϕext r;ωð Þ½ � (4)

where β ¼ 1=ðkBTÞ, kB stands for the Boltzmann constant, T is the
absolute temperature, V represents the system volume, ϕext is the
external potential, i.e., the potential energy due to the interaction
of a gas molecule with all atoms from the porous material, r
represents the cartesian coordinates for the center of mass of the
gas molecule, and ω stands for its Euler angles. For each MOF,
Henry’s constants for C2H6 and C2H4 are numerically evaluated via
the midpoint rule with the step size of 1 Å and 45° for spatial and
rotational variables, respectively.

Membrane separation
According to the solution-diffusion model, the membrane
permeability is defined as Henry’s constant multiplied by the
gas diffusion coefficient at infinite dilution. The membrane
selectivity can thus be calculated from44

kIM ¼ Kh;2
Kh;1

D0;2

D0;1
¼ P2

P1
(5)

where D0,i stands for the diffusion coefficient of component i at
infinite dilution, and Pi represent the permeability. In evaluating
the membrane selectivity, we use the average of diffusion
coefficients along the three lattice vectors (viz., x-, y-, z-axis in
cartesian coordinate if the lattice vectors are mutually orthogonal)

D0 ¼ D0;a þ D0;b þ D0;c

3
: (6)

Along each direction, the diffusivity can be calculated
independently according to the transition-state theory (TST)

D0;α ¼ 1
2
ka2α (7)
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where α stands for the direction of the lattice vector, k represents
the transmission rate (viz., the hopping rate of the gas molecule),
and aα stands for the hopping distance between neighboring unit
cells along the direction of lattice vector α. The hopping rate can
be obtained from the MEP via the Bennett–Chandler formula45,46

k ¼
ffiffiffiffiffiffiffiffiffi
kBT
2πm

r
exp �βϕext s�ð Þ½ �R 1
0exp �βϕext sð Þ½ �ds (8)

where s is a normalized dimensionless variable along the MEP, and
s* represents the transition state. The diffusion coefficient
predicted by Eq. (8) depends heavily on the accuracy of the MEP.
The mathematical details and the accuracy of MEP calculations

for predicting the diffusivity of rigid molecules, such as C2H4 and
C2H6, can be found in our previous work25. Here, we recapitulate
only the key steps to identify the MEP via the simplified string
method. First, we locate the starting point of the string (i.e., the
diffusion path or MEP) by searching the position and orientation
of a gas molecule that minimize the external potential at the
entrance plane. Because of the periodic structure of MOFs, the
starting and end points of the string have identical relative
configurations within their own unit cells. Next, we construct an
initial string by evenly placing a certain number of points (viz.,
images) between the starting and endpoints. Finally, MEP is
obtained by iterative evolution of the images along the string
according to the gradient of the full external potential. After each
round of iteration, the string is renormalized to avoid images
collectively falling into any local energy minima.
All diffusion coefficients reported in this work are predicted

from the MEP obtained from the GPU-accelerated simplified string
method. We have also validated the diffusion coefficients
calculated with our method by carrying out MD simulation for
the top five MOFs with the highest rMPS and for the best inverse-
designed MOF. For all MD simulations, we used the LAMMPS
package with the Nose–Hoover thermostat for controlling the
temperature. The detailed settings follow the protocol suggested
in the literature for infinite dilution47.

Genetic algorithm
For inverse design, we use GA to construct MOFs with desired
properties. Because MOFs can be decomposed into the SBUs, each
material may be considered as a ‘chromosome’ of different
topologies, metal nodes, and organic linkers. Because the super-
majority of MOF topologies can accommodate no more than two
types of metal nodes and three types of organic linkers, each
chromosome consists of 6 genes, and each gene is represented by
an integer that corresponds to a specific topology, node, or linker.
The chromosome representation allows for the efficient sampling
of all possible combinations of topology and SBUs with GA. The
population is set as 2000, which makes the initial generation have
diverse combinations of topologies, nodes, and linkers. Three
evolutions are carried out after the initial population, and a total of
8,000 combinations of topologies, nodes, and linkers are explored
to find the optimal MOF structure with desired properties.
Compared with the MOF structural database used in high-
throughput screening, fewer MOF structures are used in the GA
to benchmark its computational performance for the inverse
design despite a much larger chemical space is considered. In the
initial population, the 2000 chromosomes are generated by the
random selection of topologies, nodes, and edges in the SBU
database37. In each generation, ten MOFs are used to generate the
offspring via single-point crossover. The next generation of MOFs
is selected by stochastic universal selection to avoid bias toward
the SBUs with low fitness values, while 30% MOFs would have a
random mutation in their genes. In this work, PyGAD library is
used for the GA48. PORMAKE is used to construct MOFs when the
chromosome values are assigned37.
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