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Neural network reactive force field for C, H, N, and O systems
Pilsun Yoo 1, Michael Sakano 1, Saaketh Desai1, Md Mahbubul Islam 1,2, Peilin Liao 1✉ and Alejandro Strachan 1✉

Reactive force fields have enabled an atomic level description of a wide range of phenomena, from chemistry at extreme conditions
to the operation of electrochemical devices and catalysis. While significant insight and semi-quantitative understanding have been
drawn from such work, the accuracy of reactive force fields limits quantitative predictions. We developed a neural network reactive
force field (NNRF) for CHNO systems to describe the decomposition and reaction of the high-energy nitramine 1,3,5-
trinitroperhydro-1,3,5-triazine (RDX). NNRF was trained using energies and forces of a total of 3100 molecules (11,941 geometries)
and 15 condensed matter systems (32,973 geometries) obtained from density functional theory calculations with semi-empirical
corrections to dispersion interactions. The training set is generated via a semi-automated iterative procedure that enables
refinement of the NNRF until a desired accuracy is attained. The root mean square (RMS) error of NNRF on a testing set of
configurations describing the reaction of RDX is one order of magnitude lower than current state of the art potentials.
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INTRODUCTION
The development of general-purpose reactive force fields, most
notably ReaxFF, since the early 2000s enabled an atomistic
description of complex, emergent phenomena that are beyond
the reach of electronic structure calculations. Examples include
physical and chemical processes in high-energy-density (HE)
materials at extreme conditions1–5, oxidation of hydrocarbons6,
and the operation of electrochemical metallization cells7. Mole-
cular dynamics (MD) simulations with reactive force fields are
reaching the micron scale and play a central role in multiscale
modeling8 connecting first principles, electronic structure, calcula-
tions, and the continuum scales. The ability to describe the
complex mechanical, chemical, thermal processes at a relatively
low computational cost has enabled significant scientific progress
and, in some cases, provided semi-quantitative predictions.
Reactive potentials9 like ReaxFF6,10, COMB11,12, and REBO13,14 are
designed using chemical and physical intuition about atomic
bonding, but unavoidable limitations of the underlying functional
forms limit their accuracy. For example, even after nearly two
decades of development15, and despite its numerous contribu-
tions to the field, the state-of-art ReaxFFs for HE materials have
well-documented deficiencies5. Capitalizing on the recent pro-
gress in the use of data science tools in the physical sciences, a
new class of data-driven interatomic potentials has emerged16,17.
These potentials use physics-agnostic models to relate the local
atomic environment to energies and forces and have been shown
to provide accurate descriptions for simple molecules18,19,
metals20,21, alloys22, and other materials23–25 over a wide range
of atomic environments26,27. In this paper we present the first
data-driven force field using physics-agnostic models capable of
describing four-element systems and complex, multi-step, chemi-
cal reactions of the nitramine RDX (cyclic [CH2-NNO2-]3).
Reactive MD simulations of HE materials are critical to develop a

predictive understanding of these materials. This is particularly true
regarding their chemical initiation under thermal and mechanical
insults, where thermochemical models and electronic structure
calculations are insufficient. The initiation of a detonation involves
complex, coupled, processes involving mechanical, thermal, and

chemical processes. Reactive MD simulations can provide a
description of these unit processes making few, well-understood,
approximations. The largest sources of uncertainties in such
calculations are the interatomic potentials used and the use of
classical (as opposed to quantum) dynamics28. To address the first
of these limitations, reactive force fields have been continuously
improved and quantum-mechanics based methods, like total
energy tight-binding potentials, have been developed29–32.
Despite progress, the uncertainties in these methods remain
poorly quantified and so is their effect on the quantities of interest
(that are invariably complex emergent phenomena). In this paper
we use an extensive training set of electronic structure calculations
to train a reactive force field that combines descriptors of local
atomic environments using two and three-body symmetry
functions with deep neural networks. Our neural network reactive
force field (NNRF) is capable of describing the complex chemistry
of RDX under a wide range of temperatures, resulting in product
molecules and overall activation energy for decomposition in
agreement with experiments. Importantly, the root mean squared
(RMS) errors with respect to electronic structure calculations in
atomic forces during the decomposition and reaction of RDX from
the crystal to final products is one order of magnitude smaller than
the current state of the art reactive force fields.

RESULTS AND DISCUSSION
Iterative training procedure of NNRF
The selection of training, validation, and testing sets is important
for the development of any force field, but it is particularly critical
in the case of data-driven force field where the models are
agnostic to the underlying physics. Thus, we designed an iterative
approach, schematically represented in Fig. 1, to generate
progressively more relevant configurations and an automated
procedure that can be easily generalized to other systems.
We start from an isothermal, isochoric ReaxFF MD simulation of

the decomposition of crystalline RDX at the experimental density
and at 2500 K with a total duration of 400 ps (using a simulations
cell with 8 molecules and periodic boundary conditions). This
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simulation samples the original crystal, the initiation of chemistry,
and the formation of intermediates as well as final products. We
extracted 4000 frames (one every 0.1 ps) from the ReaxFF
trajectory and performed single point density functional theory
(DFT) calculations using Perdew–Burke–Ernzerhof (PBE) exchange-
correlation functional33 and the empirical D2 correction for
London dispersion interactions34 to obtain energies and atomic
forces to be used as training data. This level of theory will be
denoted DFT PBE-D2. In addition, the initial training set includes
bond dissociation of all possible di-atomic molecules and snap-
shots from a T= 300 K MD simulation of isolated molecules
(including RDX, intermediates, and products) to provide additional
information about the key species involved in the decomposition5.
Intermediate and product species were obtained from prior
theoretical studies of thermal decomposition of RDX35–37 and
other nitramine3. In addition, we included the equations of state
(with ~10% volume compression and expansion) for RDX,
graphite, and diamond crystals to describe the reference states
and pressure effects.
All energies used in the training are referenced to O2, N2, and H2

molecules and graphite. The data were randomly divided into a
training set (with 90% of the data) used to optimize the neural
network and a validation set (10%) used to assess convergence
and avoid overfitting during the training. The accuracy of each
force field generation was monitored using independent testing
data, obtained from five sets of data which include ReaxFF MD
simulation of the decomposition of RDX at 2000 K with a total
duration of 400 ps, and MD simulations using generation 1.5
(Gen1.5) and generation 1.6 (Gen1.6) NNRF (see below) under two
conditions (2000 K for 20 ps and 2500 K for 200 ps). These test sets
were never used in training.
With the initial data discussed above, including 10,462 structures

and 2,807,361 force components in total, we obtained an initial
NNRF (Gen 1.1). NNRF generations will be denoted with two
integers, the first marking significant additions to the training set
and the second one the iteration number. Following NNRF Gen1.1
we marched along the above process to increase the training data

both in size and relevance and generated a family of increasingly
accurate models. Parity plots comparing NNRF and DFT energies
and forces and histograms with deviations over the test set are
shown in Fig. 2 for Gens 1.1, 1.6, and 1.9 NNRF. The evolution of
RMS errors in energy and force over the training, validation, and
testing sets vs. generation number is shown in Fig. 3 and
tabulated in Supplementary Table 3. Trained with a ReaxFF-2014
thermal decomposition trajectory, monomer data, and equations
of state, NNRF Gen1.1 is clearly biased towards the configurations
explored by ReaxFF. Since it is certain that the ReaxFF dynamics
will explore unlikely configurations and might miss important
decomposition paths, reproducing the training data do not
guarantee an accurate force field. This is the motivation behind
the addition of an iterative loop to our training procedure (left in
Fig. 1), where each generation NNRF is used to simulate the
decomposition of RDX and the resulting configurations are added
to the training of subsequent generations. This is also the reason
why our testing set contains reactive simulations using Gen1.5
and Gen1.6 NNRF, in addition to ReaxFF, as they explore different
decomposition paths. In addition to reactive MD simulations (left
loop in Fig. 1), the training set is continuously enhanced with
intermediate and final molecules identified during these reactive
simulations to improve the description of individual chemical
reactions (right loop). These configurations are obtained using the
following steps. (i) Extract molecules from the NNRF MD
trajectories (every 1 ps) based on ReaxFF bond orders, (ii) identify
molecules not present in the training set based on the
connectivity from bond order analysis, (iii) run DFT MD simulations
at 500 K for 10 ps for each molecule, (iv) add the energy and forces
of the initial and final structure of DFT MD simulation.
Supplementary Table 4 provides a detailed description of the
data used in the training of each generation NNRF and
Supplementary Fig. 1 represents the progression in the number
of data points with generation. This approach can be thought of
as active learning in sampling the training space38.
The results in Figs. 2 and 3 (and Supplementary Figs. 2–4) show

that the accuracy of NNRF improves from Gen1.1 to Gen1.9,
validating our iterative approach. As expected, NNRF Gen1.1 is
accurate only for the portion of the test set generated using
ReaxFF-2014 (2000 K/400 ps data set). Figure 3 shows the increase
in accuracy as a function of generation and convergence in Gen
1.7–1.9. It might be surprising that the NNRFs describe the test set
more accurately than the training and validation sets in terms of
energies. This is because, early NNRFs generate trajectories that
explore unlikely, distorted clusters; these are included in the
training and validation sets but not in the testing set. We consider
the Gen1.9 NNRF to be appropriately converged and performed a
series of validation tests. Before comparing NNRF with four widely
used ReaxFF parameterizations for HE materials in the verification
and validation section, we assess its accuracy in the description of
important quantities that govern the decomposition and reaction
of RDX.

Accuracy of Gen 1.9 NNRF
The formation energies of intermediate and product species
observed during the thermal decomposition of nitramines are
critical values for an accurate description of chemistry. Figure 4
compares the formation energy of key molecules obtained from
NNRF Gen1.9, various parameterizations of ReaxFF for HE
materials, and more accurate quantum chemistry calculations
and experimental results. The RMS error in formation energy with
respect to PBE-D2, see inset of Fig. 4, indicates that NNRF provides
an accurate description of these key species. This demonstrates
that NNRF learns the formation energies of molecules even
though these quantities represent a small fraction of the training
set. The largest deviations of the formation energy of Gen1.9
NNRF was observed only for HNO3 and NO2, because these

Fig. 1 A schematic diagram of the iterative NNRF development
process. Two different feedback loops enhance the training set:
automatic generation of configurations during decomposition and
reaction (left red box) and extraction of chemical species and
intermediates (right blue box). The list of entries and their numbers
are all tabulated in Supplementary Table 4.
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molecules were sampled less frequently in the MD simulations
using NNRF. It should be noted that the PBE-D2 data deviates from
the experimental and higher-accuracy quantum chemistry calcu-
lation39 results, see for example HON and O2, due to intrinsic
limitations of DFT; the formation energies of NNRF are close to
DFT data. Supplementary Table 5 shows the RMS error of the
various methods with respect to experiments. We find that the
RMS errors with respect to experiments for NNRF are slightly larger
than ReaxFF-iw, but comparable to DFT PBE-D2 and smaller
than ReaxFFs-2014, ReaxFF-2018, and ReaxFF-lg. (Supplementary
Table 5).
We note that ReaxFFs provides a remarkably accurate descrip-

tion of the formation energies of intermediate and final products.
We believe this success is behind its popularity to investigate HE
materials and their contribution to the field. However, the NNRF
not only results in a more accurate description of these gas-phase

formation energies compared to ReaxFF-2014, ReaxFF-2018, and
ReaxFF-lg but, more importantly, the description of energetics and
forces along the MD simulations (even along ReaxFF trajectories)
are one order of magnitude better, as shown in Supplementary
Fig. 6. While ReaxFF has not been parameterized to match
energies and forces during decomposition, the comparison is
important as it quantifies the accuracy of the description
throughout the process and conditions of interest.
Figure 5 shows the dissociation curves of ten dimers predicted

by the Gen1.9 NNRF and DFT. All dissociation curves were
calculated using spin-polarized DFT for different spin states and
the lowest-energy spin configurations were selected for each
bond distance. The NNRF accuracy for all these bond dissociation
curves is quite striking; visual inspection clearly shows significant
improvements with respect to ReaxFF, see, for example, Fig. 3 in

Fig. 2 The parity plot and the stacked histogram of the energy and forces of test sets. The decrease of energy (the right panel) and force
(the middle panel) RMS errors monitored over several iterations in a Gen1.1, b Gen1.6, and c Gen1.9 NNRF. The left panels show the histogram
counting the energy and force differences.
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ref. 40. We note that NNRF learns the difference between single,
double, and triple C–C bonds, see Fig. 6.
One limitation of the current force field is its inability to capture

the high barrier associated with torsions around a double bond,
see Supplementary Fig. 7. We note that we do not include four
body terms that could be important to describe torsions. Torsional
potentials for various chemical environments could be addressed
via such four-body terms or combinations of two and three-body
terms, see ref. 41, just like van der Waals repulsion controls the
torsional potential around a single C–C bond. Future work should
explore these options.
As a final assessment of the ability of NNRF Gen1.9 to describe

the chemistry of RDX, we investigated four unimolecular reaction
paths proposed from ab initio simulations35,36. Supplementary Fig.
8 shows the energies of transition states and intermediates the
NO2 dissociation, HONO, NO2 insertion, and concerted decom-
position paths. Even though these decomposition paths were not
used during training, NNRF Gen 1.9 captures the main differences
in these paths. The deviations between NNRF and high-accuracy
quantum chemistry calculations, using B3LYP hybrid func-
tionals42–45, are similar to those observed in DFT-PBE. Additional
discussion is included in the Supplementary Information (SI).

Verification and validation
We now perform verification and validation tests on Gen1.9 NNRF,
designed to assess their description of the decomposition of RDX
under isothermal (NVT ensemble) and adiabatic (NVE) conditions.
The results are then compared to experiments and ReaxFF. The
calculation of vibration density of state and crystalline structures
were conducted using the 3 × 3 × 3 supercell of RDX unit-cell
structure obtained from the Cambridge Crystallographic Data
Centre46 with the experimental density of 1.86 g cm−3. The system
containing 4536 atoms or 216 RDX molecules were minimized for
energy and forces and thermalized under constant volume, and
constant temperature (NVT ensemble) at 300 K for 20 ps.
In order to verify the implementation of NNRF in LAMMPS, we

quantified the energy conservation of Gen1.9 NNRF during an
adiabatic MD simulation (NVE ensemble). We simulated five
different initial temperatures with integration timesteps (in
parenthesis) appropriate to each value: T0= 1500 K (0.1 fs),
1750 K (0.05 fs), 2000 K (0.05 fs), 2250 K (0.025 fs), and 2500 K
(0.025 fs). These samples were initialized by setting the velocities
to twice the target temperature so that after thermal equilibration
they would reach approximately the desired value. We tracked the
reaction and decomposition until the system temperature
achieved steady state and measured the total energy drifted
due to the numerical integration. Interestingly, Gen1.9 NNRF
conserves energy significantly better than the ReaxFF parameter-
izations for the same initial temperature and timestep, see
Supplementary Fig. 10. For example, the 1500 K simulations with
a timestep of 0.1 fs Gen 1.9 NNRF exhibited a total energy drift of
−0.4 kcal mol−1 in 400 ps; this can be compared to 11.7 kcal mol−1

using ReaxFF-2014, 18.1 kcal mol−1 using ReaxFF-2018, 103.3 kcal
mol−1 using ReaxFF-lg, and 94.3 kcal mol−1 using ReaxFF-iw. Using
the most conservative timestep of 0.025 fs in our T= 2500 K
simulations, Gen1.9 NNRF had a total energy drift of −0.3 kcal
mol−1 in ~100 ps, compared to ReaxFF-2014 with 9.7 kcal mol−1,
ReaxFF-2018 with 6.4 kcal mol−1, ReaxFF-lg with 37.2 kcal mol−1,
and ReaxFF-iw with 32.9 kcal mol−1. We note that while NNRF
enables longer integration timesteps as compared to ReaxFF,
energy and force calculations take, approximately, a factor of four
times longer; scaling with system size and parallel performance
are similar between ReaxFF and NNRF.
The crystal structure and the equilibrium volume of α-RDX is

also described accurately with NNRF, as shown in Fig. 7a and b.
Energy-volume curves were used to predict both the equilibrium
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Fig. 3 The RMS errors of different data sets vs. NNRF generation. The energy RMS error (ERMSE) in (a) and the force RMS error (FRMSE) in (b)
from Gen1.1 to Gen1.9 NNRF for three datasets (Training set, Validation set, and Testing set). The ERMSE and FRMSE for a single iteration
(Gen1.7 NNRF) can be found in Supplementary Fig. 5.

Fig. 4 The formation energy of several intermediate and product
molecules. The RMS error of Gen1.9 NNRF and ReaxFFs with respect
to DFT in the inset. (acccbdb database from ref. 39, bReaxFFs
formation energies from ref. 3, cexperimental formation energies
from NIST database in ref. 76, dactive thermochemical tables in
ref. 77).
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volume and the bulk modulus of the RDX crystal. The bulk
modulus predicted by Gen1.9 NNRF (13.7 GPa), Supplementary
Table 7, is in good agreement with experimental results
(11.8–13.9 GPa)47–49. The predicted equilibrium was very close to
the DFT PBE-D2 result and slightly higher than the experimental
equilibrium volume. This can be attributed to the discrepancy
between PBE-D2 and experiments. We note that Gen1.9 provides
an inaccurate description when the crystal is expanded by more
than 20% of volume. Generation 2 NNRFs address this short-
coming as will be discussed in the Transferability to other
nitramines. For completeness, Fig. 7 also shows the equation of
state of Gen2.3 NNRF. Besides the lattice parameters, Fig. 7b
shows excellent agreement between the NNRF predicted X-ray
diffraction (XRD) for α-RDX crystal and experiments. We note that
ReaxFF-lg is also in good agreement with experiments.
We computed the vibrational density of states and infrared

spectrum of RDX from 20 ps-long MD trajectories at 300 K from
the Fourier transformation of the velocity50 and dipole51

autocorrelation functions, respectively. Figure 8 compares both
quantities between the four parameterizations of ReaxFF and
Gen1.9 NNRF and experimental results from refs. 52 and 53.
Experiments show major infrared active peaks around 1200, 1600,
and 3100 cm−1, corresponding to N-NO2 symmetric, N-NO2

antisymmetric, and C–H antisymmetric vibrational modes, respec-
tively52–54. Interestingly, NNRF matches all three features more
closely than ReaxFF. For example, all four versions of ReaxFF

overestimate the frequencies of the hydrogenic modes at
3100 cm−1.
We now focus on the decomposition and reaction of RDX.

Figure 9 tracks key intermediates and final products during an
isothermal decomposition simulation at 2000 and 2500 K. Gen1.9
NNRF at 2500 K predicts N2 to be the most abundant final product,
followed by similar amounts of H2O and CO2, and trace amounts
of HNCO, NH3, and NH4; at 2000 K the populations appear to be
evolving towards similar proportions. This matches bomb
calorimetry experimental observations55 where products of
detonation were approximately broken down into 37% N2, 31%
H2O, 18% CO2, and 14% CO. The lack on CO is our predictions can
be attributed to PBE-D2 underestimating its stability, see Fig. 4.
ReaxFF-2014 and ReaxFF-2018 predicted N2 as the dominant
product followed by H2O and CO2. On the other hand, ReaxFF-lg
and ReaxFF-iw predicted comparable amounts of H2O and N2 with
less CO2. Consistent with NNRF ReaxFF does not predict
appreciable amounts of CO which was observed experimentally55.
It is worth mentioning that NNRF predicts NO2 and NO as the key
intermediates. Using B3LYP flavor of DFT, Chakraborty et al.35

calculated, in the gas phase, that the first bond-breaking event
should be N-NO2, as compared with HONO elimination and
concerted ring break, because it has the lowest dissociation
energy. NNRF is consistent with this picture. As an aside, the
amount of HONO and H2CNHNO2 was negligible so both species
are not shown in Fig. 9. The presence of NO2 is consistent with the
ReaxFF-lg and ReaxFF-iw results. However, the ReaxFF-2014 and

Fig. 6 The bond dissociation of sp, sp2, and sp3 hybridization. The bond dissociation of acetylene, ethylene, and ethane using DFT PBE-D2
and Gen1.9 NNRF.

Fig. 5 The diatomic molecule dissociation curves. The dissociation curves for all possible combinations (H2, C2, N2, O2, HC, HN, HO, CN, CO,
NO) using the spin-polarized DFT PBE-D2 and Gen1.9 NNRF.
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ReaxFF-2018 versions underestimate the NO bond strength and
predict the formation of O radicals4.
Finally, we assess the overall kinetics of the decomposition and

reaction processes. In order to obtain an overall decomposition
timescale, we defined the half-exothermicity time (t1/2) as that
required for the potential energy to reach the mid-point between
the initial and final values. Figure 10 shows t1/2 the as a function of
inverse temperature. Consistent with prior results, the overall
kinetics of reaction follows, approximately, Arrhenius behavior for
the range of temperatures we can simulate4, from which we can
obtain effective activation energies. This is an admittedly simplistic
description of the chemical kinetics for a material like RDX, which
requires multiple steps to capture their complex chemistry56,57,
but useful to assess overall behavior. Figure 10 shows that NNRF
kinetics are slower than the ReaxFF-2014 and 2018. Gen1.9 NNRF
results in the largest activation energy at 25.7 kcal mol−1, as
compared to ReaxFF-2014 with 23.5 kcal mol−1, ReaxFF-2018 with
18.7 kcal mol−1, ReaxFF-lg with 11.9 kcal mol−1, and ReaxFF-iw
yielding 12.0 kcal mol−1. The NNRF Gen1.9 value is close to the
experimental value by Rogers and Smith58 using Kissinger’s
method59 over multiple differential thermal analysis experiments,
and is on the lower end of the 25–50 kcal mol−1 range covering
many experiments compiled by Brill et al.60. An important
assumption in applying Kissinger’s method is that the decom-
position reaction of the sample must have a reaction order close
to 1. Rogers and Smith showed that Kissinger’s equation will
underapproximate the activation energy when the reaction order
deviates away from unity, or when the decomposition scheme is
assumed to be more complex. The assumption underlying
Kissinger’s method is similar to our one-step approximation.
Activation energies and pre-factors are provided in

Supplementary Table 8 in the SI; we highlight again the
approximate nature of these models.

Transferability to other nitramines (HMX, NM, PETN): Gen2.X
The transferability of a force field is critical for its widespread use
and ReaxFF has excelled in this aspect. We conducted thermal
decomposition dynamic simulations (2500 K/400 ps) using Gen1.9
NNRF for NM, HMX, PETN crystal systems. Single point DFT
calculations of each dynamic trajectories were conducted and the
corresponding parity plots for energy and forces are shown in
Supplementary Fig. 11a and b. Not surprisingly, for a force field
trained only on RDX, we found relatively large deviations in
energies and forces. We note that these deviations are compar-
able to those of ReaxFF.
To improve the ability of the NNRF formulation to describe

equations of state and its description of other HE materials, we
added the following data to the training set: (i) NPT ensemble
dynamics of RDX and PETN (pentaerythritol tetranitrate) crystals,
(ii) PETN MD simulations at various temperatures (300 K/20 ps,
1000 K/20 ps, 1500 K/20 ps, 2000 K/20 ps, 2500 K/20 ps, 2500 K/
200 ps, 3000 K/20 ps), and (iii) monomers of nitromethane (NM)
and HMX (1,3,5,7-Tetranitro-1,3,5,7-tetrazoctane). We name this
series Gen 2.X and with three iterations, Gen2.3 NNRF provides an
improved description of the equation of state of all HEs tested for
volume expansion beyond 130%, shown in Fig. 7a, and transfer-
ability for NM, HMX, PETN crystal systems. As shown in
Supplementary Fig. 11c and d, NNRF Gen 2.3 provides an accurate
description of the decomposition of these HEs.

Fig. 8 The vibrational properties of RDX crystal. a Density of states
and b infrared Spectra of RDX comparing Gen 9 NNRF with four
parameterizations of ReaxFF. Similarities between ReaxFF-2014 and
ReaxFF-2018 are much closer to NNRF, as compared to ReaxFF-lg
and ReaxFF-iw. a,bExperimental FTIR data from refs. 52 and 53.

Fig. 7 Structural properties of available force fields. a Equation of
state for RDX crystal with experimental volume (Exp vol indicated as
a vertical dashed line, corresponding to ρ= 1.86 g cm−3) and b The
X-ray diffraction peaks of RDX crystal from Experiment and available
force fields (Gen1.9 NNRF, ReaxFFs). aExperimental RDX crystal
structure from ref. 78.
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In summary, we developed a neural network reactive force field
(NNRF) for CHNO systems based on large sets of electronic
structure data (we used DFT at the PBE level with D2 correction).
The NNRF utilizes a high dimensional neural network to capture
the short-range interatomic interactions (<5 Å) with the radial and
angular descriptors and it employs the van der Waals and
Coulomb interaction parameterization of ReaxFFs for the long-
range interatomic interactions (<10 Å). We developed a semi-

automated procedure to generate and refine training sets that
uses the best current model to efficiently generate new
configurations. The training set consists of a relatively small
system, <200 atoms, which can be performed easily at the level of
theory chosen since only single-point energy calculations are
required.
Prediction of dissociation curves, formation energies of mono-

mers, energies, and forces of test set clearly indicates that the

Fig. 9 Chemical species evolution of thermal decomposition of RDX system. Chemistry comparison between Gen1.9 NNRF and the four
parameterizations of ReaxFF. NNRF is the force field to get majority of N2 similar to ReaxFF-2014 and ReaxFF-2018 as compared to H2O in
ReaxFF-lg and ReaxFF-iw.
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NNRF learned the underlying bonding. We further tested Gen1.9
NNRF with larger-scale dynamic simulations (4536 atoms or 216
RDX molecules) predicting the crystal structure, bulk modulus,
vibrational spectra, chemical reactions, and apparent activation
energy of the process. More importantly, the high-temperature
decomposition of RDX shows good agreement with experiments
in terms of final products and overall activation energy. In
addition, NNRF was easily extendable to other HE materials
including nitromethane (CH3NO2), HMX (1,3,5,7-Tetranitro-1,3,5,7-
tetrazoctane, C4H8N8O8), and PETN (pentaerythritol tetranitrate,
C5H8N4O12). These results indicate that the iterative training could
enable the study complex chemistry with DFT-level accuracy.

METHODS
Neural network force field
Machine learning potentials relate a set of descriptors of local atomic
environments to atomic energies and forces via a physics-agnostic
mapping. This mapping can be performed using a neural network61,
linear regression17, polynomials25, Gaussian process regression16, or using
other regression techniques. Physics is embedded in these approaches via
the local environment descriptors that should be invariant to rigid
translations and rotations and have the flexibility to discriminate subtle
differences in environments17,61. In this work, we adopted neural network
potentials based on symmetry functions as descriptors, which have shown
promise in describing multicomponent systems24,62. We hypothesize that
this description is flexible enough to capture the chemistry of RDX.
We use atom-centered, weighted-Gaussian, symmetry functions devel-

oped by Gastegger et al.63 to build the input layer of NNRF. Two types of
Gaussian symmetry functions, radial and angular in Eqs. (1) and (2), are
used to extract unique and invariant fingerprints from molecular
geometries. The equations for the radial ðwGrad

i Þ and angular ðwGang
i Þ

symmetry functions for each atom (i) are given by:

wGrad
i ¼

XN

j≠i
Zje

�η rij�rsð Þ2 fcðrijÞ (1)

wGang
i ¼ 21�ξ

XN

j≠i

XN

k≠i;j
ZjZkð1þ λ cos θijkÞξe�η rij�rsð Þ2

e�η rik�rsð Þ2 e�η rjk�rsð Þ2 fcðrijÞfcðrikÞfcðrjkÞ (2)

In Eqs. (1) and (2), Zj is the atomic weight included to differentiate
different elements. rs, η, λ, and ξ are hyperparameters to be specified, and
fc(r) is a cutoff function, which decays to zero smoothly beyond the cutoff
radius of 5 Å, see the SI. We constructed 18 radial symmetry functions and

24 angular symmetry functions with a set of hyperparameters described in
the SI.
With the descriptors at hand, independent neural networks are used to

describe the energy and force for each element. Each neural network
consists of 42 nodes as the input layer, two hidden layers with 50 nodes
each, and one output node (the atomic energy); the atomic forces are
obtained as the negative gradient of the energy. The hyperbolic tangent
activation functions are used with the given neural network architecture
(see the SI).
While such a description can be expected to describe covalent

interactions, its short-range limits its applicability to describe non-
bonded interactions, including van der Waals and Coulomb. Fortunately,
we have rather accurate descriptions for such terms. Thus, the total energy
of NNRF is the sum of the neural network described above and pre-
parameterized van der Waals and electrostatics taken from the ReaxFF
force field64,65. van der Waals interactions are described using shielded
Morse potentials and electrostatics using environment-dependent charges
with the electronegativity equalization method (EEM)66 and tapered
electrostatics energy67,68. These choices are motivated by the availability of
these terms in CHNO ReaxFF and were taken from the ReaxFF-2014
parametrization65. Thus, the neural network is trained to describe the
difference between DFT results and the reference potential.

Density functional theory
The training data were obtained from DFT calculations performed with the
Vienna ab initio simulation package (VASP, version 5.4.4)69–73, using PBE
exchange and correlation functional33 and the semi-empirical D2 method
of Grimme34 to improve the description of dispersion forces. The
convergence criteria for the wave function optimization was set to a total
energy difference between subsequent steps of 10−5 eV. The kinetic
energy cutoff is set to 500 eV. Given the relatively large simulation cells
integrals in reciprocal space using only the Γ point. The interactions
between ions and electrons were described by the projector augmented
wave (PAW)74 method with the 1s of H and 2s2p of C, N and O treated as
valence electrons.

DATA AVAILABILITY
DFT training data and all generations of NNRF are available in the repository at
https://github.rcac.purdue.edu/StrachanGroup/nnrf_nitramines.

CODE AVAILABILITY
In order to facilitate the assessment and adoption of NNRF we created an open,
online, tool in nanoHUB75 (www.nanohub.org/tools/nnrf). Using online Jupyter
notebooks, users can assess the accuracy of the various generation force fields
against the various training sets. A separate notebook can be used to perform MD
simulations on various HE materials using the various NNRFs. The tool page also
points to the repository containing training data and the NNRF development code.
We plan to continuously update the tool as we improve NNRF and new generations
become available. NNRF parameters for all generations can be downloaded to
perform offline simulations or used for online simulations in nanoHUB.
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