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Biological insights and novel biomarker discovery through
deep learning approaches in breast cancer histopathology
Divneet Mandair1, Jorge S. Reis-Filho 2 and Alan Ashworth 1✉

Breast cancer remains a highly prevalent disease with considerable inter- and intra-tumoral heterogeneity complicating
prognostication and treatment decisions. The utilization and depth of genomic, transcriptomic and proteomic data for cancer has
exploded over recent times and the addition of spatial context to this information, by understanding the correlating morphologic
and spatial patterns of cells in tissue samples, has created an exciting frontier of research, histo-genomics. At the same time, deep
learning (DL), a class of machine learning algorithms employing artificial neural networks, has rapidly progressed in the last decade
with a confluence of technical developments - including the advent of modern graphic processing units (GPU), allowing efficient
implementation of increasingly complex architectures at scale; advances in the theoretical and practical design of network
architectures; and access to larger datasets for training - all leading to sweeping advances in image classification and object
detection. In this review, we examine recent developments in the application of DL in breast cancer histology with particular
emphasis of those producing biologic insights or novel biomarkers, spanning the extraction of genomic information to the use of
stroma to predict cancer recurrence, with the aim of suggesting avenues for further advancing this exciting field.
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INTRODUCTION
Almost one-third of breast cancer cases recur in 10 years1 and
decisions on who to treat aggressively early remain difficult. In the
era of personalized medicine, histology, increasingly digitized and
therefore more available for advanced computational methods,
has been recognized as a significant resource of untapped
information capable of improving our understanding of tumor
biology and therapeutic efficacy at the individual patient level.
The utilization and depth of genomic, transcriptomic and
proteomic data for cancer has exploded over recent times and
the addition of spatial context to this information, by under-
standing the correlating morphologic and spatial patterns of cells
in tissue samples, has created an exciting frontier of research,
histo-genomics2. At the same time, deep learning (DL), a class of
machine learning algorithms employing artificial neural networks,
has rapidly progressed in the last decade with a confluence of
technical developments - including the advent of the modern
graphic processing units (GPU), allowing efficient implementation
of increasingly complex architectures at scale; advances in the
theoretical and practical design of network architectures; and
access to larger datasets for training - all leading to sweeping
advances in image classification and object detection3. In the
medical domain, DL has made great strides in the analysis of
whole slide images (WSI), where both the limited amounts of
available data and the large size of WSIs - often hundreds of
thousands of pixels larger than those used typically in DL
networks - had previously presented unique challenges in using
these systems for predicting meaningful clinical and biologic
outcomes. The confluence of these advances in digital pathology
and artificial intelligence (AI) presents unique opportunities for
prognostication, capturing molecular heterogeneity through new
insights relating genomics to spatial content on histologic images
and developing new biomarkers4 to guide diagnosis and therapy.
Increasingly, academic institutions are adapting their data

infrastructure to allow integration of such methods, with
regulatory bodies such as the FDA advocating for AI-based
methods to advance care1, with the first approval of an AI
algorithm for cancer detection in pathology granted by the FDA in
September 2021. Already, substantial progress has been made in
developing systems that can reliably detect cancer, particularly in
the context of the detection of prostate cancer in core biopsies
and of breast cancer lymph node metastases3. In this review, we
examine recent advances in the application of DL in breast cancer
histology with particular emphasis on those producing biologic
insights or novel biomarkers, spanning the extraction of genomic
information to the use of stroma to predict cancer recurrence,
with the aim of suggesting avenues for further advancing this
exciting and potentially paradigm shifting field.

A primer on DL
DL has been successful in applications dating back to the 1990s
but only in recent years have the advances and acceptance of
these techniques grown exponentially (Boxes 1 and 2). The field
arose due to limitations in conventional machine learning
techniques at processing data in raw form.
Usually, features in a dataset would need to be hand-crafted or

engineered to obtain optimal performance. DL, then, is a method
of representation learning that allows a network (Fig. 1) to learn
features from a dataset without such hand-crafted guidance5. DL
networks, at a high level, work by feeding data through successive
modules, each module consisting of mostly linear transformations
with a non-linearity transformation added as a final step. While
each individual module may be simple, as the number of modules
or layers, increase, these networks can model quite complicated
functions5.
As an example of how these networks are ‘trained’ to predict

objects, we can imagine the task of predicting the type of animal
in an image when our dataset consists of images of a variety of
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animals (Fig. 2). In deep learning, the neural network consists of
multiple layers through which an image is successively trans-
formed. Each image is fed through a network and for each
category, or type of animal, the model outputs a score. Ideally, the
model would predict the highest score for the correct category of
animal in the image, an unlikely outcome if we use a randomly
built model. To measure the degree to which the predicted
category of the image aligns with the correct image category, a
measure of error, or a loss function, is calculated5. The network can
then modify its internal parameters, or weights, that produce the
output of scores. This internal parameter update is done,
parameter by parameter, through the calculation of gradients,
which reflect how much the error rate in image classification
changes when a given parameter is altered by a small amount.
After such an internal update, the data are fed through the
network again and the process is repeated. In this way, the
representations learned from the image are done in an automatic
manner that aligns with the task of interest5, in this case
predicting the category of animal. In general, updates to the
parameters of a network are performed over groups of training
examples, or batches, as opposed to all the examples in a dataset
at once, in a process called stochastic gradient descent. The prior
example focuses on a classification task with qualitative labels as
the output. Much of the same process would be replicated if the
end outputs were not categorical, with the caveat that a new
measure of error, or loss function, would be employed, with
popular ones including the well-known mean-squared error. In this
seemingly simple manner, exceptional results have been shown in
areas from image processing to text and speech recognition3.
In the area of image detection, convolutional neural networks

(CNN) form the initial backbone of networks that rival, and in some
cases, surpass human level accuracy. These networks rely on two
key aspects: convolutions and pooling. A convolutional layer, in the
spirit of representation learning, applies a filter or kernel across an
image input to produce a feature map. Numerous filters may be
applied in a single layer, resulting in a stack of feature maps.
Feature maps in an earlier part of a network correspond to vertical
or horizontal edges in an image. Later maps may correspond to
entire objects and even later maps show groupings of such
objects5. The second aspect of these networks, pooling, allows the
features detected to be average across an area of an image. In this
way, the images detected are invariant to positioning. In this way,
hierarchies of features in an image are built, with the overall system
able to apply these learned features to detect images regardless of
how they are positioned, rotated, or even how they appear5.
Techniques for image prediction have continued to evolve (see
Boxes 3 and 4), with the latest state of the art transformer networks,

employing an attention mechanism across segments of an image,
exceeding performance of traditional CNNs.

Tumor characteristics
Cellular characteristics
Nuclei: Segmentation in digital pathology has extended

beyond recognition of individual cell types and is capable of
gleaning information at the level of nuclei that can be used to
classify cells spatially more accurately or abstract second-order
features that reflect a wealth of information. One of the innovative
uses of nuclei segmentation has been as a means of preserving
the spatial patterns of cells in digital pathology slides and thereby
developing novel representation of images. Zheng et al. used a
stacked network of CNNs for a hierarchical detection of nuclei,
where nuclei detected in patches were grouped into blocks, and
blocks ultimately grouped into images that retained granular
nuclei patterns6. Training of this network was facilitated by use of
an autoencoder to pretrain the network on unlabeled images.
More generally, this use of self-supervised learning, where
network architectures or loss functions enable networks to
develop useful representation of images when labeled data may
be unavailable or only partially available, has shown promise in
developing representations for nuclei detection. Feng et al.
similarly pretrained a stacked autoencoder with raw, unlabeled
medical images, and found a classifier using this network was
remarkably accurate in nuclei detection7. Combining insights from
self-supervised learning and nuclei spatial content may hold
exciting avenues for rapidly scaling sophisticated spatial analyses
of images using DL methods.
More than simply recognizing nuclei, DL has also been used to

extract second-order features of nuclei, such as chromatin texture,
nuclear staining intensity and features of the nuclear envelope,

Box 1 definitions in AI

In this review, classical machine learning refers to techniques, such as tree-based
methods, support vector machine, etc. that require raw data to be first
engineered into features and/or are in tabular (think excel) form. To clarify
terminology, we define:
AI: theory and development of computer systems to perform tasks normally
requiring ‘human’ intelligence.
Artificial General Intelligence: the theoretical (and far from any existing
developments) development of an ‘agent’ capable of learning and performing
any human level task.
Narrow AI: AI when applied in the context of a specific task, such as predicting
the next word of a sentence or classifying an image.
Machine Learning: a subset of AI that includes techniques, applied to a specific
task, which progressively improve performance or ‘learn’ when given increasing
amounts of data.
Deep learning: A subset of machine learning that employs neural networks. Also
characterized by readily handling extremely high dimensional, raw data input.
For instance, a single RGB (color) image often contains (512 x 512 x 3) individual
pixels. This raw form typically cannot be handled well by classical machine
learning approaches but can be given to a neural network directly.

Box 2 learning with or without labels

In the text, an example of supervised learning is discussed, where labels are
known for existing data. Methods of learning include:
Supervised learning: This is where correct ‘labels’ for data (name of an object in
an image, specific region of a histologic slide annotated by a pathologist, etc.) are
known and these are generally filled out in a dataset by an expert. The machine
learning system makes predictions and compares predicted labels to correct
labels.
Strongly supervised learning: Every data sample has an expert that labels it. For
instance, a WSI of a breast tissue is split into smaller pieces or tiles. A pathologist
then marks each tile as containing cancer or not. A DL system emulates the
pathologist by taking the tiles and learning to correctly predict cancer based on
the pathologist’s label for each tile.
Weakly supervised learning: We now have genomic expression data for every
patient. This data is not at the tile level – it corresponds to the entire WSI. We
have a ‘label’ for a group of tiles but not all tiles might be reflective of this label
(ie they might not all have morphology relevant to the expression patterns
present in the sample). Yet we can still train a network by grouping together the
tiles to predict the expression data. We might take a weighting of all the tiles in
the WSI to make our prediction, or we might apply a more advanced ‘screen’ of
the most likely-to-be-relevant group of tiles first. Regardless, weak supervision
systems cluster inputs with a label and, if designed well, still make meaningful
predictions.
Unsupervised learning: No labels are available for the data. Machine learning
approaches in this category attempt to use the data itself (images, genomic
sequences, etc.) to find consistent patterns, groupings or clustering implicit in the
data. Examples include principal components, clustering methods, etc.
Self-supervised learning: A subset of unsupervised learning, self-supervised
approaches also have no (or very minimal amounts) of labeled data available.
These approaches, however, attempt train networks to perform the same tasks
such as supervised techniques. A common approach to doing this is using
contrastive techniques. A data sample is perturbed in some way (cropped, color
is changed) and the two versions are fed to the network. The network is trained
to group together images and their augmentations and separate different
images. Doing so allows the network to learn useful representations of images
without any labels. A variety of contrastive approaches (SimCLR, MOCO, Barlow
Twin’s) have been developed. Once trained, if minimal amounts of labeled data
are available, the networks can be ‘fine tuned’ with this data much like in classic
supervised learning.

D. Mandair et al.

2

npj Breast Cancer (2023)    21 Published in partnership with the Breast Cancer Research Foundation

1
2
3
4
5
6
7
8
9
0
()
:,;



and learn associations of such features with cancer genomics or
recurrence. DL systems have found that nuclei tubule prominence,
intensity, multicentricity, shape and texture, may predict Oncoty-
peDx score8,9, long-term survival and pathologic complete
response (pCR) in select cohorts of patients10,11. Features of nuclei
have even been repurposed to produce measures of clinical
grade, with AI predicted grade based on ‘nucleolar prominence’
potentially stratifying survival in stage 3 breast cancers more
accurately than the more traditional Nottingham grade12.
A final application of nuclei detection and segmentation has

been as a means of standardizing measurements of samples made
by pathologists. Whilst it has been shown that measurements of
cellularity could be standardized by classifying cell types based on
nuclei13, one of the more distinctive applications of this was a
study of Ki67, a measure of nuclear proliferation often limited in
clinical use by lack of interpathologist consistency. In this study, an
AI-empowered microscope was used to aid pathologists in
assessing the Ki67 labeling index on 100 stained slides by
applying algorithms to cells and providing these results to
pathologists in real-time with augmented reality14. The study
found consistency among pathologists substantially improved
with the AI-enabled microscope compared to a conventional
approach, particularly for more inexperienced operators.
Cellularity: Use of cell segmentation has also found applica-

tions in quantifying tumor cellularity (i.e. the surface area occupied
by cancer cells or the ratio of cancer nuclei over the total number
of nuclei in a histologic section). Historically done manually by
pathologists, this process has been fraught with variability in

cellularity measurements15. Over the years, numerous quantitative
pipelines have been developed to assess cellularity. Most
approaches have relied on DL to segment cellular areas in an
image first and then either manually extract hand-crafted features
or feed these ‘cellular’ regions to another machine-learning
system, either another DL network or a more traditional classifier
such as a support-vector machine16,17. Recent work has attempted
to remove the hand-crafted feature engineering and instead
develop end-to-end DL-systems that can directly assess cellularity
from a WSI. Akhbar et al. was among the first to show the
improved accuracy of end-to-end systems18,19. Rakhlin et al.
directly compared different approaches, from using an initial
segmentation to directly assessing cellularity, again showing the
direct cellularity assessment with a DL model achieved a
remarkably high Cohen’s kappa score of 0.69 (CI: 0.64–0.73)
compared to the scoring provided by expert pathologists, with
previous scores in the literature at 0.4215. Somewhat contrary to
this, other studies have found that while the features extracted
from DL systems are preferred, some additional processing,
through dimensionality reduction may improve model accuracy20.
Regardless, more work is needed to fully validate the optimal
pipeline for cellularity measures. Perhaps more important for this
area of research is improving model performance in borderline
cases. An FDA review of numerous DL studies of cellularity
assessment noted that, almost uniformly, such approaches
misclassified the most challenging cases. Adenosis, a benign
condition that at times mimics invasive breast cancer, was
commonly labeled high cellularity by DL models and lobular

Fig. 1 Example neural network architectures. a Basic neural network demonstrating input nodes with dimensionality of 8, two hidden layers
that involve dimension expansion and subsequent reduction with a final output node. Each input node is connected to each of the hidden nodes
(a fully connected network), with lines connecting nodes representing weights applied to a source to reach a destination. The above representation
can also be visualized as a weight matrix, translating from the dimensionality of the input nodes to the dimensionality of the output nodes. b A
pictorial the training process – inputs are fed to a DL network, predictions are made and compared to ground truth labels and parameters are
updated in a loop. c A convolutional network architecture demonstrating the typical backbone of pooling layers followed by convolutional layers.
Note that convolutions increase the number of filters while reducing dimensionality in the x/y dimensions (https://alexlenail.me/NN-SVG/).
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carcinoma, known for its more distorted and non-cohesive
architectures, often had cellularity underestimated21. It is precisely
these challenging cases where a DL system would be of most
benefit in aiding clinician judgment, suggesting that more work is
needed to adapt models for real-world use (Fig. 3).
Microenvirenment and Stroma: Digital pathology is a lens

through which we can examine individual cells, allowing the
mobilization of spatial information for specific cell types into new
ways to assess biology or treatment response. One exciting
application of this has been the study of tumor-infiltrating
lymphocytes (TILs). Stromal TILs have shown prognostic signifi-
cance in triple-negative and HER2+ breast cancers22 and high

density of TILs have promise in predicting pCR in HER2+ patients
receiving neoadjuvant chemotherapy (NAC)23. Recent efforts have
focused on DL methods to further extract TIL information from
histopathology and uncover further biological insights.
Numerous studies have validated the effectiveness of DL

pipelines in reliably recognizing both TILs and their distribution
in WSIs. In specimens stained with an antibody to CD45 (also
known as leukocyte common antigen), a receptor tyrosine
phosphatase expressed on leukocytes, immune rich regions
containing TILs could readily be distinguished from immune poor
regions, with an F-score (a measure of accuracy that balances both
precision and recall) of 0.94 compared to pathologist-derived F-
scores of 0.8824. More direct estimation methods, without the use

Fig. 2 Image tasks in computer vision. Examples of (a) image classification, in which the task is one of classifying an image as one of 4
different types of animals (b) object detection, in which not only are objects classified but also identified in the image with boxes around their
respective location and (c) image segmentation, where every pixel in the image is translated into some label, here the vessels, airways and
contours of a lung. Sources: (a) the author’s photographs of dog (DM) and Jonesy the cat (AA). b https://commons.wikimedia.org/wiki/
File:Detected-with-YOLO--Schreibtisch-mit-Objekten.jpg (c) https://commons.wikimedia.org/wiki/File:3D_CT_of_thorax.jpg.

Box 3 image-related deep learning systems

3 common image-related tasks deep learning systems are trained to perform:
Image classification: Given an entire image, the network is asked to classify the
image into one of several categories. A dog classifier, for instance, might classify
a given image as belonging to one of 16 different dog breeds.
Object detection: The network is trained to not only recognize when a certain
object is present (an animal) but point to where it is in an image (Fig. 2b). In an
image of a living room, the network would output objects such as the sofa, TV
and table, each with a box around the object in the image.
Image segmentation: The network is asked to classify every pixel in an image as
belonging to one of a group of classes. Fig. 2c shows this for the vessels, airways
and contours of a lung.

Box 4 attention and transformers

Attention is a mechanism to weight different parts of an input and focus on the
most relevant parts for the task at hand. To provide intuition, imagine an input is
divided into smaller pieces – sentences are broken into tokens or images are
broken into patches or tiles. Each token is then represented as 3 distinct vectors:
a key, query and value. For a given token, we take its key vector and compare it
against all the query vectors, performing a dot product with each. A dot product
is higher if two vectors are ‘similar’ - thus this step amounts to weighting the
other tiles in the image that are most similar to the tile we are currently looking
at (our key). We then grab the corresponding value vectors, weighted by the
prior dot products, giving us a final representation for our original token or tile.
The key piece of a transformer architecture is the use of attention.
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of specialized stains, have relied on networks that segment or
recognize individual cells based on morphology. In one of the
more impressive examples of this, Swiderska et al. first used the
well-known YOLO (You Only Look Once) algorithm, an efficient
method for object localization, to obtain bounding boxes for TILs
in a given slide and then within such boxes, segment the cell body
and membranes of lymphocytes25. This network identified specific
CD3 and CD8 positive lymphocytes, with an F-score of 0.82. While
impressive, the effort required extraordinary manual labor, as
~170,000 lymphocytes had to be labeled by trained pathologists
on slides for use in the model. Other efforts for TIL recognition
have used the approach of first detecting nuclei and then
classifying cell types as lymphocytes26–28.
Beyond simple recognition of TILs, more recent efforts have

used DL to integrate the spatial distribution of TILs with novel
predictions on tumor behavior, genomic alterations29, responses
to PD-1 checkpoint inhibition therapy30 and prognosis31. Naraya-
nan et al. studied TIL localization in the context of ductal
carcinoma in-situ (DCIS). To do this, the authors used a modified
U-NET architecture to detect DCIS areas in a slide. A cell detector
was used to segment cells in this area with a CNN-based classifier
ultimately categorizing these cells into epithelial, stromal or
lymphocytes. A ‘colocalization’ formula applied to these regions
provided a quantitative measure of the degree of TIL clustering in
regions of interest. The approach showed that TIL colocalization
varied with the presence of invasive carcinoma; whilst sections in
which DCIS was found next to cancer had lower numbers of TILs
overall, they had much higher degree of colocalization of TILs
around DCIS ducts, lending support for a more immune reactive
microenvironment in disease states with worse prognosis32. In

another study, Lu et al. also used a U-NET to detect individual
lymphocytes, although counts of lymphocytes were aggregated
into TIL scores per WSI. This aggregated score correlated with
expression of specific genes in the immune response pathway
(such as CTLA4) and interestingly, such genes seemed to differ
across breast cancer subtypes33. Our understanding of the spatial
arrangement of TILs continues to expand, as recently even the
arrangement of TILs with particular shapes, circular or elongated30,
has shown to have therapeutic insight into breast cancer30.
Attempts to integrate TIL assessment into a clinical workflow are
already underway in clinical trials22. DL systems will streamline this
process and, more importantly, continue to aid in uncovering
morphometric and spatial cellular patterns that reflect a variety of
biologic and therapeutic insights that may advance clinical
practice.
Whilst historically the stroma in WSIs has received relatively

little attention compared to epithelium as a source of useful
information about tumors, increasingly this is changing34.
Biologically, new insights are emerging on the role of the stroma
in enabling tumor growth and metastases through cytokine or
chemokine-mediated secretion35. Additionally, abnormalities in
the stroma are often quite subtle and difficult to distinguish by
eye, with emerging data suggesting that pattern recognition
systems are better suited for identifying these changes36. As a
whole, DL offers a potential means to characterize and perhaps
utilize yet to be explored stromal information.
Numerous studies have already validated the use of DL

networks to segment stroma effectively automatically from
epithelia34. Biomarkers derived from stroma by such networks,
including tumor-stromal ratio37,38 and even collagen

Fig. 3 Deep learning features from WSI. Categories of features extracted from deep learning systems in breast cancer are illustrated,
including invasive carcinoma architecture, cellular makeup of the microenvironment, nuclei features (including segmentation, orientation and
nucleoli prominence), and stroma characteristics including collagen fiber orientation. On the right, references of studies exploring the
detection of the different categories of features.
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orientation39,40, have been associated with overall survival in
breast cancer and DCIS recurrence after surgery41,42. The rich
information content hidden in the stroma of tissue slides is
perhaps best highlighted by Bejnordi et al., where three CNN
networks were trained in hierarchical fashion to segment tissue
slide stroma, identify tumor-stromal content and then develop a
score for overall likelihood of tumor malignancy36. Surprisingly, in
subsequently examining the network’s behavior, the authors
found that higher grade DCIS had a higher mean stromal content
within a certain distance of DCIS margins compared to lower
grade cases. In this way, the network could act as a stratifier of
DCIS without even being trained to recognize DCIS. Hence,
stromal content will likely increasingly be an area ripe for new
biomarker discovery and novel insights into tumor biology43.
Tumor-associated collagen is increasingly garnering attention as

an example of DL-derived, entirely novel microenvironment
biomarker. From facilitating movement of malignant cells and
therefore metastasis to biomechanically triggering signaling
pathways, collagen is thought to have a variety of roles in tumor
behavior. Motivated by this, one study39 used DL to segment
collagen tissue from bright field histology images. Using 37
extracted features relating to orientation, texture, and alignment,
the authors were able to stratify hormone receptor positive
invasive ductal carcinoma into prognostic groups, with specific
factors including orientation magnitude and fiber width most
significant39. In an extension of this, Li et al. developed a
quantifiable measure of collagen disorder40. With a conditional
general adversarial network, a DL approach using competing
objectives to train a ‘generator’ and ‘discriminator’, the authors
separated epithelial and stromal tissue and subsequently used a
derivative of a gaussian model to classify the orientation of
collagen in the stroma, particularly at the tumor border. Entropy-
derived quantification of collagen disorder was then used to
estimate prognosis, with interestingly more ‘ordered’ frameworks
associating with significantly lower 5-year disease-free survival40.

Clinical characteristics
One of the most long-standing yet significant clinical challenges in
breast cancer remains estimating likelihood of progression or
response to therapy, especially in early stages1. Some of these
challenges are highlighted by the low response rate, estimated at
4–25%, of patients to the top 10 most highly prescribed US drugs1.
AI, specifically DL, can substantially aid in therapy decisions by
maximizing the extraction of clinical information from multi-
modal sources44,45 as well as in uncovering response biomarkers
perhaps less obvious to the human eye, and, as a result, has been
at the center of recent FDA initiatives to personalize therapy
decisions1. In Europe, the CE mark has already been given to the
breast cancer detection algorithms developed by Paige.AI, which
helps pathologists in the detection of specific foci in slides
suspicious for cancer and Ibex’s Galen, which has demonstrated
high accuracy in distinguishing subtypes of invasive breast cancer
and grading DCIS. Beyond detection of breast cancer, early studies
have validated that incorporation of signals from digital pathology
can also aid in capturing treatment responses in ER- patients46.
In no area of breast cancer is recurrence estimation both as

significant and vexing as it is with ER+ cancers. Numerous
genotype tests, including the Oncotype DX, have been developed
to aid in predicting which early-stage patients may benefit from
more aggressive initial treatment47. DL efforts have attempted to
identify tissue correlates that accurately reflect the OncoDX score
and thus make these results more widely available for clinical use.
In one such study, a DL pipeline was used to first segment nuclei
and then separate epithelial and stromal tissues prior to extracting
216 nuclei features relating to shape, architecture, and orienta-
tion47. These direct nuclear features, thought to better capture the
nuclear distortions reflected by clinical grade, were found to

predict high and low Oncotype Dx scores. More interestingly,
predictive performance improved when the model was initially
trained by grouping intermediate with low Oncotype scores,
suggesting that histomorphometrically these groups may be quite
similar. Other studies have used DL to extract nuclei features such
as the ratio of tubule nuclei9 or number of mitotic events8 to again
obtain surrogates for grade that might be used to directly predict
Oncotype Dx categories. Albeit good in distinguishing extreme
cases, with the best AUC of 0.838,9, these methods have thus far
proven only mildly effective at assessing risk levels in more
indeterminate cases, with either borderline risk scores or
conflicting clinical grade. While not specifically DL, some studies
have shown promise in extracting novel biomarkers, such as
heterogeneity of nuclei polarity11 or immune cell clustering31

across a tissue sample, to directly estimate survival in ER+
patients. Additional studies have incorporated histopathology
features extracted from DL systems with clinical features,
including Magee features48 or common clinical characteristics
incorporated into clinical nomograms49. Howard et. al., who
combined tile-derived recurrence prediction scores with clinically-
derived scores, interestingly did not exclude intermediate risk
patients and reliably detected low-risk subgroups of patients that
would not benefit from further genomic testing. Taken together,
novel biomarkers and multi-modal data integration may hold
promise in improving estimates of recurrence for ER+ patients,
particularly in more ‘ambiguous’ clinical scenarios.
Recent work has also explored the use of DL to predict pCR. Li

et al. employed networks trained directly from WSIs in patients
receiving neoadjuvant chemotherapy to produce a pCR ‘score’.
This approach surprisingly achieved an AUC of 0.8450 in predicting
pCR, and was unique in that no manual pre-processing, that
specified a-priori and extracted cell or nuclei morphologic
features, was done as in many of the other studies examined51.
Of note, the pCR performance was across patients with a mix of
hormone receptor status and notably triple-negative breast cancer
patients trended to non-significant pCR score distribution
compared to other subtypes. This difficulty in predicting
neoadjuvant therapy response in triple-negative patients was
echoed by Naylor et. al. in a study of 350 slides52. The study used
the familiar approach of encoding tiles of a slide using pre-trained
networks and then aggregating encodings using either average or
attention pooling methods, finding the most successful combina-
tion of modules yielded a low AUC of 0.6452. Other work in HER2
and triple-negative breast cancer patients utilized separate
models for tumor detection and nuclei segmentation, with
subsequently extracted nuclear features used to predict pCR,
finding nuclear intensity and texture-based features most reliably
predicted pCR10. To date the most promising results in triple-
negative disease have come from Duanmu et. al., in which a novel
‘knowledge-derived’ spatial attention mechanism was employed
to focus a DL system on tumor areas with highest information
content for its prediction task53. To do so, serial slides, including
H&E, Ki67 and Phosphohistone H3 (PHH3) were used, with the
latter two obtained by immunohistochemical analysis. A DL
network was used first to identify and segment tumor cells on
H&E slides. For the corresponding sample, Ki67 and PHH3 areas
were identified and based on these biomarker-positive areas, an
attention map was generated to more highly weight tumor cells
contained within this spatial region of interest. Images containing
the resulting cells were then fed through a more typical Resnet-34
to obtain predicted pCR. The performance of the resulting system
is quite impressive, with AUC’s on a tile basis of 0.96.
Direct survival estimation from tissue pathology remains a

challenge54,55. There is evidence to suggest that the combination
of both cell and micro-environment level features, such as stromal
content, along with clinical variables improves predictions from
cell-level features alone56. This is consistent with the notion that
DL networks with the capacity to attend to multiple levels of a
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hierarchical representation of an input may be an avenue to learn
more meaningful relationships related to survival prediction.

Molecular features
Pipelines for robustly extracting genomic information from WSI
solely or as part of combinatorial biomarkers hold the potential to
change a variety of clinical practices, from predicting responses to
therapy to improving staging or discovering novel biomar-
kers2,57–60. Numerous studies have already established that the
morphologic traits of tumor cells, extracted by pathologists
themselves, are associated with expression of specific genes60–62.
Recent work applying DL techniques with histopathology has
extended this insight to an unprecedented level, allowing a spatial
and morphologic mapping of cancers to genetic, proteomic, and
expression data.
Spatial transcriptomics directly maps expression data to cells in

histopathology images. Due to the expense and more limited
availability of these techniques, few datasets have been available
to integrate this technology with DL in studying breast cancer. In
one such study, He et al. developed ST-net, a DL algorithm to
capture gene expression heterogeneity of 250 genes63. Like many
DL approaches, WSI were first broken into smaller ‘tiles’ of image
size 250 × 250 pixels, from which expression data of the 250 genes
was directly trained on and predicted. The authors found 102
genes could be successfully predicted based on histopathology
alone, and these results correlated well with RNA seq data from a
comparison set of data used from TCGA. More impressively, the
method demonstrated the feasibility of this approach in
discovering novel genes involved in breast cancer pathways, with
the authors discovering three genes that were markers of tumor
growth and immune activation, respectively63.
Other studies have used more indirect approaches to relate the

spatial content of WSIs to genomic mutations. In evaluating point
mutations in breast cancer, Qu et al. achieved a high Area Under
the Curve (AUC) in predicting point mutations in TP53, RB1, CDH1,
NF1 and NOTCH2 and copy number alterations (CNA) in 6
additional genes64. The pipeline employed a classic convolutional
neural network (i.e. Resnet) as the backbone to ‘encode’ tile image
features and combined these using an attention-mechanism to
make whole-slide level predictions of mutation status. Other
approaches have leveraged larger sources of data across a range
of cancer types to make genomic predictions. In one such study,
Kather et al. used an exceedingly computationally efficient
convolution network, Shufflenet, to extract image features across
thousands of colon, lung, breast and a range of other cancer
images, and used these features to predict both point mutations
and molecular pathways. In breast cancer, this approach reliably
detected both TP53 and PIK3CA genomic alterations65. In another
large-scale, pan-cancer approach, 17,000 hematoxylin and eosin
stain (H&E) slides were used train a DL network to correlate
computational histopathologic features to recurrent genetic
abnormalities across cancers, including whole genome duplica-
tions, focal amplifications and deletions and driver gene muta-
tions. The study impressively demonstrated that across virtually all
cancer-types, including breast cancer, tumor morphology can
reliably be shown to be associated with genomic alterations66.
These pan-cancer studies have important limitations, however,
given that several mutations known to predict a cancer phenotype
could not be detected. CDH1 mutations, for instance, which, while
almost pathognomonic of invasive lobular carcinoma, could not
be predicted in Kather et al. from the H&E images. Thus, although
these studies have undoubtedly proven the principle of relating
histologic phenotypes to genomic markers, much work remains
on reliably extracting this information in a predictable manner in a
routinely implementable system.
DL has similarly been employed to reliably distinguish

molecular subtypes of breast cancer from histopathology and

more impressively, capture molecular heterogeneity reflected in a
WSI without the expression data at a cellular level that spatial
transcriptomics provides65,67. Jaber et al. combined a DL feature
extractor with a support vector machine classifier to categorize
tiles of a WSI into PAM50 subtypes. While slide level predictions
were aggregated by a ‘voting mechanism’ across tiles, the tile-
level predictions themselves reflected a ‘heterogeneity’ of
subtypes present in the tumor sample. Interestingly, the degree
of this heterogeneity had prognostic significance, as patients with
overall Luminal A subtype breast cancer but with basal subclones
had poorer survival compared to homogenous Luminal A
tumors67. These results demonstrate that DL approaches can
provide novel insights into heterogeneity that may warrant more
detailed molecular and clinical response analysis. Extending this
concept further, newly designed DL approaches, such as
‘discriminative bag of cells’68, have used cell and nuclei features
to define novel cell types present in a tumor sample. Histograms
of these cell types can then be used directly to predict molecular
subtypes present in breast tumor samples, more explicitly
‘quantifying’ the cell morphologic features that have unique
signatures across subtypes. In this way, 8 unique cell types have
been defined across the basal molecular subtype.
Methods to infer trait expression or perform gene enrichment

analysis, through prediction of RNA expression from histopathol-
ogy, have also been undertaken. In the first study linking
transcriptome-wide expression to morphology in breast cancer,
Wang et al. studied over 17,000 genes and found that convolu-
tional networks could reliably predict mRNA expression, validated
through RNA sequencing, of approximately 9000 genes69. The
scale of the analysis was particularly impressive, with each gene
requiring an independent model that could predict RNA seq data
at the tile level. Based on mRNA expression estimates, the authors
isolated 16 enriched gene pathways, most of these known to be
involved in breast cancer pathogenesis. Moreover, the spatial
variability of expression, by using the tile-level predictions, was
significantly associated with spatial transcriptomics profiling in 59
of 76 genes69, showing the validity of such approaches in
providing spatially relevant, genomic insight70,71. Similar tile-
level DL systems have been used to create ‘heterogeneity maps’ in
mRNA expression that have prognostic significance70, define traits
such as MKI67 and FOXA170, and show ‘signatures’ that distinctly
mark each of the breast cancer molecular subtypes71,72. Spatial
mapping of expression data has also been used to help define
novel biologic differences in tissue or cell type. Using DL to
segment stroma and epithelium and then training a classifier
using tissue type to predict mRNA expression, has revealed that
genes correlated with expression vary not only between tissue
type but across molecular subtypes of breast cancer. For instance,
while epithelial tissues were enriched in genes related to
processes such as cell cycle, estrogen-receptor (ER) positive
subtype breast cancers specifically had enriched G1 and G2 phase
genes, while triple-negative cancers were enriched for mitotic
phase expressed genes38. This concept of mapping expression
data to imaging cell type has been extended to reliably predict
populations of T and B cells in WSI66,71.
Hormone receptor status similarly reflects protein expression,

and DL systems have reliability estimated such status, compared
to immunohistochemistry, from morphologic characteristics of
cells on pathology slides alone. While pan cancer approaches have
been able to accurately assess ER status65, the most successful
applications have come from studies solely on breast cancer
cohorts. In one such study, a simple Resnet architecture used to
encode tile level features combined with a slide level L1 logistic
regression achieved PPVs of 98%, NPVs of 76%, and accuracy 92%,
noninferior to traditional immunohistochemistry in predicting ER
status (PPV, 91–98%; NPV, 51–78%; and accuracy, 81–90%)73.
Perhaps surprisingly, these morphologic features relating to
receptor status, can be learned without having paired labels (i.e.
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receptor status) with training data (i.e. WSIs). In a self-supervised
learning approach, Rawat et al. learned histologic features for WSIs
‘automatically’ by splitting images into halves and by having a
system predict which two halves belong together74. Using groups
of similar features learned this way resulted in a better classifier
compared to directly using image patches for ER, with AUCs of
0.88 vs. 0.82, respectively, suggesting that the features were
separated not only on morphological but also biologic information
learned by the network. This exciting finding may pave the way
for pre-training a variety of networks which can then be used to
automate receptor status identification. To capture the relevant
histologic features more directly and use these in predicting
receptor status, Naik et al. used an attention mechanism as part of
multiple-instance learning75. In this system, bags of tiles from each
slide are given weights, learned by the DL model, for use in
predicting slide level characteristics, such as ER status. This
approach yielded amongst the highest AUC, 0.92, reported for ER
receptor prediction. Further, the findings correlated with known
biology. ER+ tiles for instance showed two distinct types of
features: with uniform cells with small nuclei and low mitotic rates
consistent with low grade tumors; or linear arrays surrounded by
stroma with no duct formation consistent with invasive lobular
carcinoma-type. MIL methods have still proven effective when ER
+ and ER- groups are balanced with similar numbers of low/
intermediate grade samples76.
Predicting HER2 status from WSIs has in large part been less

accurate than for ER receptor status, with the best reported model
AUC’s around 0.8277–79. An interesting direction for this area of
research, however, has been model estimation of HER2 status as a
more reliable measure of response to trastuzumab therapy.
Bichcky et al. trained a relatively simple DL network to directly
predict gene-amplification status in a cohort of patients who
subsequently went on to receive trastuzumab. Surprisingly,
patients with gene amplification did worse with therapy if they
had low model-predicted HER2 score and better if their model-
predicted scores were higher80. In this way, inferring at a tile level
HER2 status and aggregating this at a slide level in an intelligent
manner may be a more accurate means of estimating the receptor
expression phenotype in a sample overall. This has direct
therapeutic relevance, especially considering the recent DES-
TINY-Breast04, in which a new category of breast cancer patients,
HER2-low, had PFS and OS meaningfully improved by use of
trastuzumab deruxtecan (TDxd)81, leading to FDA approval for use
of TDxd for this indication. Using AI-based methods to quantify
and then stratify HER2 expression phenotypes more accurately
could thereby, very directly, accelerate the adoption of an entirely
new approach to breast cancer treatment.
Finally, estimation of DNA repair deficiency from histopathol-

ogy, an area with tremendous therapeutic potential, while in its
infancy, has been explored in a few reports. DL Resnet
architectures have successfully classified tumors as having high
or low fractional genome instability (or CIN), a measure which was
shown to correlate with survival82. More directly, other work has
used slide imaging to directly infer homologous repair deficiency
(HRD) via BRCA mutation status83 and LST signatures84. Lazard et.
al. expanded on this by developing a novel visualization approach
that applies the slide-level attention weighting to individual tiles,
thereby estimating a probability for each tile in a slide having HRD.
Using this tool, the authors found morphologic correlates of HRD
status in slides, some well-described in the literature such as
necrosis and high density of TILs, whereas others less-discussed,
such as intratumoral fibrosis and abundant carcinomatosis with
clear cytoplasm84. The DeepSmile system enhanced performance
by incorporating self-supervised learning, namely SimCLR, to
pretrain a network to learn useful feature representations of tiles
and then feed these representations to a multiple instance
learning network to ultimately predict HRD status, achieving an
impressive AUC of 0.84 on the TCGA dataset85. Overall, readily

recognizing morphologic correlates of HRD status can have direct
therapeutic relevance particularly if such findings can be extended
to infer the more general “BRCAness” phenotype with implied
sensitivity to PARP inhibitors60,86.

Challenges and outlook of AI in breast pathology
How exactly DL systems will be utilized in clinical care is evolving
in a fascinating manner. Yet despite the exciting technological and
scientific advances in the field and its applications in healthcare,
numerous challenges remain to realizing its implementation in
routine clinical care.
Perhaps most fundamental are the cultural and institutional

attitudes towards the acceptance of such systems in standard
practice. Akin to the great microscopy debate in the Paris
Academy of Medicine in the nineteenth century87, physician
attitudes towards use of AI in practice are often mired with
skepticism and preconceived notions of the ‘right’ roles for AI in
care. In surveys, this physician sentiment on the division of roles
between themselves and DL-systems, often comes not from a
comprehensive review of where clinical care might be augmented
by DL-systems (error rate reduction, integrating multimodal data,
or extracting new types of biologic insights), but rather fixed
notions of what parts of a clinical workflow should be shielded
from incursion88. Integrating AI into sustainable clinical workflows
is an entire paradigm shift in care and only by reimagining current
practice can the full potential of any such systems emerge.
Another challenge in AI uptake in healthcare is the blackbox

nature of how these systems, especially weakly-supervised DL
systems, arrive at their predictions. Although the relationship
between inputs and final predictions of DL networks cannot be
easily mapped to a handful of variables and the semantics cannot
be trivially applied to the features utilized for a given label
prediction, much can still be gleaned from how networks translate
inputs to outputs. Two relatively recent approaches we discuss
here include use of attention weights and knowledge distillation.
The key behind the attention mechanism is that inputs are
weighted by their relevance in determining the final output. In the
medical domain, sorting attention weights of positions in a
sequence of inputs to a DL network has allowed researchers to
highlight the most relevant times for critical events in an ICU or
sites in a genome where HIV is likely to integrate89. With imaging,
as already discussed, attention weights can be used to create
maps of tiles in a slide with features most salient in arriving at the
slide class label. This can focus a pathologist’s eyes to the tiles with
morphologic characteristics of greatest interest. Knowledge-
distillation, another emerging technique, involves taking a more
complicated network and training a simpler, student, network to
arrive at the same predictions. This simpler network, more
interpretable, has been used to develop rule-extraction networks
for complicated prediction tasks such as ICU mortality prediction
or diagnosing Alzheimer’s disease89. Explainable AI will continue
to require dedicated research effort that not only illuminates how
networks process inputs but also how this can then be distilled to
key pieces of information that can augment clinical practice.
Building off the ‘black-box’ nature of DL systems, a third

challenge is ensuring the findings from systems applied to specific
data types are appropriately generalizable. In general, models
aimed at predicting low incident events can have inflated
performance, especially if such models make indiscriminate
predictions. This is especially relevant for genetic alterations
which can often be low frequency events in datasets. Appro-
priately assessing model predictions, via combining precision/
recall analysis with more general definitions of ‘accuracy’ can help
tease out the true predictions a model is making and allow more
fine-tuning of performance. A more specific issue in the context of
the DL is when such systems infer outcomes from unintended
aspects of how the data generated. In an analysis of TCGA digital
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histologic images, Howard et. al. found that staining differences
between submitting sites can be detected by DL systems, despite
generally used color normalization methods and, more worrisome,
such differences lead to biased predictions90. The study highlights
the specific need to ensure DL models, capable of learning a
multitude of complex relationships between data inputs, learn
only on the ‘appropriate’ aspects of datasets. It should also be
noted that in multiple studies, rather than developing algorithms
based on TCGA WSIs, investigators utilized this publicly available
dataset as the essential external validation dataset91 for the
validation of algorithms developed through the analysis of
purpose-built WSI collections. Given the potential sources of noise
in the TCGA WSI dataset, caution should be exercised in the
assessment of the performance of TCGA-derived or TCGA-
validated AI algorithms.
A third challenge in DL adoption in pathology is a general

requirement of these systems: the need for ground truth (i.e.
labeled data). This is particularly relevant in the context of strongly
supervised approaches, where annotating data is a time and
labor-intensive process. In healthcare this is compounded by data
being held in disparate silos in non-uniform formatting, requiring
an inordinate amount of effort to collect and label such samples.
One approach to deal with this is to make the labeling process
‘easier’. A creative initiative being explored is the use of Amazon
Mechanical Turk and other platforms to crowdsource annota-
tions92. This work has even been extended such that medical
images can be represented on a video game ‘canvas’ to help
popularize annotation tasks92. Another approach to the labeling
problem is to leverage self-supervised or even unsupervised
learning to drastically reduce the amount of labeled data needed
to make meaningful inferences (see Box 2 for definitions). Self-
supervised techniques allow networks to learn representations of
data without explicit labels by employing contrastive techniques -
because no labels are needed, huge amounts of data may be fed
to a network to ‘prime’ it. A smaller amount of labeled data may
then be used to ‘fine-tune’ the performance of the network and in
this way only a small amount of truly labeled data is required.
Graphical temporal networks93, manifold preserving autoenco-
ders7 and tensor decomposition94 are but some specific examples
of this approach that have been explored in breast cancer.
A fourth barrier is the specificity of domain knowledge in

healthcare. Having networks that a priori can mimic the type of
filtering done by medical practitioners is an open area of
exploration95. Leveraging past cases, through retrieval of images
with comparable features96,97, allows for new approaches to
diagnosis such as artificial voting and consensus building. Finally,
and perhaps most ambitiously, use of multi-modal data, through
combinations of mammography, histology and other clinical data
will open new ways features of an individual’s specific disease
state to clinically relevant outcomes94,97,98. Chen et al. found a
multimodal fusion deep learning network that combined both
molecular and histology based features outperformed models
trained on only single modalities for survival prediction in breast
cancer99. This study also highlighted the fact that the prognostic
and/or predictive information that can be derived solely from the
AI analysis of H&E WSIs may not suffice for the accurate prediction
of outcomes of breast cancer patients, and that integrative
models100 should be entertained.
A final challenge to adoption of DL networks in clinical

pathology is more abstract yet vital: demonstrating improvements
to existing workflows. Adoption of such systems requires that new
workflows drastically, not incrementally, improve on old ones.
Whilst a common focus in digital pathology has been on error
reduction or standardization that AI approaches can provide in
diagnostics, this is only the tip of the iceberg of how DL-systems
might augment clinical capabilities. For instance, DL networks
have been piloted in operating rooms, where virtual H&E staining
performed on breast tissue samples via general adversarial

networks allows a DL system to then analyze the tissue specimens
in real-time to make diagnostic predictions101. It is only a marginal
extension of this to imagine a system that detects margin-free
resections or more aggressive pathologic features that may
warrant real-time, intra-operative therapy. Beyond virtual image
processing102, future clinical workflows that incorporate DL
networks will likely extend to models that work with patients’
devices themselves103. DL systems integrated on patients’ devices
have provided a real-time image recognition and analysis system
for cosmetic results after breast cancer mastectomy and
reconstruction103. The feedback and objective measures of
outcomes will advance the capabilities of care to even greater
precision. Continued adoption will require focused attention on
how such clinical workflows be developed that benefit all
stakeholders and augment current clinical capabilities. Together,
many of the above innovations alongside the advancements in
biologic, prognostic and therapeutic information extracted from
WSIs themselves, hold the key to an array of remarkable pipelines
that may change the way in which breast cancer care is delivered.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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