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Predicting breast cancer types on and beyond molecular level
in a multi-modal fashion
Tianyu Zhang 1,2,3, Tao Tan 1,4✉, Luyi Han 1,3, Linda Appelman 3, Jeroen Veltman5,6, Ronni Wessels7, Katya M. Duvivier8,
Claudette Loo1, Yuan Gao 1,2,3, Xin Wang 1,2,3, Hugo M. Horlings 9, Regina G. H. Beets-Tan1,2 and Ritse M. Mann1,3

Accurately determining the molecular subtypes of breast cancer is important for the prognosis of breast cancer patients and can
guide treatment selection. In this study, we develop a deep learning-based model for predicting the molecular subtypes of breast
cancer directly from the diagnostic mammography and ultrasound images. Multi-modal deep learning with intra- and inter-
modality attention modules (MDL-IIA) is proposed to extract important relations between mammography and ultrasound for this
task. MDL-IIA leads to the best diagnostic performance compared to other cohort models in predicting 4-category molecular
subtypes with Matthews correlation coefficient (MCC) of 0.837 (95% confidence interval [CI]: 0.803, 0.870). The MDL-IIA model can
also discriminate between Luminal and Non-Luminal disease with an area under the receiver operating characteristic curve of 0.929
(95% CI: 0.903, 0.951). These results significantly outperform clinicians’ predictions based on radiographic imaging. Beyond
molecular-level test, based on gene-level ground truth, our method can bypass the inherent uncertainty from
immunohistochemistry test. This work thus provides a noninvasive method to predict the molecular subtypes of breast cancer,
potentially guiding treatment selection for breast cancer patients and providing decision support for clinicians.
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INTRODUCTION
Breast cancer is the most common malignant tumor in women,
and it has a high degree of heterogeneity in terms of
clinicopathological characteristics, prognosis, and response to
treatment1–5. Breast cancers can be divided into molecular
subtypes, which is based upon the genetic profile of the cancers,
but in practice is usually based upon the expression levels of the
estrogen receptor (ER), progesterone receptor (PR), human
epidermal growth factor receptor 2 (HER2) and Ki-67. The resulting
molecular subtypes are known as Luminal A (ER+ and/or PR+,
HER2−, low Ki-67), Luminal B (ER+ and/or PR+, HER2− with high
Ki-67 or HER2+ with any Ki-67 status), HER2-enriched (ER−, PR−,
HER2+) and Triple-negative (TN) breast cancer (ER−, PR−,
HER2−)6. These molecular subtypes are an important prognostic
factor and can guide pre- and postoperative systemic therapy,
because these therapies typically target these receptors7,8. In
generally, Luminal A breast cancer has the best prognosis and is
usually treated with endocrine therapy; Luminal B has a good
prognosis and can be treated with endocrine therapy, cytotoxic
chemotherapy or targeted therapy; HER2-enriched cancers are
nowadays treated with targeted therapy in combination with
cytotoxic chemotherapy, which has strongly improved the
prognosis; TN breast cancer still has the worst prognosis and
cytotoxic (neoadjuvant) chemotherapy is the main treatment
option9–13. At present, the molecular subtypes of breast cancer are
determined by immunohistochemistry (IHC) analysis of biopsy
specimen, which is a surrogate for genetic testing, as the genetic
analysis is quite costly14,15. Unfortunately, the biopsy procedure

limits the assessment to a small part of the tumor, which might
prevent obtaining a full impression of the nature of the lesion.
Differentiation within breast cancer may lead to subclones with
different receptor expression, which may not be fully captured by
analysis of core biopsies. In addition, in particular, if the HER2
result on IHC test is score 2+ (meaning borderline), genetic test
method, such as fluorescence in situ hybridization, have to be
used to retest the tissue to ensure the result is accurate, thus
increasing the cost and taking longer to return result16–18. Neither
IHC nor in situ hybridization is available everywhere around the
world19, which may lead to substantial under- or overtreatment of
patients. For example, lack of adequate receptor staining may lead
to giving drugs that don’t work (e.g. tamoxifen in an ER- patient),
or omission of drugs with a very strong effect in specific patients
(e.g. trastuzumab in Her2+ disease). Therefore, there is a need for
an effective technique to assist in the analysis of the entire breast
lesions to accurately predict the molecular subtypes of breast
cancer and provide decision support.
With the continuous development of artificial intelligence (AI),

AI-based methods have been widely used in the field of breast
imaging mainly for the evaluation of screening mammograms,
segmentation of breast tumors and some other classification
tasks20–27. Recent studies have shown that the performance of
deep learning is close to the average level of radiologists in the
evaluation of screening mammograms23,28. Some studies have
shown that AI-based method can predict molecular subtypes of
breast cancer from hematoxylin-eosin-stained breast cancer
pathological images29–31. However, breast tumors are highly
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heterogeneous, and the results of tissue samples taken from a
specific location in the breast tumor may not be representative of
the entire tumor. In some studies, a combination of medical
imaging and AI has been used to predict the molecular subtypes
of breast cancer, however, most research efforts are based on
traditional machine learning methods and provide limited
accuracy cancer32–35. In addition, these previous studies only
analyzed single-modality images, such as mammography, ultra-
sound or MRI and did not integrate features from different
imaging modalities. Most studies are performed using breast MRI,
but this examination is generally not yet available at the time of
cancer detection. Moreover, obtaining breast MRI is not standard
for all breast cancer patients in most countries, and is not
uniformly done even within Europe36.
Mammography (MG) and ultrasound (US) are routinely used

during breast cancer screening, and are commonly used to
identify, and characterize breast lesions and guide biopsy.
Different than for breast MRI, these two modalities are virtually
always and everywhere available at the time of cancer diagnosis.
In this work, we thus investigate the feasibility of predicting
molecular subtypes of breast cancer from the combination of MG
and US using a multi-modal deep learning model incorporating
the attention mechanism. Moreover, we conduct a reader study,
comparing our multi-modal AI prediction with the prediction by
experienced clinicians on the radiological images. We also assess
whether AI could be an alternative to a gene-test in determining
the class for borderline cases with a HER2 score of 2+. The
Matthews correlation coefficient (MCC) of our multi-modal AI in
predicting 4-category molecular subtypes is 0.837 (95% con-
fidence interval [CI]: 0.803, 0.870), and the area under the receiver
operating characteristic curve (AUC) for distinguishing Luminal
and Non-Luminal diseases is 0.929 (95% CI: 0.903, 0.951). This work
thus provides a noninvasive method to predict the molecular
subtypes of breast cancer, potentially guiding treatment selection
for breast cancer patients.

RESULTS
Characteristics of cases
Between January 2010 to November 2019, a total of 3360 paired
cases (MG and corresponding US) were obtained (as shown in
Fig. 1a, b), and these cancer cases were grouped into 4 molecular
subtypes based on the information of ER, PR, HER2 and Ki67 from
IHC findings and silver-enhanced in situ hybridization (SISH) test
(as shown in Fig. 1c). In total, we included 1494 cases of Luminal A,
905 cases of Luminal B, 386 cases of HER2-enriched, and 575 cases
of TN breast cancer. The characteristics of breast cancer cases used
in this study are summarized in Table 1. There are no significant
differences between the tumor characteristics of training and test
cohort (all p values > 0.05).

Base model selection
To find the most suitable base/backbone model for our study, the
performance of ResNet34, ResNet50, ResNet101, and Inceptionv3
in predicting molecular subtypes of breast cancer were compared.
The ResNet34, ResNet50, ResNet101 were applied, inspired by the
work of He et al.37, and the Inceptionv3 was applied according to
the work of Szegedy et al.38. As shown in Table 2 (from line 3 to
line 6), ResNet50 showed better performance and was therefore
selected as the base model. After selecting the optimal base
model, the intra-modality attention module and the inter-modality
attention module were incorporated into the model as multi-
modal deep learning with intra- and inter-modality attention
modules (MDL-IIA) (Fig. 2). At the same time, the channel attention
module, Squeeze-and-Excitation39 (SE) was also selected as a
cohort model for benchmarking.

Prediction of 4-category molecular subtypes of breast cancer
The results of different models in terms of the evaluation metrics
for predicting 4-category molecular subtypes of breast cancer in
the test cohort (n= 672) are displayed in Table 2. The Multi-

Fig. 1 Workflow diagrams. a Data collection for mammography and ultrasound. b Examples of extracting patches for the lesion locations by
the dedicated breast radiologists. c Test procedure for expression levels of all indicators. MG mammography, CC craniocaudal, MLO
mediolateral oblique, US ultrasound, IHC immunohistochemistry, ER estrogen receptor, PR progesterone receptor, HER2 human epidermal
growth factor receptor 2, SISH silver-enhanced in situ hybridization.
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ResNet50 model had an accuracy of 84.4%, precision of 83.7%,
recall of 81.3%, F1-score of 0.820, and MCC of 0.777. In contrast,
the multi-modal deep learning model Multi-ResNet50 (combining
MG and US) led to better MCC of 0.777, which was significantly
higher than the MCC of 0.744 (p value < 0.001) based on MG
images only and the MCC of 0.731 (p value < 0.001) based on US

images, respectively (line 1 to 3). The lower part of Table 2, shows
the comparison of the proposed method based upon the Multi-
ResNet50 with intra- and inter-modality attention (MDL-IIA) to
other multi-modality network designs. Use of the MDL-IIA model
resulted in the best diagnostic performance for predicting
4-category molecular subtypes with an accuracy of 88.5%, which

Table 1. Characteristics of breast cancer cases in this study.

All Training cohort Test cohort p value Observer study cohort

Number 3360 2688 (80.0%) 672 (20.0%) – 168 (5.0%)

Age 54 ± 9 54 ± 8 54 ± 10 0.312 54 ± 12

Tumor size (mm) 19.9 ± 10.4 20.0 ± 10.5 19.5 ± 9.9 0.285 19.2 ± 9.4

Grade 0.057

1 466 370 (13.8%) 96 (14.3%) – 30 (17.9%)

2 1762 1386 (51.6%) 376 (56.0%) – 82 (48.8%)

3 1132 932 (34.7%) 200 (29.8%) – 56 (33.3%)

Density category in MG 0.739

A 411 336 (12.5%) 75 (11.2%) – 24 (14.3%)

B 1434 1132 (42.1%) 302 (44.9%) – 83 (49.4%)

C 1314 1054 (39.2%) 260 (38.7%) – 55 (32.7%)

D 201 166 (6.2%) 35 (5.2%) – 6 (3.6%)

BI-RADS category 0.313

4 (4a, 4b, 4c) 2052 1653 (61.5%) 399 (59.4%) – 89 (53.0%)

5 1308 1035 (38.5%) 273 (40.6%) – 79 (47.0%)

Histologic type 0.345

Invasive ductal carcinoma 2512 2019 (75.1%) 493 (73.4%) – 118 (70.2%)

Invasive lobular carcinoma 394 312 (11.6%) 82 (12.2%) – 26 (15.5%)

Others 454 357 (13.3%) 97 (14.4%) – 24 (14.3%)

Molecular subtypes 0.126

Luminal A 1494 1214 (45.2%) 280 (41.7%) – 67 (39.9%)

Luminal B 905 721 (26.8%) 184 (27.4%) – 49 (29.2%)

HER2-enriched 386 298 (11.1%) 88 (13.1%) – 23 (13.7%)

Triple-negative 575 455 (16.9%) 120 (17.9%) – 29 (17.3%)

Values in parentheses are the percentage. Ages and Tumor sizes are reported as mean ± standard deviation. Density category A, the breasts are almost entirely
fatty. Density category B, there are scattered areas of fibroglandular density. Density category C, heterogeneously dense. Density category D, extremely dense.
MG mammography, BI-RADS Breast imaging reporting and data system.

Table 2. Comparison of performance between different models for predicting 4-category molecular subtypes of breast cancer in the test cohort
(n= 672).

Method Modality Accuracy (%) Precision (%) Recall (%) F1-score MCC

US-ResNet50 US 81.1 [78.0, 83.9] 79.7 [76.3, 82.9] 76.9 [73.3, 80.2] 0.774 [0.739, 0.807] 0.731 [0.689, 0.772]

MG-ResNet50 MG 82.0 [79.0, 84.8] 81.3 [77.8, 84.5] 78.3 [74.9, 81.5] 0.787 [0.753, 0.821] 0.744 [0.704, 0.785]

Multi-ResNet50 MG+US 84.4 [81.5, 87.1] 83.7 [80.4, 86.9] 81.3 [77.8, 84.5] 0.820 [0.786, 0.852] 0.777 [0.736, 0.814]

Multi-ResNet34 MG+US 83.3 [80.4, 86.0] 83.1 [80.0, 86.3] 79.8 [76.5, 83.1] 0.803 [0.769, 0.838] 0.764 [0.724, 0.803]

Multi-ResNet101 MG+US 83.0 [80.1, 85.9] 82.5 [79.1, 85.7] 79.4 [76.1, 82.6] 0.799 [0.766, 0.832] 0.759 [0.720, 0.798]

Multi-Inceptionv3 MG+US 82.6 [79.6, 85.4] 82.0 [78.7, 85.2] 78.9 [75.7, 82.0] 0.794 [0.761, 0.827] 0.753 [0.713, 0.793]

Multi-ResNet34+SE MG+US 85.1 [82.3, 87.8] 85.1 [82.0, 88.0] 82.1 [78.8, 85.2] 0.826 [0.794, 0.857] 0.790 [0.751, 0.826]

Multi-ResNet50+SE MG+US 86.0 [83.3, 88.5] 86.0 [82.9, 88.8] 82.5 [79.2, 85.7] 0.835 [0.802, 0.867] 0.801 [0.763, 0.838]

Multi-ResNet101+SE MG+US 84.8 [82.1, 87.5] 84.4 [81.5, 87.2] 81.6 [78.5, 84.8] 0.822 [0.791, 0.854] 0.784 [0.749, 0.822]

Multi-Inceptionv3+SE MG+US 83.3 [80.4, 86.2] 82.3 [79.1, 85.6] 79.7 [76.3, 82.9] 0.800 [0.767, 0.833] 0.764 [0.724, 0.802]

Proposed (MDL-IIA) MG+US 88.5 [86.0, 90.9] 87.8 [85.0, 90.7] 85.4 [82.2, 88.4] 0.862 [0.831, 0.892] 0.837 [0.803, 0.870]

Values in brackets are 95% confidence intervals [95% CI, %].
MG mammography, US ultrasound, SE Squeeze-and-Excitation, MCC Matthews correlation coefficient, MDL-IIA multi-modal deep learning with intra- and inter-
modality attention modules.
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was 2.5% higher than the second-best model (Multi-
ResNet50+SE). In particular, there were 112 cases with an IHC
test result of 2+ (borderline) for HER2 in the test cohort, and the
proposed model achieved an accuracy of 86.6% (97 of 112) for
these cases.
The ablation test results are shown in Table 3. Combining the

Multi-ResNet50 model with the attention mechanism in general
improves the performance of the model, and the proposed model
MDL-IIA has the best performance. Figure 3 shows the normalized
confusion matrix for predicting 4-category molecular subtypes of
breast cancer. The results indicated that the models recognized
Luminal A and Luminal B better than HER2-enriched and TN, and
we can observe that the designed attention module can
potentially optimize the overall performance of the model, and
our final MDL-IIA achieved the best overall performance (as shown
in Table 3, MDL-IIA had an MCC of 0.837, outperforming other
cohort models, all p values < 0.001). Based upon the t-SNE
visualization, as shown in Fig. 4, the separation between the
different classes improves by the addition of the designed
modules, and more cancers are assigned to the correct molecular
subtype categories by using the proposed model.

Explainable AI
In addition, multi-modal Gradient Weighted Class Activation
Mapping (Grad-CAM) method was used to generate multi-modal

heatmaps to visually explain MDL-IIA model decisions. Examples
of visual heatmaps are shown in Fig. 5. The yellow and red
positions are the regions of interest mostly used by the model for
predicting the molecular subtype of breast cancer. The heatmaps
are then analyzed to create understanding of image regions of
particular interest to the model. We can observe that the addition
of designed modules can reduce redundant or erroneous feature
information from images, thereby enforcing the network to focus
on the specific subtype. For mammography, we can observe that
the proposed model focuses on the spiculation for Luminal A, the
irregular shape and poorly defined margin for Luminal B, the
calcification for HER2-enriched, and the regular shape for TN. For
ultrasound, we can observe that the proposed model focuses on
the irregular shape and shadow for Luminal A, the poorly defined
margin and irregular shape for Luminal B, the poorly defined
margin and calcification for HER2-enriched, and the information
in/around the lesion, well defined margin and posterior echo for
TN. These confirm that MDL-IIA can integrate features from
different modalities and focus on the most predictive features of
each molecular subtype of breast cancer.

Discrimination of Luminal disease from Non-Luminal disease
A clinically important subtask, Luminal disease vs Non-Luminal
disease (ER+ vs ER−), was considered for further analysis of the
classification performance of the proposed model as this defines

Fig. 2 The scheme for this work. a The proposed multi-modal deep learning with intra- and inter-modality attention model. b The structure
of channel and spatial attention. C channel, H height, W width, Q query, K key, V value, MG mammography, US ultrasound, MLO mediolateral
oblique view, CC craniocaudal view, GAP global average pooling, FC fully-connected layer, HER2-E HER2-enriched, TN triple-negative.
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whether or not a cancer will be susceptible to endocrine therapy.
In this setting, the MDL-IIA model needs to perform a binary
classification to separate the Luminal disease group (Luminal A
and Luminal B) from the Non-Luminal disease group (HER2-
enriched and TN). As shown in Fig. 6a, the area under the receiver
operating characteristic curve (AUC) was 0.929 (95% CI: 0.903,
0.951) for distinguishing between Luminal disease and Non-
Luminal disease using MDL-IIA (Multi-ResNet50 with intra- and
inter-modality attention modules) in the test cohort (n= 672),
outperforming the model without attention mechanism (Multi-
ResNet50, AUC of 0.858 (95% CI: 0.821, 0.893), p value < 0.001) and
the model with SE attention mechanism (Multi-ResNet50+SE, AUC
of 0.902 (95% CI: 0.871, 0.929), p value < 0.001). The MDL-IIA had
an accuracy of 93.4% (95% CI: 91.5%, 95.2%), sensitivity of 98.5%
(95% CI: 97.3%, 99.6%), specificity of 82.2% (95% CI: 76.9%, 87.4%),
positive predictive value (PPV) of 92.5% (95% CI: 90.1%, 94.7%),
and negative predictive value (NPV) of 96.1% (95% CI: 92.9%,
98.8%), adopting Non-Luminal disease as negative reference
standard.

Observer study
An observer study (n= 168, randomly selected 25% of the test
cohort) was conducted to compare the performance between
radiologists and AI model. In the task of identifying 4-category
molecular subtypes of breast cancer, the accuracy and MCC of
radiologists ranged from 56.5% to 68.0% and 0.428 to 0.568,
respectively. And the accuracy and MCC was improved to 72.6%
and 0.630 by the panel of 6 readers through majority vote,
respectively. In contrast, MDL-IIA obtained higher accuracy (84.4%,
p value < 0.001) and MCC (0.780, p value < 0.001) than radiologists
(Supplementary Table 1 shows the individual performance results.
Supplementary Figs. 1, 2 show the confusion matrix for
radiologists and AI model).
In the task of distinguishing between Luminal disease and the

Non-Luminal disease of breast cancer, the accuracy of radiologists
ranged from 70.3% to 81.7%. Through majority vote by the panel
of 6 readers, radiologists achieved an accuracy of 81.1%, sensitivity
of 83.7%, specificity of 75.2%, PPV of 88.3% and NPV of 67.3%
(Supplementary Table 2 shows all performance results.

Table 3. Results of ablation tests for the proposed model in predicting 4-category molecular subtypes of breast cancer in the test cohort (n= 672).

Method Modality Accuracy (%) Precision (%) Recall (%) F1-score MCC

Multi-ResNet50 MG+US 84.4 [81.5, 87.1] 83.7 [80.4, 86.9] 81.3 [77.8, 84.5] 0.820 [0.786, 0.852] 0.777 [0.736, 0.814]

MulR-interSA MG+US 85.4 [82.6, 88.1] 84.7 [81.5, 87.8] 82.3 [79.1, 85.6] 0.830 [0.797, 0.862] 0.793 [0.753, 0.829]

MulR-iiSA MG+US 86.1 [83.6, 88.7] 86.1 [83.1, 88.9] 83.0 [79.8, 86.2] 0.839 [0.805, 0.870] 0.803 [0.767, 0.839]

MulR-interCSA MG+US 87.5 [85.0, 90.0] 87.2 [84.3, 89.9] 84.6 [81.5, 87.7] 0.853 [0.823, 0.884] 0.822 [0.786, 0.858]

Proposed (MDL-IIA) MG+US 88.5 [86.0, 90.9] 87.8 [85.0, 90.7] 85.4 [82.2, 88.4] 0.862 [0.831, 0.892] 0.837 [0.803, 0.870]

Values in brackets are 95% confidence intervals [95% CI, %].
MG mammography, US ultrasound, MulR Multi-ResNet, SA self-attention, iiSA intra- and inter-self-attention, CSA channel and spatial attention, interSA inter self-
attention, interCSA inter channel and spatial attention, MCC matthews correlation coefficient, MDL-IIA multi-modal deep learning with intra- and inter-modality
attention modules.

Fig. 3 The normalized confusion matrix for the prediction of 4-category molecular subtypes of breast cancer by different models in the
test cohort (n= 672). a–e Multi-ResNet, MulR-interSA, MulR-iiSA, MulR-interCSA, and proposed MDL-IIA models. MulR Multi-ResNet, SA self-
attention, iiSA intra- and inter-self-attention, CSA channel and spatial attention, interSA inter self-attention, interCSA inter channel and spatial
attention, MDL-IIA multi-modal deep learning with intra- and inter-modality attention modules, HER2-E HER2-enriched, TN triple-negative.
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Fig. 4 The visualization results of t-SNE for the task of predicting 4-category molecular subtypes of breast cancer in the test cohort
(n= 672). a–f Original test dataset, Multi-ResNet, MulR-interSA, MulR-iiSA, MulR-interCSA, and proposed MDL-IIA models. MulR Multi-ResNet,
SA self-attention, iiSA intra- and inter-self-attention, CSA channel and spatial attention, interSA inter self-attention, interCSA inter channel and
spatial attention, MDL-IIA multi-modal deep learning with intra- and inter-modality attention modules, HER2-E HER2-enriched, TN triple-
negative.

Fig. 5 The visualization based on Gradient-weighted Class Activation Mapping (Grad-CAM) method of the proposed model in predicting
4-category molecular subtypes of breast cancer. Case a–d indicate the category of Luminal A, Luminal B, HER2-enriched and Triple-negative,
respectively. MG mammography, CC craniocaudal, MLO mediolateral oblique, US ultrasound, MulR Multi-ResNet, SA self-attention, iiSA intra-
and inter-self-attention, CSA channel and spatial attention, interSA inter self-attention, interCSA inter channel and spatial attention, MDL-IIA
multi-modal deep learning with intra- and inter-modality attention modules.

T. Zhang et al.

6

npj Breast Cancer (2023)    16 Published in partnership with the Breast Cancer Research Foundation



Supplementary Figs. 3 and 4 show the confusion matrix for
radiologists and AI model). Figure 6c, d shows the performance of
AI and radiologists for distinguishing between Luminal and Non-
Luminal breast cancer in the observer study cohort. In this cohort,
the MDL-IIA (Multi-ResNet50 with intra- and inter-modality
attention modules) model obtained an AUC of 0.920 (95% CI:
0.865, 0.967), outperforming the model without attention

mechanism (Multi-ResNet50, AUC of 0.831 (95% CI: 0.746, 0.905),
p value < 0.001) and the model with SE attention mechanism
(Multi-ResNet50+SE, AUC of 0.878 (95% CI: 0.819, 0.937), p
value < 0.001). The MDL-IIA achieved superior or similar sensitivity
as radiologists at the same specificity operating points. MDL-IIA
had a sensitivity of 0.965 [0.929, 0.992] and a specificity of 0.810
[0.696, 0.913], which compared favorably with the panel of 6

Fig. 6 Performance of the proposed MDL-IIA model and radiologists. a The receiver operating characteristic (ROC) curve for distinguishing
between Luminal disease and Non-Luminal disease by the proposed MDL-IIA model in the test cohort (n= 672). b The classification
performance of the proposed MDL-IIA model in the test cohort (n= 672). c The ROC curve for distinguishing between Luminal disease and
Non-Luminal disease by the proposed MDL-IIA model and the operating points of six radiologists in the observer study cohort (n= 168). d The
classification performance of the proposed MDL-IIA model and six radiologists in the observer study cohort (n= 168). The 95% confidence
intervals are shown as a shaded area for the ROC curve. MDL-IIA, multi-modal deep learning with intra- and inter-modality attention modules.
Multi-ResNet50, multi-modal ResNet50 model. SE Squeeze-and-Excitation, PR panel of 6 readers, AI artificial intelligence, AUC area under the
ROC curve.
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radiologists (sensitivity of 0.837 [0.760, 0.898], specificity of 0.752
[0.628, 0.870], p values < 0.001). See Supplementary Table 2 for
detailed results.

DISCUSSION
In this study, we report a multi-modal deep learning scheme with
intra- and inter-modality attention modules for predicting the
molecular subtypes of breast cancer leveraging both mammo-
graphy and ultrasound images. Our main contributions and
findings can be summarized as follows: (1) Multiple views of
mammography and ultrasound images were combined to classify
the molecular subtypes of breast cancer using deep learning
models; (2) as a non-invasive method, the proposed MDL-IIA
model could be directly used to predict the molecular subtypes of
breast cancer, with an high accuracy of 88.5% (95% CI: 86.0%,
90.9%) and MCC of 0.837 (95% CI: 0.803, 0.870); (3) the proposed
MDL-IIA model can also discriminate Luminal from Non-Luminal
breast cancer cases, with an AUC of 0.929 (95% CI: 0.903, 0.951); (4)
beyond the molecular-level IHC test, our method could potentially
bypass the inherent uncertainty for HER2 score 2+ cases based on
gene-level ground truth; (5) a reader study is conducted shows the
superiority of this AI approach over assessment by clinicians.
Accurately determining the molecular subtype of breast cancer

is an important factor for the prognosis of breast cancer patients
and can guide treatment options. Current medical practitioners
usually use IHC tests on breast biopsy specimens to determine the
molecular subtype of breast cancer, but this method has many
disadvantages, such as the high test cost, the interreader
variability of pathologists and, obviously, the need for a biopsy
specimen. Furthermore, breast tumors are highly heterogeneous,
and the results of tissue samples taken from a specific location in
the breast tumor may not be representative of the entire tumor. In
recent years, hematoxylin-eosin-stained breast cancer pathologi-
cal images-based AI models have been used in studies related to
receptor status of breast cancer to overcome pathologists’
interreader variability29–31,40. However, the pathological images
are also from the biopsy alone and may, therefore, not be
completely representative. To overcome these difficulties, the
combination of breast imaging and artificial intelligence has been
used to predict the molecular subtypes of breast cancer in some
studies. Many machine learning-based methods have been
developed to predict the molecular subtypes of breast cancer32–35.
However, traditional machine learning methods require complex
feature engineering and cannot automatically extract useful
features from images41, thus limiting their applications. Deep
learning has sparked interest in improving the quality of
automatic breast image interpretation due to its remarkable
advances in automatic extraction and analysis of medical imaging.
Ha et al.42 (n= 216), Zhang et al.43 (n= 244) and Sun et al.44

(n= 266) respectively developed MRI-based deep learning models
to predict the molecular subtypes of breast cancer, but their small
data sets limit the performance of their models. In addition, due to
high examination costs and some other disadvantages (such as
limited scanner availability, need for the injection of a contrast
agent and long waiting time, etc.), MRI images may not be
available for every patient36. Jiang et al.45 developed a deep
learning model based on ultrasound to predict the molecular
subtypes of breast cancer. However, the data labels used in this
study were only based on the results of IHC, which is not
completely accurate in determining the status of HER2, especially
in HER2 score 2+ cases17,18,46. This will lead to deviations in the
prediction results, thereby affecting the performance of the
model. In addition, all the above studies did not combine images
of different modalities. In contrast, our study is based on a large
data set (n= 3360), and for each case multiple views of
mammography and ultrasound images were used, that are
routinely, and virtually everywhere in the world, available for all

breast cancer patients; for data labeling, the labeling of molecular
subtypes was not only based on IHC results, but used the results of
the genetic analysis (SISH, silver-enhanced in situ hybridization) of
equivocal/borderline HER2 cases to ensure the correctness of the
annotated data. Although recent studies have attempted to use
multimodal ultrasound images to predict molecular subtypes47,
ultrasound-based images alone cannot provide non-ultrasonic
features from other imaging modalities (such as mammography).
Our study is a deep learning-based study to predict the molecular
subtypes of breast cancer using multi-modal image analysis,
combining mammography and ultrasound. The results of multi-
modal deep learning models improve upon single-modal models.
In addition, some studies in recent years have shown that
attention mechanisms can potentially improve model perfor-
mance48–51. In this study, we specifically proposed the intra- and
inter-modality attention modules to better integrate features of
images from different modalities, further increasing the accuracy
of the final result.
As shown in results, our proposed model MDL-IIA recognized

Luminal A and Luminal B better than HER2-enriched and TN. On
one hand, since AI is somewhat data-driven, this may be due to
differences in sample size, as the sample size of HER2-enriched
and TN subgroups are relatively small because of the lower
frequency of these types of breast cancer in clinical reality. On the
other hand, it’s possible that the appearance of lower grade
(Luminal A/B) cancers have more consistent features, whereas
HER2-enriched and TN have features that are less consistent. The
combination of mammography and ultrasound images in this
study improved the performance of the model, which reflects the
importance of multimodal images because they can provide more
modality-specific features for identifying cancer subtypes. There-
fore, further incorporation of MRI in multimodal models may
potentially improve the performance of the model in future
studies. In the results of the observer study cohort, the proposed
MDL-IIA model performed similarly or better than radiologists.
Radiologists identified some Luminal cases as TN cases, and had
overall more errors in determining the 4-category molecular
subtypes. This might be partly due to the fact that in clinical
decision making the molecular subtypes are purely based upon
pathological evaluation and radiologists are not really trained in
this distinction. The higher performance of the MDL-IIA implies
that more information is present. Therefore, radiologists may need
more training in this area to improve their performance and could
potentially also learn from the model output. No Luminal cases
were predicted as being TN using the proposed MDL-IIA model,
which may potentially prevent the unjust withholding of adjuvant
endocrine treatment52. Particularly in areas of the world in which
IHC staining is not everywhere available this may be of great
value. Overall, the proposed MDL-IIA model has an AUC of 0.920
(95% CI: 0.865, 0.967) for discriminating Luminal disease from
Non-Luminal disease in the observer study. The proposed MDL-IIA
model can potentially also provide further decision support in
combination with histopathology to assist doctors in evaluating
and treating breast cancer patients. Beyond molecular-level results
from IHC testing of location-specific tissue samples, our method
enables prediction directly from entire cancer lesions and
bypasses the inherent uncertainty based on gene-level ground
truth. Due to the inhomogeneity of cancers particularly results in
which the output of the model and the pathological analysis are
discrepant are of interest. Automated analysis of medical images
could improve our understanding of the downstream impact of
imaging features, and lead to new insights into representative and
discriminative morphological features for breast cancer.
There are also some limitations in this study. First, this study is a

retrospective study with inevitable missing values. Second, the
sample size of HER2-enriched and TN subgroups are relatively
small due to the lower frequency of these types of breast cancer in
clinical reality. Third, this is a feasibility study of cases obtained
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from a single center. Subsequent studies will collect more cases
from multiple centers to externally verify the performance of the
model. Fourth, radiologists are not really trained in predicting
molecular subtypes of breast cancer due to the fact that in clinical
decision making the molecular subtypes are purely based upon
pathological evaluation. However, pathological assessment is
prone to inter-observer variability. Cases where the high perform-
ing models were discrepant may be due to cases on pathology
that are borderline and possibly not 100% accurate. Utilizing the
predictions of our model in clinical practice might potentially lead
to re-evaluation in highly discrepant cases and could potentially
provide a higher level of radiology-pathology concordance.
Although the model’s predictions and visualized heatmaps are
not 100% correct, the heatmap visualization can show whether
the images-based prediction is truly based upon image features of
the cancer or is due to signals that may be erroneously interpreted
as relevant to the classification outside the region of interest. This
may help to use the AI findings in a more robust and explainable
manner. In addition, the data used in this study came from only
one mammography system and one ultrasound system, so the
model may need to be retrained for data from other systems.
However, this can be mitigated and future studies may benefit
from using our public methods through transfer learning.
Eventually, the potential effect of the use of MDL-IIA extracted
molecular subtypes on the choice of therapy needs to be
assessed.
In conclusion, we have developed the MDL-IIA model, which

can potentially be used to predict the molecular subtypes and
discriminate Luminal disease from Non-Luminal disease of breast
cancer, while being a completely non-invasive, cheap and widely
available effective method. Multi-modal imaging shows better
performance than single-modal imaging, and intra- and inter-
modality attention modules are shown to further improve the
performance of our multi-modal deep learning model. This
supports the idea that combining multi-modal medical imaging
may indeed provide relevant imaging biomarkers for predicting
therapy response in breast cancer, thereby potentially guiding
treatment selection for breast cancer patients.

METHODS
Data collection
This study was approved by Institutional Review Board of the
Netherlands Cancer Institute with a waiver of informed consent
(registration number: IRBd21-058). We retrospectively collected
4162 paired images (MG and corresponding US) of women with
breast cancer presenting at the Netherlands Cancer Institute from
January 2010 to November 2019. The MG exams were acquired
with a HOLOGIC Selenia Dimensions mammography system and
consisted of two image views per breast, the medio-lateral oblique
(MLO) view and the cranio-caudal (CC) view. The US exams were
acquired with a HITACHI HI VISION 900 ultrasound system, and a
high-frequency linear probe has been used for all examinations.
All patients had biopsy-proven breast cancers. The images used
are pre-biopsy images, and therefore these images do not have
biopsy scars. First, 4513 paired patches of all lesion locations were
obtained according to the label marked by the dedicated breast
radiologists. In this process, the size of the box for collecting
lesions is adjusted to the size of the lesions, and included always
surrounding normal tissue, as determined by the dedicated breast
radiologists. Then, specific cases were deleted, including those
with lesions that were not depicted in the images, those who had
received preoperative intervention or treatment, and those
without IHC results and SISH analysis. Finally, a total of 3360
paired cases were obtained, which were subdivided into 4
molecular subtypes according to the information of ER, PR, HER2
and Ki67 from IHC findings and SISH test (Supplementary Fig. 5

shows the definition and characteristics of molecular subtypes of
breast cancer).

Multi-modal deep learning model
The multi-modal deep learning algorithm was developed to
predict the molecular subtypes of breast cancer. This model was
combined with the attention mechanism to create the final model
(multi-modal deep learning with intra- and inter-modality atten-
tion modules: MDL-IIA). Figure 2 shows the scheme for this study.
For each case two views of mammography (MLO and CC) and an
ultrasound image (showing the lesion) were used as input. First a
baseline convolutional neural network was chosen, based upon
the unadjusted performance of the classification task. The final
model was designed based on the ResNet50 deep convolutional
neural network and the attention mechanism, and was divided
into four processing stages. As shown in Fig. 2, after the feature
extractor of stage 1, the feature maps from MG-MLO and MG-CC
were concatenated and then input to the attention module (stage
2, called intra-modality attention) to achieve intra-modality
information interaction and obtain refined features. At the same
time, the feature map from the US was also refined through the
attention module. After the residual block of stage 3, the multi-
modal feature maps are connected and then input to the multi-
modal attention module (stage 4, called inter-modality attention)
to realize the interaction of multi-modal information (Supplemen-
tary Table 3 shows the overall architecture of MDL-IIA, after the
global average pooling layer, 2048 × 3= 6144 features from the
multi-modal image are extracted, and then analyzed through the
fully connected layer to classify the cases).
In a convolutional neural network, although the receptive field

will become larger as the depth of the network deepens, the
convolution unit still only pays attention to local information each
time, thus ignoring the impact of other global regions on the
current region. Self-Attention was originally applied to natural
language processing to capture the relationship between
contexts, and has been applied to computer vision in recent
years53. Therefore, self-attention was introduced to obtain the
weight of the relationship between any pixel in the image and
the current pixel. In the intra- and inter-modality attention
modules, the input feature maps go through the self-attention
mechanism to capture the spatial dependence of any two
positions in the feature map to achieve the interaction of long-
range features. As shown in Fig. 2a, the structure of self-attention
was divided into three branches, called query (Q), key (K) and
value (V). To reduce the amount of calculation, the number of
channels of the feature map was first reduced by 1×1
convolution, where the number of filters for Q and K was
reduced to one-eighth of the number of channels in the previous
stage, while the number of filters for V was the same as the
number of channels in the previous stage. Thereafter, the Q and
each K were calculated through the similarity of the dot product
to obtain the weights, and then the softmax function was used to
normalize these weights to obtain the attention map. Finally, the
weights and V were weighted and summed to obtain refined
features. Inter-channel and spatial attention followed the inter-
self-attention to realize the entire inter-modality attention
module (Fig. 2b), the refined feature map by innter-channel
attention (RFCA) is shown in Eq. (1).

RFCA ¼ F � σ MLP AvgPool Fð Þð Þ þMLP MaxPool Fð Þð Þð Þð Þ (1)

and the refined feature map by inter-channel and spatial attention
(RFCA) is shown in Eq. (2).

RFCSA ¼ RFCA � σ f 3 ´ 3 AvgPool RFCAð Þ;MaxPool RFCAð Þ½ �ð Þ� �� �
(2)

Where F represents the feature map for input, σ denotes the
sigmoid function, MLP represents the shared multi-layer percep-
tron, AvgPool represents an average pooling operation, MaxPool
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represents a maximum pooling operation, f3×3 represents a
convolution operation with the filter size of 3×3.
Ablation experiments were conducted to verify the effective-

ness of the intra-modality and inter-modality attention modules
in improving the classification performance. In detail, several
network structures were chosen and compared to the proposed
MDL-IIA model as follows: multi-modal ResNet50 model (called
Multi-ResNet50), multi-ResNet with inter-modality self-attention
module (called MulR-interSA), multi-ResNet with intra- and inter-
self-attention modules (called MulR-iiSA), multi-ResNet with
inter- channel and spatial attention modules (called MulR-
interCSA).
All images were resized to 256 × 256 pixels and normalized

(Supplementary Eqs. (1) and (2)) before model training. The initial
parameters of the baseline model used the parameters pre-
trained on ImageNet54, and all pre-trained parameters were
trainable during the model training process. The MDL-IIA model
was trained on NVIDIA RTX A6000 graphics processing unit (GPU),
48 Gigabytes of GPU memory. In the training cohort, the data was
randomly divided into training set and validation set at a ratio of
4:1. In the training set, on-the-fly intensity and geometry
augmentation was applied to avoid overfitting. The batch was
set to 32 for 200 epochs and the initial learning rate was 1e-3 with
a decay factor of 0.9 every 10 epochs. Adam optimizer was
applied to update the model parameters (Supplementary Fig. 6
shows the F1 score and loss for training and validation set during
training).

Visualization: multi-modal Grad-CAM and t-SNE
To visually explain MDL-IIA model decisions, the multi-modal
Gradient-weighted Class Activation Mapping (Grad-CAM) method
based on the work of Selvaraju et al.55 was used to generate multi-
modal heatmaps for understanding the focus of proposed model
on images. The gradient yc of the score for class c with respect to
feature maps AðmÞk was first computed. Then, global average
pooling was applied to these gradients to obtain the importance
weights aðmÞck for unit k, as shown in Eq. (3).

aðmÞck ¼
1
z

X
i

X
j

∂yc

∂A mð Þkij
(3)

Where Z represents the number of pixels in the corresponding
feature map, Aij represents the pixel value at position (i, j) of the
k-th feature map, and m represents different image views or
modalities, m= 1 refers to MG-MLO, m= 2 refers to MG-CC, and
m= 3 refers to US. Finally, these weights were combined with the
activation maps ðAðmÞkij Þ, and then followed by a ReLU to obtain

multi-modal gradient-weighted class activation mapping, as
shown in Eq. (4).

LðmÞcGrad�CAM
¼ ReLU

X
k

a mð Þck A mð Þk

 !
(4)

In addition, the non-linear dimensionality reduction method
t-distributed stochastic neighborhood embedding (t-SNE) was
used to visualize data related to breast cancer molecular subtypes
in a two-dimensional space56. The t-SNE was applied to the flatten
layer of the trained model.

Observer study
In this study, a quarter of the test cohort cases were randomly
selected as the observer study cohort. We aimed to measure the
performance of radiologists in evaluating multi-modal images
(MG and corresponding US) to distinguish the molecular
subtypes and Luminal versus Non-Luminal breast cancers. As
shown in Table 1, the reader study cohort contained a total of
168 cases, including 67 cases of Luminal A, 49 cases of Luminal B,

23 cases of HER2-enriched, and 29 cases of TN breast cancer. Six
radiologists (L. A., R. M. M., J. V., R. W., K. M. D., and C. L.) with an
average of 13 years (Supplementary Table 4 shows the individual
experience level) of clinical experience analyzed the MG and US
images (present at the same time) of each case to determine the
molecular subtype of breast cancer that the case belongs to. The
radiologists read cases without time limit and were blinded to
the identity and medical background of the patients. Final
decisions were made by a majority vote of a panel of 6 readers.
When cases had equal votes, the decision of the more
experienced group was followed.

Statistical analysis
Statistical analysis was performed by SPSS (version 27.0) and
Python 3.7, SPSS for data review and Python for data analysis.
Packages used in Python include numpy 1.19.2, pandas 1.2.4 and
scikit-learn 0.24.2, etc. Check out the provided Github for more
information. The accuracy, precision, recall, F1 score and Matthews
correlation coefficient (MCC, ranged from -1 to 1, larger value
means better performance) were used as evaluation indicators for
predicting 4-category molecular subtypes. The confusion matrix
was also used to evaluate prediction performance. AUC, accuracy,
sensitivity, specificity, PPV and NPV were used as figures of merit
to evaluate the performance of models and radiologists for
distinguishing between Luminal disease and Non-Luminal disease.
All calculation methods are shown in Eqs. (5)–(14). The operating
point of AI model for distinguishing between Luminal disease and
Non-Luminal disease was generated based on the maximum
Youden index. 95% confidence intervals were generated with
bootstrap method with 1000 replications57. The characteristics
difference of the training and testing cohorts were compared by
t-test or Mann–Whitney U test. T-test was used to compare the
difference of indicators among different methods. All statistical
analyses were two-sided and p value less than 0.05 was
considered statistically significant.
All calculation methods are as follows:

Accuracy ¼ 1
n

Xn
i¼1

TPi þ TNi

TPi þ TNi þ FPi þ FNi
(5)

Precision ¼ 1
n

Xn
i¼1

TPi
TPi þ FPi

(6)

Recall ¼ 1
n

Xn
i¼1

TPi
TPi þ FNi

(7)

F1 score ¼ 1
n

Xn
i¼1

TPi
TPi þ 1

2 FPi þ FNið Þ (8)

where n represents the number of categories.

MCC ¼ cov y true; y predð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cov y true; y trueð Þ � cov y pred; y predð Þp (9)

where y_true is the ground truth target values, y_pred is the
estimated targets as returned by the classifier.

Sensitivity ¼ TP
TP þ FN

(10)

Specificity ¼ TN
TN þ FP

(11)

PPV ¼ TP
TP þ FP

(12)

NPV ¼ TN
TN þ FN

(13)
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where TP is true positive, TN is true negative, FP is false positive
and FN is false negative.

AUC ¼
P

insi2positiveclass rankinsi �
M� Mþ1ð Þ

2

M � N
(14)

where M, N are the number of positive samples and negative
samples respectively. rankinsi is the serial number of sample i.
Σinsi2positiveclass means add up the serial numbers of the positive
samples.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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