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Severe COVID-19 patients exhibit elevated levels of
autoantibodies targeting cardiolipin and platelet glycoprotein
with age: a systems biology approach
Dennyson Leandro M. Fonseca 1,31✉, Igor Salerno Filgueiras 2,31, Alexandre H. C. Marques 2, Elroy Vojdani3, Gilad Halpert4,5,6,
Yuri Ostrinski 4,5,6, Gabriela Crispim Baiocchi 2, Desirée Rodrigues Plaça7, Paula P. Freire 2, Shahab Zaki Pour 8, Guido Moll 9,
Rusan Catar9, Yael Bublil Lavi 10, Jonathan I. Silverberg11, Jason Zimmerman12, Gustavo Cabral-Miranda2, Robson F. Carvalho 13,
Taj Ali Khan14, Harald Heidecke15, Rodrigo J. S. Dalmolin16,17, Andre Ducati Luchessi18, Hans D. Ochs19, Lena F. Schimke 2,
Howard Amital4,5,20,21, Gabriela Riemekasten 22, Israel Zyskind 12,23,31, Avi Z. Rosenberg 24,31, Aristo Vojdani25,26,31,
Yehuda Shoenfeld 5,31 and Otavio Cabral-Marques 1,2,7,27,28,29,30,31✉

Age is a significant risk factor for the coronavirus disease 2019 (COVID-19) severity due to immunosenescence and certain age-
dependent medical conditions (e.g., obesity, cardiovascular disorder, and chronic respiratory disease). However, despite the well-
known influence of age on autoantibody biology in health and disease, its impact on the risk of developing severe COVID-19
remains poorly explored. Here, we performed a cross-sectional study of autoantibodies directed against 58 targets associated with
autoimmune diseases in 159 individuals with different COVID-19 severity (71 mild, 61 moderate, and 27 with severe symptoms) and
73 healthy controls. We found that the natural production of autoantibodies increases with age and is exacerbated by SARS-CoV-2
infection, mostly in severe COVID-19 patients. Multiple linear regression analysis showed that severe COVID-19 patients have a
significant age-associated increase of autoantibody levels against 16 targets (e.g., amyloid β peptide, β catenin, cardiolipin, claudin,
enteric nerve, fibulin, insulin receptor a, and platelet glycoprotein). Principal component analysis with spectrum decomposition and
hierarchical clustering analysis based on these autoantibodies indicated an age-dependent stratification of severe COVID-19
patients. Random forest analysis ranked autoantibodies targeting cardiolipin, claudin, and platelet glycoprotein as the three most
crucial autoantibodies for the stratification of severe COVID-19 patients ≥50 years of age. Follow-up analysis using binomial logistic
regression found that anti-cardiolipin and anti-platelet glycoprotein autoantibodies significantly increased the likelihood of
developing a severe COVID-19 phenotype with aging. These findings provide key insights to explain why aging increases the
chance of developing more severe COVID-19 phenotypes.
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INTRODUCTION
There is increasing evidence connecting coronavirus disease 2019
(COVID-19), caused by the severe acute respiratory syndrome virus
2 (SARS-CoV-2), with underlying autoimmune pathology1,2. The
triggers of this intersection between COVID-19 and autoimmunity
have been ascribed to exacerbated and chronic inflammation3,

e.g., by promoting the exposure to self-antigens and activation of
bystander T cells caused by systemic high cytokine levels4, and
due to the molecular mimicry between SARS-CoV-2 spike and
human proteins5–8. Patients with severe COVID-19 develop
profound organ damage due to a combination of several
autoinflammatory and autoimmune responses, causing, among
others, myopathy9, vasculitis, arthritis, antiphospholipid syndrome
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(APS)10 associated with deep vein thrombosis, pulmonary
embolism, and stroke, as well as other organ damage to lungs,
kidneys, and those forming the neurological system11,12. Further-
more, immune dysregulation is a hallmark of post-COVID
syndrome13 causing heterogeneous symptoms such as fatigue,
vascular dysfunction, pain syndromes, neurological manifesta-
tions, and neuropsychiatric syndromes14–17.
Following the initial discovery of autoantibodies against type I

interferons (IFNs) in patients with life-threatening COVID-1918,
several reports documented elevated levels of autoantibodies
targeting various additional cytokines and chemokines and their
receptors19, but also cardiac antigens20, G protein-coupled
receptors (GPCR), renin-angiotensin system (RAS)-related mole-
cules, and those against anti-cardiolipin21–27, ribosomal P proteins,
chromatin proteins, thyroid antigens28, anti-nuclear antigen
(ANA)28,29, and anti-neutrophil cytoplasmic proteins (ANCA)30 in
patients with severe SARS-CoV-2 infections. We recently reported
a large spectrum of autoantibodies linked to autoimmune
diseases that associate with COVID-19 severity31. Autoantibody
levels often accompany anti-SARS-CoV-2 antibody concentrations
as essential predictors of COVID-19 outcome31. However, the
impact of the aging effect on autoantibody levels was barely
explored in these studies.
Notably, aging has been strongly associated with increased

morbidity and mortality of elderly patients with SARS-CoV-2
infections32–34. Elderly individuals present an increased risk of
developing autoimmune diseases for several reasons. For instance,
immunosenescence and its associated immune dysregula-
tion35–37, increased amounts of free DNA in the blood circula-
tion38, and enhanced serum levels of autoantibodies39,40. In this
context, considering the well-known effect of age on autoanti-
body biology and immune pathophysiology in health and
disease1,3,11,41–43, to understand better the particular influence of
age on autoantibodies induced by SARS-CoV-2 could provide new
insights into the COVID-19 pathophysiology and development of
severe phenotypes as well as the autoantibody biology. To
address this issue, we performed a follow-up systems immunology
analysis of our recent cross-sectional study of 159 individuals with
different COVID-19 outcomes (mild, moderate, and severe)
compared to 73 healthy controls44,45.

RESULTS
Age-dependent increase of autoantibody levels in severe
COVID-19 patients
We employed a systems immunology approach (Fig. 1a) to
investigate whether SARS-CoV-2 infection induces significant
elevation of serum autoantibody levels in severe COVID-19
patients in an age-dependent manner. Figure 1b portrays the
mean serum levels of all autoantibodies when comparing healthy
individuals with mild, moderate, or severe COVID-19 patients.
Meanwhile, the levels of anti-SARS-CoV-2 antibodies increased
gradually from mild to severe disease (Fig. 1c; Supplementary
Table 2).
To characterize which autoantibodies significantly contributed

to the age-associated enhancement of the autoantibody levels, we
performed a multiple linear regression analysis for each autoanti-
body. Autoantibodies were the dependent variable, while group
and age were the independent variables. In agreement with the
descriptive statistical analysis shown in Fig. 1b, this inferential
approach revealed autoantibodies targeting sixteen molecules
strongly associated with age in the severe COVID-19 group
compared with healthy controls. In contrast, the 95% confidence
interval (CI) indicated a significant enhancement in the levels of
autoantibodies targeting claudin 5 and transglutaminase 6 in the
mild COVID-19 group but a non-significant range between higher
and lower autoantibody levels for the mild and moderate COVID-

19 groups when compared to healthy controls. (Fig. 2a, b;
Supplementary Table 4). This indicates that many autoantibody
levels robustly increase with age, particularly in severe COVID-19
patients, but lesser in mild and moderate COVID-19 patients.

The effect of age on autoantibodies levels of COVID-19
patients
Different aging effects on autoantibodies from COVID-19 with
age. To further investigate the impact of age on the levels of
autoantibodies, we divided the healthy controls and the COVID-19
patients into groups <50 or ≥50 years old for each category
(healthy controls as well as mild, moderate, and severe COVID-19
patients). This approach revealed three overall patterns of
autoantibody levels across the groups (Fig. 3a). Although some
autoantibodies are significantly increased only in the severe
COVID-19 patients ≥50 years old, we found in general comparable
autoantibody levels (no significant aging effect) when analyzing
healthy controls versus the COVID-19 subgroups; The first aging
effect on the amount of autoantibodies was characterized by
reduced levels with the COVID-19 severity, mainly in patients
<50 years old, while increasing autoantibody levels in patients
≥50 years old according to the disease severity; on the other hand,
the autoantibody levels increased according to the disease
severity in individuals <50 or ≥50 years old, but more prominently
in the latter group.
When compared to healthy controls, COVID-19 groups

<50 years old exhibited a decreasing autoantibody level targeting
amyloid β peptide, β catenin, claudin 5, enteric nerve, epithelial
cell antigen, fibulin, glutamic acid decarboxylase, insulin receptor,
liver microsomal antigen, transglutaminase 3, transglutaminase 6,
and zonulin in accordance with COVID-19 severity (aging effect 1).
Meanwhile, several autoantibodies increased in <50 years and ≥50
COVID-19 groups. However, only autoantibodies against cardioli-
pin and platelet glycoprotein significantly increased according to
disease severity, regardless of age (aging effect 2) (Fig. 3b and
Supplementary Table 5).

Autoantibodies associated with age stratify COVID-19 patients. To
investigate potentially age-related autoantibodies that stratify young
from elderly severe COVID-19 patients and healthy controls, we
carried out principal component analysis (PCA) based spectral
decomposition46 (Fig. 4a–c). According to eigenvalue criteria, this
may be viewed for just the first two dimensions (Intercept > 1;
Fig. 4a). Thus, the PCA showed that healthy controls presented a
similar autoantibody pattern independent of age category. In
contrast, there was a gradual stratification of COVID-19 patients
from mild to severe groups, which mapped most distantly from the
healthy controls. In agreement with the results of the other analyses
we performed, the aging impact was most evident when we
compared severe COVID-19 <50 and ≥50 years old (Fig. 4b). Notably,
the PCA with spectral decomposition indicated that autoantibodies
targeting cardiolipin and platelet glycoprotein mainly contributed to
dimension 2 (Fig. 4c), possibly being the autoantibodies mostly
responsible for the stratification of severe COVID-19 patients <50
and ≥50 years old (Supplementary Tables 6 and 7).
Supporting the stratification power of autoantibody levels with

age, hierarchical clustering analysis revealed similar results when
comparing individuals <50 and ≥50 years old by disease severity.
This approach uncovered a clear segregation of individuals <50 and
≥50 years old only in the severe COVID-19 patients but not the other
groups investigated (Fig. 4d). This result suggests a more substantial
aging effect on the severe COVID-19 group.

Ranking the age-associated autoantibodies that are most relevant
for severe COVID-19. To better understand and identify the most
relevant autoantibodies associated with severe COVID-19, we
performed random forest analysis, comparing healthy controls
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versus severe COVID-19 patients (both groups comparing
individuals <50 and ≥50 years old). This approach allows us to
rank the most critical variables in a given dataset47: sixteen age-
associated autoantibodies characteristic for COVID-19. This

approach identified autoantibodies targeting cardiolipin, platelet
glycoprotein, and claudin 5 as the three most essential
autoantibodies classifying severe COVID-19 patients <50 and
≥50 years old when compared with healthy controls at these ages

Fig. 1 The systems immunology approach identifies an aging effect on autoantibody levels of COVID-19 patients. a Following sample
acquisition, bioinformatics, and statistical analyses were performed, as shown from 1 to 3 in the study workflow. Created with BioRender.com.
b, c Graphics showing the relationship between the mean of (b) autoantibodies and (c) anti-SARS-CoV-2 levels in different age categories for
healthy controls and COVID-19 disease groups. The size of the dots corresponds to the number of individuals (1–25 individuals) in the age
category (see Supplementary Tables 1 and 2). The mean of the autoantibody levels by group is represented in natural logarithm. Error bars
are S.E.M.
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Fig. 2 The relationship between autoantibodies and age in severe COVID-19 patients. a Scatter plot of regression analysis, indicating the
relationship between the autoantibodies and age for COVID-19 and control groups. The p-values and multiple linear regression coefficients
(RC) are displayed for each graph. Supplementary Table 4 shows the results of all regression coefficients. b Forest plots showing linear
regression coefficients (dots) and their 95% confidence interval (whiskers) for different autoantibodies across the COVID-19 groups (mild,
moderate, and severe) compared to healthy controls (vertical dotted line at the intercept of 0). Red dots and lines correspond to significantly
increased autoantibody levels associated with disease group and age compared to healthy controls.
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(Fig. 5a, b). The receiver operating characteristic (ROC) curves of
these comparisons demonstrate the high accuracy of the random
forest analysis based on the age-associated autoantibodies as
classifiers of severe COVID-19 patients (Supplementary Fig. 1 and
Supplementary Table 8).

The results suggest the importance of the autoantibodies
targeting cardiolipin, platelet glycoprotein, and claudin 5 in the
classification of COVID-19 patients. We conducted a binomial
logistic regression analysis to better understand their contribution
to developing severe COVID-19 disease. In this context, we also

Fig. 3 Aging effects on autoantibody levels according to COVID-19 severity. a Illustrative representations of aging effect patterns on
autoantibody levels. From left to right: autoantibody levels not affected by age; reducing or increasing in COVID-19 patients <50 or ≥50 years
old, respectively; or rising levels in both age groups as shown in detail in b. b Boxplots showing the autoantibody levels in young (<50 years
old) and elderly (≥50 years old) groups for healthy controls as well as mild, moderate, and severe COVID-19 patients. The difference in
autoantibody levels comparing young with elderly individuals of each group was calculated using the Kruskal Wallis and posthoc Dunn tests
considering an FDR-adjusted p-value < 0.05 as significant (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001). See Supplementary Table 5 for the exact numbers
of p-values.

D.L.M. Fonseca et al.

5

Published in partnership with the Japanese Society of Anti-Aging Medicine npj Aging (2023)    21 



Fig. 4 Autoantibodies linked to autoimmune diseases stratify COVID-19 severity by age. a Red dots show eigenvalues above one, and
eigenvalues below one are shown by black dots demonstrating the importance of the dimensions (principal component). The horizontal black
line shows the intercept of 1. Eigenvalues are available in Supplementary Table 6. b Barplots for two dimensions based on variable
contribution. Each barplot shows the contribution (in %) of the sixteen autoantibodies to each dimension. The red coloured bars represent
contribution values ≥ 5% (black dashed intercept line), while black coloured bars indicate contribution values < 5%. The contribution values of
all autoantibodies to the different dimensions are listed in Supplementary Table 7. c PCA with spectral decomposition shows the stratification
power of the sixteen most significant autoantibodies to distinguish between severe COVID-19 and healthy controls, considering the age
categories of each group according to the first and second dimensions. d Heatmaps showing autoantibody levels ranging from 0 to 2 Units/ml
according to the colour scale bar at the side of the graph clustered by Euclidian Distance for each disease and control group. The asterisk
highlights the autoantibodies appearing as more elavated in severe COVID-19 patients. The age and age categories (light grey and brown
dots above the heatmap for individuals <50 and ≥50 years old, respectively) for all individuals are shown above the heatmap. The bar ranging
from yellow to blue (0 to 2) represents autoantibody levels in units/mL.
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Fig. 5 Ranking autoantibodies as predictors and classifiers of COVID-19 severity by age categories. a, b Random Forest model used to
rank the 16 most essential autoantibodies as predictors for (a) severe COVID-19 <50 and (b) ≥50 severe COVID-19 patient groups compared to
healthy controls. Multi-way importance plots show four nodes (IgG antibodies), the most significant predictors of severe COVID-19 <50 and
≥50. The size of the dots corresponds to the mean min depth in decreasing order (2.5 to 1.0). The names of the three most essential
autoantibodies are shown by grey circles the <50 Control vs. <50 severe COVID-19 and in brown circles for the comparison ≥50 Control vs.
≥50 COVID-19 Severe. c, d Forest plot with an Odds ratio (OR) from binomial logistic regression analysis showing the regression coefficient
(square) with confidence intervals (whiskers) and the significance level (≠1 intercept) for severe COVID-19 (c) <50 or (d) ≥50 compared to
healthy controls. The exact values of OR and 95% confidence intervals are shown on the side of the regression coefficients. See
Supplementary Fig. 2 for additional information. The red square indicates significant autoantibodies. Losango represents a Combined OR.

D.L.M. Fonseca et al.

7

Published in partnership with the Japanese Society of Anti-Aging Medicine npj Aging (2023)    21 



used a Linear discriminant analysis (LDA) model considering the
groups (healthy controls versus severe COVID-19 patients (both
groups ≥50 years old) as the dependent variables and the
autoantibody levels as the independent variable to study the
specificity and sensibility of age-associated autoantibodies target-
ing the 16 molecules to classify COVID-19 severity (Supplementary
Tables 9 and 10). These approaches indicated only anti-cardiolipin
and anti-platelet glycoprotein (when considering the sixteen age-
associated autoantibodies) with specificity, sensitivity, and accu-
racy above 70% chance of a correct group classification
(Supplementary Fig. 2). This approach allowed us to obtain the
cut-off of specificity and sensibility of these autoantibodies.
Furthermore, the Odds Ratio (OR) was calculated from the cut-
off values obtained (Supplementary Table 11), allowing us to
understand the relationship between the groups (healthy controls
versus COVID-19 groups) as the dependent variable and the
autoantibody levels as the independent variable to predict the
likelihood of COVID-19 severity. Only anti-cardiolipin and anti-
platelet glycoprotein showed a significantly increased odd ratio
for severe COVID-19 patients <50 and ≥50 years old (Fig. 5c, d). On
the other hand, following the aging effect 1 (Fig. 3), autoanti-
bodies against claudin 5 and enteric nerve showed a significantly
reduced OR in severe COVID-19 patients <50 in relation to healthy
controls.
Of note, the support vector machine (SVM) classification, which

is a powerful machine learning approach with maximization
(support) of separating margin (vector)48,49, based on the levels of
anti-cardiolipin (Fig. 6a) or anti-platelet glycoprotein (Fig. 6c) in
relation to age, confirmed the importance of these autoantibodies
as suitable classifiers of severe COVID-19 when compared to
healthy controls. I.e., SVM showed the separation of severe COVID-
19 from healthy controls based on these most critical age-
associated autoantibodies as the random forest analysis predicted.
The input data are shown in Supplementary Tables 12 and
Supplementary Fig. 3, while table results are exhibited in
Supplementary Tables 13. In agreement, the binominal logistic
regression indicated that the increase of anti-cardiolipin (Fig. 6b)
or anti-platelet glycoprotein (Fig. 6d) levels enhance the
probability of belonging to the severe COVID-19 group ≥50 years
old when compared to those <50 years old.

DISCUSSION
Here we employed a systems biology approach to holistically
understand the relationship between aging and the levels of
serum autoantibodies linked to autoimmune diseases in patients
with COVID-19. In line with the already well-known impact of
patient aging, which is one of the most decisive risk factors for the
development of severe COVID-1950,51 (in addition to other vital
risk factors, such as obesity and prehistory of cardiovascular
complications52), our data suggest that the production of natural
autoantibodies (but not anti-SARS-CoV-2 antibodies) is signifi-
cantly increased in an age-dependent manner, being most
pronounced in individuals with severe COVID-19. Therefore, our
work aligns with the seminal and outstanding reports from
Bastard et al. and others who characterized that autoantibodies
neutralizing type I IFNs are present in the general population and
increase dramatically in prevalence after age 70, underlying 15-
20% of cases of critical COVID-1918,53,54. These autoantibodies are
also present in around 24% of breakthrough COVID-19 cases55,
and are crucial risk factors for COVID death, especially in elderly
individuals51. However, our data expand the number of age-
associated autoantibodies and confirms the distinct impact of
patient aging on the level of serum autoantibodies in severe
COVID-19 patients, which we previously reported in patients with
COVID-1944,56,57. We found that COVID-19 patients have a
significant age-associated increase of autoantibody levels against
16 targets (e.g., amyloid β peptide, β catenin, cardiolipin, claudin,

enteric nerve, fibulin, insulin receptor a, and platelet glycoprotein),
which provides new avenues for mechanistic validation of these
targets within the clinical context of their pathophysiology.
Broadening the pool of targets may also provide a more
comprehensive picture of the underlying pathophysiology of
COVID-19 disease progression with advanced aging and, thus,
improved targeting of suitable interventions.
Hierarchical clustering analysis of autoantibody levels indicated

segregation of <50 from ≥50 years old patients with severe
COVID-19. The combination of different machine learning
approaches revealed that, among the significantly age-
associated autoantibodies, particularly those directed against
cardiolipin and platelet glycoprotein, are the most critical
autoantibodies for predicting the severity of COVID-19 in older
patients when compared to older healthy controls. Importantly,
our data indicate a distinct separation/stratification of COVID-19
patients <50 from ≥50 years old and an increased OR of disease
severity due to high levels of autoantibodies targeting cardiolipin
and platelet glycoprotein. Indeed, the prothrombotic anti-
cardiolipin autoantibodies that may potentially exacerbate the
thrombo-inflammatory state related to severe COVID-1921,58, and
other autoantibodies linked to classic autoimmune diseases31,
have long been known to be highly prevalent in the healthy
elderly population59,60.
Multiple linear and binominal logistic regression analyses

indicated that autoantibodies targeting cardiolipin and platelet
glycoprotein synergistically increase the probability of developing
severe disease. Thus, in addition to the impaired immune
response (affecting IFN-mediated immunity) and the generation
of anti-type I IFN autoantibodies that drive the age-dependent
severity of COVID-1918,51,53,61, patients with life-threatening SARS-
CoV-2 infections also present with an age-dependent increase of
multiple autoantibodies associated with classic autoimmune
diseases that correlate with disease severity. The well-
documented observation that anti-cardiolipin62 and anti-platelet
antibodies63 increase the risk of thrombosis-related events such as
pulmonary thromboembolism and deep vein thrombosis64,65 is
also true for COVID-19 patients11,21,24,66–68. Thus, our findings
could provide new insights into the complex pathophysiology of
COVID-19, such as the thrombosis-related pathological events
occurring with increased frequency in elderly individuals with
SARS-CoV-2 infection. However, this represents a limitation of our
study since we have no longitudinal data of our patients to
evaluate if the individuals with high levels of anti-cardiolipin and
anti-platelet antibodies subsequently developed thrombosis-
related events.
Noteworthy, autoantibodies have been detected in healthy

individuals at physiological levels43,56,57,69–71, are conserved
among species and influenced by age, sex, and disease
conditions43, and form network signatures57, including for
instance, those targeting cardiolipin59 and platelet glycoprotein45.
Based on our current and previous findings57, we postulate that
autoantibodies are natural body components found at low or high
levels in different autoimmune diseases56, and may pre-exist to
pathological conditions. Hence, the elevated autoantibody levels
associated with severe COVID-19 may be exacerbated by the
evolutionarily conserved tendency to produce more autoantibo-
dies with increasing age42. This phenomenon can aggravate the
age-associated deficit in cardiovascular structure and function72 as
well as the age-related decline of normal lung function73, which
represent two central physiological systems (circulatory and
respiratory) that are predominantly harmed in COVID-19
patients74. Together, these age-associated conditions create a
fertile milieu for the poor outcomes of elderly individuals suffering
from severe SARS-CoV-2 infection.
Considering the sequence of the underlying events, our results

raise the critical question: does the severity of COVID-19 increase
autoantibody levels? Or do the increased autoantibody levels
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Fig. 6 The probability of disease severity associated with anti-cardiolipin and anti-platelet autoantibody levels. Support Vector Machine
(SVM, on the left) showing the non-linearly C-classification based on the radial kernel with over 70% (Supplementary Fig. 3 and
Supplementary Table 10) accuracy between healthy controls and the severe COVID-19 group ≥50 years old. The scaled values for age (x-axis)
of (a, b) anti-cardiolipin and (c, d) anti-platelet glycoprotein autoantibody levels (y-axis) are shown. The colours indicate each study group
according to the figure legend. The scatter plot (on the right) of three autoantibodies (anti-cardiolipin and anti-platelet glycoprotein) shows
that increased autoantibody levels can be explained by a higher probability of being severe in each group (healthy controls= 0, and severe
COVID-19= 1). The age category for each group is indicated by a light grey (<50 years old) and brown (≥50 years old) line in the graph. The
regression coefficients to autoantibody levels and comparisons between the age categories are shown above each graph. e Summary of study
findings. Created with BioRender.com.
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affect the disease severity? We hypothesize that both possibilities
are reasonable and may be complementary (i.e., bidirectional). The
severe COVID-19 infection promotes a body environment such as
tissue injury (acute respiratory distress syndrome or ARDS),
cytokine storm, and macrophage hyperactivation75, which foster
the production of autoantibodies. In turn, this disease context
could allow those autoantibodies to act synergistically with
multiple metabolites76, cytokines, and chemokines, which are
naturally dysregulated in elderly patients as part of immunose-
nescence35–37, worsening the COVID-19 outcomes through several
well-known mechanisms of autoantibody-induced pathology77. In
this context, autoantibodies, in concert with other immune
molecules (e.g., cytokines and chemokines), could interact in a
highly complex network underlying immunopathological pro-
cesses78 in severe COVID-19 patients, potentiated by aging-
associated health conditions and lead to the development of
severe disease.
Another age-dependent phenomenon that possibly explains

the increased autoimmune responses we observed in the elderly
patients with severe COVID-19 relies on the accumulation of
epigenetic alterations (e.g., DNA methylation and histone acetyla-
tion)79, known to contribute to the autoimmunity risk of elderly
individuals. Accordingly, accelerated epigenetic aging has been
associated with the increased risk of SARS-CoV-2 infection and the
development of severe COVID-1980. Lastly, a state of hyper-
stimulation of the immune system by the SARS-COV-2 infection
has been observed in elderly patients, for instance, by promoting
the activation of overlapping B cell pathways between severe
COVID-19 and patients with systemic autoimmune diseases81.
Thus, several age-associated immunopathological events support
the existence of age-associated autoantibodies, increasing the
likelihood of severe COVID-19 disease in elderly patients.
In conclusion, our data provide new crucial insights into the

critical relationship between severe COVID-19 and the increased
dysregulation/production of distinct autoantibodies with increas-
ing age that may be an essential component associated with
developing severe COVID-19. As demonstrated by the stratifica-
tion of young from elderly COVID-19 patients and the increased
odds ratio of disease severity due to the high levels of
autoantibodies linked to autoimmune diseases, in particular,
those targeting cardiolipin or platelet glycoprotein, our data
indicate an age-dependent effect of autoantibodies in the
development of severe COVID-19, that may be of future value
for disease prognosis. This work expands the link between
senescence and aging with severe SARS-CoV-2 infection82–87.
However, our findings have limitations that require further

investigation to fully understand the relationship between anti-
cardiolipin and anti-platelet autoantibodies and COVID-19 sever-
ity. In addition to validating our results using another immunoas-
say platform and functional validation assays, these
autoantibodies can also be present in individuals without
COVID-1959,66. Thus, their presence alone does not necessarily
indicate a severe or life-threatening disease88. However, there are
some suggestions that anti-cardiolipin and anti-platelet autoanti-
bodies may play a role in severe COVID-19. Studies21,89 have
shown that COVID-19 patients with severe disease have higher
levels of anti-cardiolipin autoantibodies than patients with milder
disease or healthy controls. It has been postulated that these
autoantibodies contribute to hypercoagulation and thrombosis in
severe COVID-19, as they are associated with an increased risk of
blood clots. Likewise, there is evidence68 suggesting that anti-
platelet autoantibodies play a role in the hypercoagulability and
thrombotic complications observed in severe COVID-19 patients. It
has been reported that COVID-19 patients with severe disease had
higher levels of anti-platelet factor 4 (PF4) antibodies than patients
with milder disease or healthy controls. The study suggests68 that
anti-PF4 antibodies in COVID-19 patients contribute to the
hypercoagulability and thrombotic complications observed in

severe disease. Therefore, future studies are needed to clarify the
relationship between these autoantibodies’ presence, including
these pro-thrombotic autoantibodies (i.e., anti-cardiolipin and
anti-platelet glycoprotein) with COVID-19 outcomes (survival
versus non-survival patients). In this context, it will be essential
to evaluate the correlation between the level of autoantibodies
according to aging (young versus elderly individuals) and other
molecular measurements associated with higher COVID-19 risk
mortality, such as T1/T2 cytokine profile, inflammatory markers in
the populations with varying severity (defined by hospitalization
and of days with fever).
Another limitation of our study is that we could not measure

the autoantibody levels of our patient cohort before the SARS-
CoV-2 infection (which is one of the fundamental constraints of
many studies). This fact precludes us from determining a
fundamental difference between autoantibodies that pre-exist
SARS-CoV-2 infection and those that cause severe disease from
autoantibodies triggered by infection (and are unlikely to cause or
mitigate severe illness because of their delayed appearance). Thus,
we cannot reject the possibility that some of our patients already
had elevated levels of age-associated autoantibodies before
developing severe COVID-19. Therefore, our findings could be
influenced by this additional predisposition factor and its
association with age and severe COVID-19.

METHODS
Study cohort
We investigated 232 unvaccinated adults from the United
States44,90,91, 159 COVID-19 patients with SARS-CoV-2 positive
test by nasopharyngeal swab and polymerase chain reaction
(PCR), and 73 randomly selected age—and sex-matched healthy
controls who were SARS-CoV-2 negative by PCR and did not
present any COVID-19 symptoms. COVID-19 patients were
classified based on the World Health Organization (WHO) severity
classification92 as mild COVID-19 (n= 71; fever duration ≤1 day;
peak temperature of 37.8 C), moderate COVID-19 (n= 61; fever
duration ≥7 days; peak temperature of ≥ 38.8 C), and severe
COVID-19 patients (n= 27; severe symptoms and requiring
supplemental oxygen therapy). All healthy controls and patients
provided informed written consent to participate in the study
following the Declaration of Helsinki. The study was approved by
the IntegReview institutional review board (Coronavirus Antibody
Prevalence Study, CAPS-613) and followed the reporting guide-
lines of Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) (see demographic and clinical data in
Supplementary Table 0).

Measurements of anti-SARS-CoV-2 antibodies and
autoantibodies linked to autoimmune diseases
Since the autoimmunity phenomenon has been linked with the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
suggesting that COVID-19 patients can display features similar to a
systemic autoimmune disease19,93,94, we decided to perform a
comprehensive assessment of the influence of aging on the levels
of autoantibodies linked to diverse autoimmune diseases. We
included the time of sample collection in Supplementary Table 0.
Since the COVID-19 groups presented a similar average of sample
collection date, we excluded this variable as a potential
confounder of patient subgroup comparisons.
Sera were assessed for the levels/titers of IgG anti-SARS-CoV-2

(Supplementary Table 1) antibodies (Catalogue number 109-055-
008, Alkaline Phosphatase-conjugated AffiniPure Goat Anti-
Human IgG, Fcγ Fragment Specific.) to spike and nucleocapsid
proteins using the ZEUS SARS-CoV-2 ELISA Test System according
to the manufacturer’s instructions (ZEUS Scientific, New Jersey,
USA), as previously described95. We evaluated serum IgG
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autoantibodies against the nuclear antigen (ANA), extractable
nuclear antigen (ENA), double-stranded DNA (dsDNA), actin,
mitochondrial M2, and rheumatoid factor (RF) using commercial
ELISA kits obtained from INOVA Diagnostics (San Diego, CA, USA).
Furthermore, blinded, we quantified IgG autoantibodies against
52 target molecules using an in-house ELISA procedure (Immu-
nosciences Lab., Inc; Los Angeles, CA USA). One hundred mL of
each autoantigen at the optimal concentration were prepared in
0.01 M PBS pH 7.4 and aliquoted into microtiter plates. We used a
set of plates and coated each well with 2% bovine serum albumin
(BSA) or human serum albumin (HSA) as controls. The ELISA plates
were incubated overnight at 4 °C and washed five times with
250ml of 0.01 M PBS containing 0.05% Tween 20 pH 7.4. We
avoided the non-specific binding of immunoglobins by adding 2%
BSA in PBS and incubating the plates overnight at 4 °C. The plates
were washed, and the serum samples from healthy controls and
SARS-CoV-2 patients were diluted 1:100 in serum diluent buffer or
1% BSA in PBS containing 0.05% Tween 20 and incubated for 1 h
at room temperature. The plates were rewashed, followed by the
addition of alkaline phosphatase-conjugated goat anti-human IgG
F(ab,)2 fragments (KPI, Gaithersburg, MD, USA) at an optimal
dilution of 1:600 in 1% BSA PBS. The plates were incubated for an
hour at room temperature and washed five times with PBS-Tween
buffer. The enzyme reaction was started by adding 100mL of
para-nitrophenyl phosphate in 0.1 mL diethanolamine buffer
1 mg/mL plus 1 mM MgCl2 and sodium azide pH 9.8. Forty-five
minutes later, the reaction was stopped with 50mL of 1 N NaOH.
The optical density (OD) was read at 405 nm using a microtiter
plate reader. To exclude non-specific binding, the ODs of the
control wells containing only HSA or BSA, always <0.15, were
subtracted from those wells containing patient or control serum.
The ELISA index for each autoantibody was calculated.

Descriptive statistical analysis
We performed descriptive statistical analysis to demonstrate
differences in the mean autoantibody levels. From this, we calculate
the mean for each study group, using natural log for the
comparisons. This analysis was performed using R96,97 programming
version 4.2.1 (https://www.r-project.org/) and RStudio Version
2022.07.1+ 55498 (R package ggplot299). To calculate the mean
levels of autoantibodies, we used the R package stats96,97.

Multiple linear regression
To further explore the relationship between the variables age and
specific autoantibody levels in each study group, we applied
multiple linear regression analysis100. This method evaluates the
influence of age and study group on distinct antibody levels, thus,
allowing to assess the relationship between the levels of
autoantibodies or the levels of anti-SARS-CoV-2 with age as a
continuous variable of the study group (healthy control; mild,
moderate, and severe COVID-19). Our regression model was
estimated based on all 59 (58 targets for autoantibodies plus the
anti-SARS-CoV-2 antibody) explanatory variables. R programming
was used to divide multiple R-squared by each explanatory
variable’s residual standard error (sigma). After that, the effect size
f2 was obtained using the G-power software101. This approach
allowed us to calculate the sample size required for each
explanatory variable (Supplementary Table 3). We found that
autoantibodies against seven molecules did not fit our sample
size. Thus, they were already excluded from the initial manuscript
version. Therefore, the sample size of our study was statistically
appropriately used in the linear multiple regression model.
Furthermore, patients’ sex was considered a covariable in the

regression model since it represents a confounder that may influence
the dependent variables. We used the lm function from the R package
stats96,97 for the multiple linear regression analysis, and forest plots
and scatter plots were generated using the R package ggplot2102.

Differences in autoantibody levels by age category
We used box plots to show the distribution levels of autoanti-
bodies in healthy controls and each COVID-19 group (mild,
moderate, and severe), classifying individuals <50 or ≥50 years of
age45. Statistical differences in autoantibody levels were calcu-
lated using the Kruskal Wallis test followed by the posthoc Dunn
test, considering p-value and adjusted p-value (False Discovery
Rate [FDR]) <0.05 as the significance cut-off, respectively. Box plots
were generated using the R packages rstatix103 and ggplot2102.

Principal component analysis and hierarchical clustering
Based on the multiple linear regression results, we identified
significantly increased titers of age-associated autoantibodies
against 16 targets, which underwent PCA with spectral decom-
position104,105, as previously described44,106. This approach
allowed us to measure the stratification power of the autoanti-
bodies in distinguishing between severe COVID-19 patients and
healthy controls while considering young and elderly groups. We
calculated the eigenvalues based on the contributions of
autoantibody levels to demonstrate their direction in the principal
component analysis. The eigenvalues and eigenvectors exceeding
one intercept107 were considered essential to show the segrega-
tion of groups. For this, we used the R functions get_eig and
get_pca_var from factoextra package108. PCA was performed using
the function prcomp from the same package. Additional visualiza-
tion of autoantibody levels in the different study groups was
performed using the R package ComplexHeatmap109 and
Circlize110. The clustering of autoantibody levels in each study
group was based on Euclidian distance.

Random forest modelling
We employed the random forest model to rank the most relevant
autoantibodies (the autoantibodies that were significant in the
multiple regression analysis) to best classify COVID-19 disease
severity for each age category (<50 and ≥50 years old) using the R
package randomForest (version 4.7.1.1)47 as previously
described31,44,111. Briefly, five thousand trees were used, and
three variables were resampled (mtry parameter). As criteria to
determine variable importance in the classification, we considered
the mean minimum depth, Gini decrease, and the number of
appearances in nodes. The dataset was split into training and
testing sets using a 3 to 1 ratio for cross-validation, while quality
was assessed for each, respectively, through out-of-bags error rate
and the ROC curve.

Odds ratio to belong to the severe COVID-19 group
To calculate the OR to belong to the severe COVID-19 group based
on autoantibody levels, we carried out LDA and logistic binomial
regression. The LDA is a method to find a linear combination of
variables (autoantibodies) that characterize two or more classes of
objects/events112, herein, individuals healthy controls vs. severe
COVID-19 <50 or ≥50 years old. Autoantibodies with a specificity
and sensitivity value >70% were considered a threshold to belong
to the severe COVID-19 groups <50 or ≥50 years old. Based on this
threshold, we categorize the detection values of each autoanti-
body from 0 and 1 for both age categories. The analysis was
performed using the R package MASS113 with the lda function. To
plot the specificity and sensitivity of the class prediction for each
autoantibody, we used the R package plotROC114 and ggplot2102.
In addition, we performed the binomial logistic regression for the
OR115 from the LDA results to predict COVID-19 severity using the
function logistic.display of the R package epiDisplay116. Plots
resulting from this analysis were generated using the R package
meta117.
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Support Vector Machine (SVM) classification and probability
by binomial logistic regression
We used118,119 SVM, a robust computer algorithm, to build
classifiers48. SVM employs four basic concepts: separating hyper-
plane, the maximum-margin hyperplane, the soft margin, and the
kernel function49. We performed the radial kernel function applied
between healthy controls and the severe COVID-19 group to
classify the scaled values of the anti-cardiolipin and anti-platelet
glycoprotein autoantibodies with age. Groups were defined as the
dependent variable, while antibodies and age were considered
independent variables. The analysis was performed using the svm
function of the e1071120 R package. We used the kernel (C-
classification) with 50% of our data sorted randomly by the R base
sample function for training and predicting, considering the radial
basis parameter, the best model applied to our data. Accuracy was
defined as the percentage of correctly classified samples resulting
in 77% for cardiolipin and 81% for platelet glycoprotein, correctly
classified as healthy controls and severe COVID-19 patients in our
model. Furthermore, we used the tune function of the R package
e1071120 to adjust the hyperparameters for cost and gamma in
the svm function. We used a cost of 10 and a gamma of 0.5 for our
data. All graphs from svm prediction results were generated using
the R package ggplot2102. In addition, we used the binomial
logistic regression analysis to understand whether the severity of
COVID-19 can be predicted based on age and autoantibody levels.
The binomial logistic regression analysis indicates the probability
that an observation falls into one of two defined dichotomous
categories based on one or more independent variables115. This
analysis was performed using the R package stats97 with the glm
function. The categories of the dichotomous dependent variable
were defined as “belonging to severe COVID-19: group 1” and “not
belonging to severe COVID-19: group 0”, using the binomial
logistic family to predict the probability of falling into the severe
COVID-19 group in relation to the healthy controls. This approach
resulted in a regression coefficient and p-value for the probability
of severe COVID-19 based on the autoantibody level and the
likelihood of severe COVID-19 based on the age category.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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