Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Charting the genomic landscape of seed-free plants

Abstract

During the past few years several high-quality genomes has been published from Charophyte algae, bryophytes, lycophytes and ferns. These genomes have not only elucidated the origin and evolution of early land plants, but have also provided important insights into the biology of the seed-free lineages. However, critical gaps across the phylogeny remain and many new questions have been raised through comparing seed-free and seed plant genomes. Here, we review the reference genomes available and identify those that are missing in the seed-free lineages. We compare patterns of various levels of genome and epigenomic organization found in seed-free plants to those of seed plants. Some genomic features appear to be fundamentally different. For instance, hornworts, Selaginella and most liverworts are devoid of whole-genome duplication, in stark contrast to other land plants. In addition, the distribution of genes and repeats appear to be less structured in seed-free genomes than in other plants, and the levels of gene body methylation appear to be much lower. Finally, we highlight the currently available (or needed) model systems, which are crucial to further our understanding about how changes in genes translate into evolutionary novelties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phylogeny of streptophytes (charophyte algae and land plants) and the available genomic resources.
Fig. 2: Distribution of gene/transposon density and DNA methylation.

Similar content being viewed by others

References

  1. Wickett, N. J. et al. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl Acad. Sci. USA 111, E4859–E4868 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Puttick, M. N. et al. The interrelationships of land plants and the nature of the ancestral embryophyte. Curr. Biol. 28, 733–745 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. de Sousa, F., Foster, P. G., Donoghue, P. C. J., Schneider, H. & Cox, C. J. Nuclear protein phylogenies support the monophyly of the three bryophyte groups (Bryophyta Schimp.). New Phytol. 222, 565–575 (2019).

    Article  PubMed  Google Scholar 

  4. One Thousand Plant Transcriptomes Initiative. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679–685 (2019).

    Article  CAS  Google Scholar 

  5. Harris, B. J., Harrison, C. J., Hetherington, A. M. & Williams, T. A. Phylogenomic evidence for the monophyly of bryophytes and the reductive evolution of stomata. Curr. Biol. 30, 2001–2012 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Li, F.-W. et al. Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nat. Plants 6, 259–272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, J. et al. The hornwort genome and early land plant evolution. Nat. Plants 6, 107–118 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rensing, S. A. et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64–69 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Banks, J. A. et al. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332, 960–963 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bowman, J. L. et al. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171, 287–304 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Marks, R. A., Smith, J. J., Cronk, Q., Grassa, C. J. & McLetchie, D. N. Genome of the tropical plant Marchantia inflexa: implications for sex chromosome evolution and dehydration tolerance. Sci. Rep. 9, 8722 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Diop, S. I. et al. A pseudomolecule-scale genome assembly of the liverwort Marchantia polymorpha. Plant J. 101, 1378–1396 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Montgomery, S. A. et al. Chromatin organization in early land plants reveals an ancestral association between H3K27me3, transposons, and constitutive heterochromatin. Curr. Biol. 30, 573–588 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Radhakrishnan, G. V. et al. An ancestral signalling pathway is conserved in intracellular symbioses-forming plant lineages. Nat. Plants 6, 280–289 (2020).

    Article  PubMed  Google Scholar 

  15. Lang, D. et al. The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution. Plant J. 93, 515–533 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Pederson, E. R. A., Warshan, D. & Rasmussen, U. Genome sequencing of Pleurozium schreberi: the assembled and annotated draft genome of a pleurocarpous feather moss. G3 9, 2791–2797 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Yu, J. et al. Draft genome of the aquatic moss Fontinalis antipyretica (Fontinalaceae, Bryophyta). Gigabyte 1, https://doi.org/10.46471/gigabyte.8 (2020).

  18. Xu, Z. et al. Genome analysis of the ancient tracheophyte Selaginella tamariscina reveals evolutionary features relevant to the acquisition of desiccation tolerance. Mol. Plant 11, 983–994 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. VanBuren, R. et al. Extreme haplotype variation in the desiccation-tolerant clubmoss Selaginella lepidophylla. Nat. Commun. 9, 13 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li, F.-W. et al. Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nat. Plants 4, 460–472 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kirbis, A. et al. Transcriptional landscapes of divergent sporophyte development in two mosses, Physcomitrium (Physcomitrella) patens and Funaria hygrometrica. Front. Plant Sci. 11, 747 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Carey, S. B. et al. Chromosome fusions shape an ancient UV sex chromosome system. Preprint at bioRxiv https://doi.org/10.1101/2020.07.03.163634 (2020).

  23. Hori, K. et al. Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nat. Commun. 5, 3978 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nishiyama, T. et al. The Chara genome: secondary complexity and implications for plant terrestrialization. Cell 174, 448–464 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Cheng, S. et al. Genomes of subaerial Zygnematophyceae provide insights into land plant evolution. Cell 179, 1057–1067 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Jiao, C. et al. The Penium margaritaceum genome: hallmarks of the origins of land plants. Cell 181, 1097–1111 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, S. et al. Genomes of early-diverging streptophyte algae shed light on plant terrestrialization. Nat. Plants 6, 95–106 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Liang, Z. et al. Mesostigma viride genome and transcriptome provide insights into the origin and evolution of Streptophyta. Adv. Sci. 7, 1901850 (2020).

    Article  CAS  Google Scholar 

  29. Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl Acad. Sci. USA 115, E2274–E2283 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Larsén, E. & Rydin, C. Disentangling the phylogeny of Isoetes (Isoetales), using nuclear and plastid data. Int. J. Plant Sci. 177, 157–174 (2016).

    Article  Google Scholar 

  31. Keeley, J. E. Aquatic CAM photosynthesis: a brief history of its discovery. Aquat. Bot. 118, 38–44 (2014).

    Article  CAS  Google Scholar 

  32. Pellicer, J. & Leitch, I. J. The plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytol. 226, 301–305 (2020).

    Article  PubMed  Google Scholar 

  33. Klekowski, E. J. & Baker, H. G. Evolutionary significance of polyploidy in the Pteridophyta. Science 153, 305–307 (1966).

    Article  PubMed  Google Scholar 

  34. Kuo, L.-Y. & Li, F.-W. A roadmap for fern genome sequencing. Am. Fern. J. 109, 212–223 (2019).

    Article  Google Scholar 

  35. Marchant, D. B. et al. The C-Fern (Ceratopteris richardii) genome: insights into plant genome evolution with the first partial homosporous fern genome assembly. Sci. Rep. 9, 18181 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Landis, J. B. et al. Impact of whole-genome duplication events on diversification rates in angiosperms. Am. J. Bot. 105, 348–363 (2018).

    Article  PubMed  Google Scholar 

  37. Soltis, P. S. & Soltis, D. E. Ancient WGD events as drivers of key innovations in angiosperms. Curr. Opin. Plant Biol. 30, 159–165 (2016).

    Article  PubMed  Google Scholar 

  38. Vanneste, K., Maere, S. & Van de Peer, Y. Tangled up in two: a burst of genome duplications at the end of the Cretaceous and the consequences for plant evolution. Philos. Trans. R. Soc. Lond. B 369, 20130353 (2014).

    Article  Google Scholar 

  39. Gao, B. et al. Integrated phylogenomic analyses reveal recurrent ancestral large-scale duplication events in mosses. Preprint at bioRvix https://doi.org/10.1101/603191 (2019).

  40. Huang, C.-H., Qi, X., Chen, D., Qi, J. & Ma, H. Recurrent genome duplication events likely contributed to both the ancient and recent rise of ferns. J. Integr. Plant Biol. 62, 433–455 (2020).

    Article  PubMed  Google Scholar 

  41. Villarreal, J. C. & Renner, S. S. Hornwort pyrenoids, carbon-concentrating structures, evolved and were lost at least five times during the last 100 million years. Proc. Natl Acad. Sci. USA 109, 18873–18878 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Devos, N. et al. Analyses of transcriptome sequences reveal multiple ancient large-scale duplication events in the ancestor of Sphagnopsida (Bryophyta). New Phytol. 211, 300–318 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Johnson, M. G., Malley, C., Goffinet, B., Shaw, A. J. & Wickett, N. J. A phylotranscriptomic analysis of gene family expansion and evolution in the largest order of pleurocarpous mosses (Hypnales, Bryophyta). Mol. Phylogenet. Evol. 98, 29–40 (2016).

    Article  PubMed  Google Scholar 

  44. Zhang, R. et al. Dating whole genome duplication in Ceratopteris thalictroides and potential adaptive values of retained gene duplicates. Int. J. Mol. Sci. 20, 1926 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  45. Vanneste, K., Sterck, L., Myburg, A. A., Van de Peer, Y. & Mizrachi, E. Horsetails are ancient polyploids: evidence from Equisetum giganteum. Plant Cell 27, 1567–1578 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Clark, J. W., Puttick, M. N. & Donoghue, P. C. J. Origin of horsetails and the role of whole-genome duplication in plant macroevolution. Proc. R. Soc. B 286, 20191662 (2019).

    Article  PubMed  Google Scholar 

  47. Ren, R. et al. Widespread whole genome duplications contribute to genome complexity and species diversity in angiosperms. Mol. Plant 11, 414–428 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Comai, L. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 6, 836–846 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Edger, P. P. et al. The butterfly plant arms-race escalated by gene and genome duplications. Proc. Natl Acad. Sci. USA 112, 8362–8366 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Carretero-Paulet, L. & Fares, M. A. Evolutionary dynamics and functional specialization of plant paralogs formed by whole and small-scale genome duplications. Mol. Biol. Evol. 29, 3541–3551 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Carretero-Paulet, L. & Van de Peer, Y. The evolutionary conundrum of whole-genome duplication. Am. J. Bot. 107, 1101–1105 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Walden, N. et al. Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae. Nat. Commun. 11, 3795 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pellicer, J., Hidalgo, O., Dodsworth, S. & Leitch, I. Genome size diversity and its impact on the evolution of land plants. Genes 9, 88 (2018).

    Article  PubMed Central  Google Scholar 

  54. Bainard, J. D., Newmaster, S. G. & Budke, J. M. Genome size and endopolyploidy evolution across the moss phylogeny. Ann. Bot. 125, 543–555 (2020).

    Article  PubMed  Google Scholar 

  55. Clark, J. et al. Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny. New Phytol. 210, 1072–1082 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Barker, M. S. & Wolf, P. G. Unfurling fern biology in the genomics age. Bioscience 60, 177–185 (2010).

    Article  Google Scholar 

  57. Wagner, W. H. Jr & Wagner, F. S. Polyploidy in pteridophytes. Basic Life Sci. 13, 199–214 (1979).

    PubMed  Google Scholar 

  58. Nakazato, T., Barker, M. S., Rieseberg, L. H. & Gastony, G. J. in Biology and Evolution of Ferns and Lycophytes (eds Ranker, T. A. & Haufler, C. H.) 175–198 (Cambridge Univ. Press, 2008).

  59. Liu, H. et al. Polyploidy does not control all: lineage-specific average chromosome length constrains genome size evolution in ferns. J. Syst. Evol. 57, 418–430 (2019).

    Article  Google Scholar 

  60. Schubert, I. & Oud, J. L. There is an upper limit of chromosome size for normal development of an organism. Cell 88, 515–520 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Wendel, J. F., Jackson, S. A., Meyers, B. C. & Wing, R. A. Evolution of plant genome architecture. Genome Biol. 17, 37 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wolf, P. G. et al. An exploration into fern genome space. Genome Biol. Evol. 7, 2533–2544 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Baniaga, A. E. & Barker, M. S. Nuclear genome size is positively correlated with median LTR-RT insertion time in fern and Lycophyte genomes. Am. Fern J. 109, 248 (2019).

    Article  Google Scholar 

  64. Grusz, A. L. A current perspective on apomixis in ferns. J. Syst. Evol. 54, 656–665 (2016).

    Article  Google Scholar 

  65. Roessler, K. et al. The genome-wide dynamics of purging during selfing in maize. Nat. Plants 5, 980–990 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Lanciano, S. et al. Sequencing the extrachromosomal circular mobilome reveals retrotransposon activity in plants. PLoS Genet. 13, e1006630 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bainard, J. D., Forrest, L. L., Goffinet, B. & Newmaster, S. G. Nuclear DNA content variation and evolution in liverworts. Mol. Phylogenet. Evol. 68, 619–627 (2013).

    Article  PubMed  Google Scholar 

  68. Bainard, J. D. & Villarreal, J. C. Genome size increases in recently diverged hornwort clades. Genome 56, 431–435 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Berrie, G. K. Cytology and phylogeny of liverworts. Evolution 17, 347–357 (1963).

    Article  Google Scholar 

  70. Wyatt, R. & Stoneburner, A. in Plant Biosystematics (ed. Grant, W. F.) 519–542 (Academic Press, 1984).

  71. Voglmayr, H. Nuclear DNA amounts in mosses (Musci). Ann. Bot. 85, 531–546 (2000).

    Article  CAS  Google Scholar 

  72. Smith, A. J. E. in Advances in Botanical Research Vol. 6 (ed. Woolhouse, H. W.) 195–276 (Academic Press, 1979).

  73. Cove, D. in Bryophyte Biology (eds. Shaw, A. J. & Goffinet, B.) 182–198 (Cambridge Univ. Press, 2000).

  74. Reski, R. Development, genetics and molecular biology of mosses. Bot. Acta 111, 1–15 (1998).

    Article  CAS  Google Scholar 

  75. Schween, G., Gorr, G., Hohe, A. & Reski, R. Unique tissue-specific cell cycle in Physcomitrella. Plant Biol. 5, 50–58 (2003).

    Article  Google Scholar 

  76. Wiedemann, G. et al. RecQ helicases function in development, DNA repair, and gene targeting in Physcomitrella patens. Plant Cell 30, 717–736 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Trouiller, B., Charlot, F., Choinard, S., Schaefer, D. G. & Nogué, F. Comparison of gene targeting efficiencies in two mosses suggests that it is a conserved feature of bryophyte transformation. Biotechnol. Lett. 29, 1591–1598 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Bast, J., Jaron, K. S., Schuseil, D., Roze, D. & Schwander, T. Asexual reproduction reduces transposable element load in experimental yeast populations. eLife 8, e48548 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bast, J. et al. Consequences of asexuality in natural populations: Insights from stick insects. Mol. Biol. Evol. 35, 1668–1677 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vendrell-Mir, P., López-Obando, M., Nogué, F. & Casacuberta, J. M. Different families of retrotransposons and DNA transposons are actively transcribed and may have transposed recently in Physcomitrium (Physcomitrella) patens. Front. Plant Sci. 11, 1274 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Oliveira, L. C. & Torres, G. A. Plant centromeres: genetics, epigenetics and evolution. Mol. Biol. Rep. 45, 1491–1497 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Peska, V. & Garcia, S. Origin, diversity, and evolution of telomere sequences in plants. Front. Plant Sci. 11, 117 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sessa, E. B. et al. Between two fern genomes. Gigascience 3, 15 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Shakirov, E. V. & Shippen, D. E. Selaginella moellendorffii telomeres: conserved and unique features in an ancient land plant lineage. Front. Plant Sci. 3, 161 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Woodruff, G. C. & Teterina, A. A. Degradation of the repetitive genomic landscape in a close relative of Caenorhabditis elegans. Mol. Biol. Evol. 37, 2549–2567 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Stitzer, M. C., Anderson, S. N., Springer, N. M. & Ross-Ibarra, J. The genomic ecosystem of transposable elements in maize. Preprint at bioRxiv https://doi.org/10.1101/559922 (2019).

  87. Ma, J., Wing, R. A., Bennetzen, J. L. & Jackson, S. A. Plant centromere organization: A dynamic structure with conserved functions. Trends Genet. 23, 134–139 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Talbert, P. B. & Henikoff, S. What makes a centromere? Exp. Cell Res. 389, 111895 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Zhao, H. et al. Recurrent establishment of de novo centromeres in the pericentromeric region of maize chromosome 3. Chromosome Res. 25, 299–311 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Liu, Y. et al. Rapid birth or death of centromeres on fragmented chromosomes in maize. Plant Cell 32, 3113–3123 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Miga, K. H. et al. Telomere-to-telomere assembly of a complete human X chromosome. Nature 585, 79–84 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Payne, A. et al. Readfish enables targeted nanopore sequencing of gigabase-sized genomes. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-00746-x (2020).

  93. Kovaka, S., Fan, Y., Ni, B., Timp, W. & Schatz, M. C. Targeted nanopore sequencing by real-time mapping of raw electrical signal with UNCALLED. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0731-9 (2020).

  94. Pont, C. et al. Paleogenomics: reconstruction of plant evolutionary trajectories from modern and ancient DNA. Genome Biol. 20, 29 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zhao, T. & Schranz, M. E. Network-based microsynteny analysis identifies major differences and genomic outliers in mammalian and angiosperm genomes. Proc. Natl Acad. Sci. USA 116, 2165–2174 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Zemach, A., McDaniel, I. E., Silva, P. & Zilberman, D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328, 916–919 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Schmitz, R. J., Lewis, Z. A. & Goll, M. G. DNA methylation: Shared and divergent features across eukaryotes. Trends Genet. 35, 818–827 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bewick, A. J. et al. On the origin and evolutionary consequences of gene body DNA methylation. Proc. Natl Acad. Sci. USA 113, 9111–9116 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Takuno, S. & Gaut, B. S. Gene body methylation is conserved between plant orthologs and is of evolutionary consequence. Proc. Natl Acad. Sci. USA 110, 1797–1802 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Bewick, A. J. et al. The evolution of CHROMOMETHYLASES and gene body DNA methylation in plants. Genome Biol. 18, 65 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Schmid, M. W. et al. Extensive epigenetic reprogramming during the life cycle of Marchantia polymorpha. Genome Biol. 19, 9 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Takuno, S., Ran, J.-H. & Gaut, B. S. Evolutionary patterns of genic DNA methylation vary across land plants. Nat. Plants 2, 15222 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Meyberg, R., Perroud, P. F., Haas, F. B. & Schneider, L. Characterization of evolutionarily conserved key players affecting eukaryotic flagellar motility and fertility using a moss model. New Phytol. 227, 440–454 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Yaari, R. et al. RdDM-independent de novo and heterochromatin DNA methylation by plant CMT and DNMT3 orthologs. Nat. Commun. 10, 1613 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Choi, J., Lyons, D. B., Kim, M. Y., Moore, J. D. & Zilberman, D. DNA methylation and histone H1 jointly repress transposable elements and aberrant intragenic transcripts. Mol. Cell 77, 310–323 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Shi, T. et al. Distinct expression and methylation patterns for genes with different fates following a single whole-genome duplication in flowering plants. Mol. Biol. Evol. 37, 2394–2413 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hämälä, T. & Tiffin, P. Biased gene conversion constrains adaptation in Arabidopsis thaliana. Genetics 215, 831–846 (2020).

    Article  PubMed  Google Scholar 

  108. Eriksson, M. C., Szukala, A., Tian, B. & Paun, O. Current research frontiers in plant epigenetics: an introduction to a virtual issue. New Phytol. 226, 285–288 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Alonso, C., Ramos-Cruz, D. & Becker, C. The role of plant epigenetics in biotic interactions. New Phytol. 221, 731–737 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Mirouze, M. et al. Loss of DNA methylation affects the recombination landscape in Arabidopsis. Proc. Natl Acad. Sci. USA 109, 5880–5885 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Li, N. et al. DNA methylation repatterning accompanying hybridization, whole genome doubling and homoeolog exchange in nascent segmental rice allotetraploids. New Phytol. 223, 979–992 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Domb, K. et al. DNA methylation mutants in Physcomitrella patens elucidate individual roles of CG and non-CG methylation in genome regulation. Proc. Natl Acad. Sci. USA 117, 33700–33710 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Grob, S. Three-dimensional chromosome organization in flowering plants. Brief. Funct. Genomics 19, 83–91 (2020).

    Article  PubMed  Google Scholar 

  114. Sotelo-Silveira, M., Chávez Montes, R. A., Sotelo-Silveira, J. R., Marsch-Martínez, N. & de Folter, S. Entering the next dimension: plant genomes in 3D. Trends Plant Sci. 23, 598–612 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Bonev, B. & Cavalli, G. Organization and function of the 3D genome. Nat. Rev. Genet. 17, 661–678 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Doğan, E. S. & Liu, C. Three-dimensional chromatin packing and positioning of plant genomes. Nat. Plants 4, 521–529 (2018).

    Article  PubMed  Google Scholar 

  117. Karaaslan, E. S. et al. Marchantia TCP transcription factor activity correlates with three-dimensional chromatin structure. Nat. Plants 6, 1250–1261 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Grob, S., Schmid, M. W. & Grossniklaus, U. Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol. Cell 55, 678–693 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Nützmann, H.-W. et al. Active and repressed biosynthetic gene clusters have spatially distinct chromosome states. Proc. Natl Acad. Sci. USA 117, 13800–13809 (2020).

    Article  PubMed  Google Scholar 

  120. Xie, T. et al. Biased gene retention during diploidization in Brassica linked to three-dimensional genome organization. Nat. Plants 5, 822–832 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Picart-Picolo, A., Grob, S., Picault, N. & Franek, M. Large tandem duplications affect gene expression, 3D organization, and plant–pathogen response. Genome Res. 30, 1583–1592 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Choudhary, M. N. K. et al. Co-opted transposons help perpetuate conserved higher-order chromosomal structures. Genome Biol. 21, 16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lee, Y. C. G. et al. Pericentromeric heterochromatin is hierarchically organized and spatially contacts H3K9me2 islands in euchromatin. PLoS Genet. 16, e1008673 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Eres, I. E. & Gilad, Y. A TAD skeptic: is 3D genome topology conserved? Trends Genet. 37, 216–223 (2021).

    Article  CAS  PubMed  Google Scholar 

  125. Plackett, A. R. G., Huang, L., Sanders, H. L. & Langdale, J. A. High-efficiency stable transformation of the model fern species Ceratopteris richardii via microparticle bombardment. Plant Physiol. 165, 3–14 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bui, L. T., Cordle, A. R., Irish, E. E. & Cheng, C.-L. Transient and stable transformation of Ceratopteris richardii gametophytes. BMC Res. Notes 8, 214 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Petlewski, A. R. & Li, F.-W. Ferns: the final frond-tier in plant model systems. Am. Fern J. 109, 192–211 (2019).

    Article  Google Scholar 

  128. Kanegae, T. & Kimura, I. A phytochrome/phototropin chimeric photoreceptor of fern functions as a blue/far-red light-dependent photoreceptor for phototropism in Arabidopsis. Plant J. 83, 480–488 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Cai, C. et al. Three genes define a bacterial-like arsenic tolerance mechanism in the arsenic hyperaccumulating fern Pteris vittata. Curr. Biol. 29, 1625–1633 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. Boothby, T. C., Zipper, R. S., van der Weele, C. M. & Wolniak, S. M. Removal of retained introns regulates translation in the rapidly developing gametophyte of Marsilea vestita. Dev. Cell 24, 517–529 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Whittier, D. P. & Storchova, H. The gametophyte of Huperzia selago in culture. Am. Fern J. 97, 149–154 (2007).

    Article  Google Scholar 

  132. Schulz, C. et al. An overview of the morphology, anatomy, and life cycle of a new model species: the Lycophyte Selaginella apoda (L.) Spring. Int. J. Plant Sci. 171, 693–712 (2010).

    Article  Google Scholar 

  133. Rensing, S. A., Goffinet, B., Meyberg, R., Wu, S.-Z. & Bezanilla, M. The moss Physcomitrium (Physcomitrella) patens: a model organism for non-seed plants. Plant Cell 32, 1361–1376 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Oliver, M. J. et al. Chloroplast genome sequence of the moss Tortula ruralis: gene content, polymorphism, and structural arrangement relative to other green plant chloroplast genomes. BMC Genomics 11, 143 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Silva, A. T. et al. To dry perchance to live: insights from the genome of the desiccation-tolerant biocrust moss Syntrichia caninervis. Plant J. https://doi.org/10.1111/tpj.15116 (2020).

  136. Zhou, X. et al. Practices of biological soil crust rehabilitation in China: experiences and challenges. Restor. Ecol. 28, S45–S55 (2020).

    Article  Google Scholar 

  137. Heck, M. A. et al. Axenic in-vitro cultivation of nineteen peat-moss (Sphagnum L.) species as a resource for basic biology, biotechnology and paludiculture. New Phytol. 229, 861–876 (2020).

    Article  PubMed  Google Scholar 

  138. Ishizaki, K., Johzuka-Hisatomi, Y., Ishida, S., Iida, S. & Kohchi, T. Homologous recombination-mediated gene targeting in the liverwort Marchantia polymorpha L. Sci. Rep. 3, 1532 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Delaux, P.-M. et al. Reconstructing trait evolution in plant evo–devo studies. Curr. Biol. 29, R1110–R1118 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. Wurzel, G. & Becker, H. Growth and terpenoid production of an axenic culture from the liverwort Ricciocarpos natans. Z. Naturforsch. 45c, 13–18 (1989).

    Google Scholar 

  141. Althoff, F. & Zachgo, S. Transformation of Riccia fluitans, an amphibious liverwort dynamically responding to environmental changes. Int. J. Mol. Sci. 21, E5410 (2020).

    Article  PubMed  Google Scholar 

  142. Frangedakis, E. et al. A simple Agrobacterium-mediated stable transformation technique for the hornwort model Anthoceros agrestis. Preprint at bioRxiv https://doi.org/10.1101/2021.01.07.425778 (2021).

  143. Frangedakis, E. et al. The hornworts: morphology, evolution and development. New Phytol. 229, 735–754 (2020).

    Article  PubMed  Google Scholar 

  144. Bayer, P. E., Golicz, A. A., Scheben, A., Batley, J. & Edwards, D. Plant pan-genomes are the new reference. Nat. Plants 6, 914–920 (2020).

    Article  PubMed  Google Scholar 

  145. Maridass, M., Mahesh, R., Raju, G. & Muthuchelian, K. Clonal propagation of Adiantum capillus-veneris. Int. J. Biol. Technol. 1, 33–37 (2010).

    CAS  Google Scholar 

  146. Li, X., Han, J.-D., Fang, Y.-H., Bai, S.-N. & Rao, G.-Y. Expression analyses of embryogenesis-associated genes during somatic embryogenesis of Adiantum capillus-veneris L. in vitro: new insights into the evolution of reproductive organs in land plants. Front. Plant Sci. 8, 658 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Tsuboi, H., Nakamura, S., Schäfer, E. & Wada, M. Red light-induced phytochrome relocation into the nucleus in Adiantum capillus-veneris. Mol. Plant 5, 611–618 (2012).

    Article  PubMed  Google Scholar 

  148. Kawai-Toyooka, H. et al. DNA interference: a simple and efficient gene-silencing system for high-throughput functional analysis in the fern Adiantum. Plant Cell Physiol. 45, 1648–1657 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Brouwer, P. et al. Azolla domestication towards a biobased economy? New Phytol. 202, 1069–1082 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Banks, J. A. Gametophyte development in ferns. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 163–186 (1999).

    Article  CAS  PubMed  Google Scholar 

  151. Muthukumar, B., Joyce, B. L., Elless, M. P. & Neal Stewart, C. Stable transformation of ferns using spores as targets: Pteris vittata and Ceratopteris thalictroides. Plant Physiol. 163, 648–658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Stout, S. C., Clark, G. B., Archer-Evans, S. & Roux, S. J. Rapid and efficient suppression of gene expression in a single-cell model system, Ceratopteris richardii. Plant Physiol. 131, 1165–1168 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Rutherford, G., Tanurdzic, M., Hasebe, M. & Banks, J. A. A systemic gene silencing method suitable for high throughput, reverse genetic analyses of gene function in fern gametophytes. BMC Plant Biol. 4, 6 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Wolniak, S. M., van der Weele, C. M., Deeb, F., Boothby, T. & Klink, V. P. Extremes in rapid cellular morphogenesis: post-transcriptional regulation of spermatogenesis in Marsilea vestita. Protoplasma 248, 457–473 (2011).

    Article  PubMed  Google Scholar 

  155. White, R. A. Experimental and developmental studies of the fern sporophyte. Bot. Rev. 37, 509–540 (1971).

    Article  Google Scholar 

  156. Trotta, A. et al. Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere 65, 74–81 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Indriolo, E., Na, G., Ellis, D., Salt, D. E. & Banks, J. A. A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22, 2045–2057 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Nakamura, M. & Maeda, M. Isolation and culture of protoplasts from young sporophytes of Salvinia natans aseptically obtained by co-culture of female and male gametophytes. Plant Cell Tissue Organ Cult. 36, 237–242 (1994).

    Article  Google Scholar 

  159. Szypula, W. J., Mistrzak, P. & Olszowska, O. A new and fast method to obtain in vitro cultures of Huperzia selago (Huperziaceae) sporophytes, a club moss which is a source of huperzine A. Acta Soc. Bot. Pol. 82, 313–320 (2013).

    Article  CAS  Google Scholar 

  160. Hetherington, A. J., Emms, D. M., Kelly, S. & Dolan, L. Gene expression data support the hypothesis that Isoetes rootlets are true roots and not modified leaves. Sci. Rep. 19, 21547 (2019).

    Google Scholar 

  161. Benca, J. P. Cultivation techniques for terrestrial clubmosses (Lycopodiaceae): conservation, research, and horticultural opportunities for an early-diverging plant lineage. Am. Fern J. 104, 25–48 (2014).

    Article  Google Scholar 

  162. Jha, T. B., Mukherjee, S., Basak, A. & Adhikari, J. In vitro morphogenesis in Selaginella microphylla (Kunth.) Spring. Plant Biotechnol. Rep. 7, 239–245 (2013).

    Article  Google Scholar 

  163. Hohe, A. & Reski, R. From axenic spore germination to molecular farming. One century of bryophyte in vitro culture. Plant Cell Rep. 23, 513–521 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Finiuk, N. S. et al. Genetic transformation of moss Ceratodon purpureus by means of polycationic carriers of DNA. Cytol. Genet. 48, 345–351 (2014).

    Article  Google Scholar 

  165. Beike, A. K. et al. Clonal in vitro propagation of peat mosses (Sphagnum L.) as novel green resources for basic and applied research. Plant Cell Tissue Organ Cult. 120, 1037–1049 (2015).

    Article  PubMed  Google Scholar 

  166. Ishizaki, K., Nishihama, R., Yamato, K. T. & Kohchi, T. Molecular genetic tools and techniques for Marchantia polymorpha research. Plant Cell Physiol. 57, 262–270 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Alam, A. & Pandey, S. Marchantia polymorpha L.: an emerging model plant system to study contemporary plant biology – a review. Plant Sci. Today 3, 88–99 (2016).

    Article  Google Scholar 

  168. Flores-Sandoval, E., Dierschke, T., Fisher, T. J. & Bowman, J. L. Efficient and inducible use of artificial microRNAs in Marchantia polymorpha. Plant Cell Physiol. 57, 281–290 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. Sugano, S. S. et al. Efficient CRISPR/Cas9-based genome editing and its application to conditional genetic analysis in Marchantia polymorpha. PLoS ONE 13, e0205117 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Szövényi, P. et al. Establishment of Anthoceros agrestis as a model species for studying the biology of hornworts. BMC Plant Biol. 15, 98 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Enderlin, C. S. & Meeks, J. C. Pure culture and reconstitution of the Anthoceros-Nostoc symbiotic association. Planta 158, 157–165 (1983).

    Article  CAS  PubMed  Google Scholar 

  172. Cole, T. C. H., Hilger, H. H. & Goffinet, B. Bryophyte phylogeny poster (BPP). Preprint at PeerJ Preprints https://doi.org/10.7287/peerj.preprints.27571v3 (2019).

  173. The Pteridophyte Phylogeny Group. A community-derived classification for extant lycophytes and ferns. J. Syst. Evol. 54, 563–603 (2016).

    Article  Google Scholar 

  174. English, A. C. et al. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS ONE 7, e47768 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported by National Science Foundation grants IOS-1923011 and DEB-1831428 to F.-W.L., Swiss National Science Foundation grant nos. 160004, 131726 and 184826, the European Union’s Horizon 2020 Research and Innovation Programme (PlantHUB‐no. 722338), the Deutsche Forschungsgemeinschaft (German Research Foundation) under the Priority Programme ‘MAdLand—Molecular Adaptation to Land: Plant Evolution to Change’ (SPP 2237, 440370263), the Georges and Antoine Claraz Foundation, and the Forschungskredit and the University Research Priority Program ‘Evolution in Action’ of the University of Zurich to P.S. We thank K. Pryer and J. Banks for coining the term ‘seed-free plants’ and championing research in this area.

Author information

Authors and Affiliations

Authors

Contributions

P.S., A.G. and F-W.L. wrote and edited the manuscript.

Corresponding author

Correspondence to Péter Szövényi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks John Bowman, Yves van de Peer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szövényi, P., Gunadi, A. & Li, FW. Charting the genomic landscape of seed-free plants. Nat. Plants 7, 554–565 (2021). https://doi.org/10.1038/s41477-021-00888-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-00888-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing