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Human movement and environmental
barriers shape the emergence of dengue
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Understanding how emerging infectious diseases spread within and between
countries is essential to contain future pandemics. Spread to new areas
requires connectivity between one or more sources and a suitable local
environment, but how these two factors interact at different stages of disease
emergence remains largely unknown. Further, no analytical framework exists
to examine their roles. Here we develop a dynamic modelling approach for
infectious diseases that explicitly models both connectivity via human move-
ment and environmental suitability interactions. We apply it to better under-
stand recently observed (1995-2019) patterns as well as predict past
unobserved (1983-2000) and future (2020-2039) spread of dengue in Mexico
and Brazil. We find that these models can accurately reconstruct long-term
spread pathways, determine historical origins, and identify specific routes of
invasion. We find early dengue invasion is more heavily influenced by envir-
onmental factors, resulting in patchy non-contiguous spread, while short and
long-distance connectivity becomes more important in later stages. Our
results have immediate practical applications for forecasting and containing
the spread of dengue and emergence of new serotypes. Given current and
future trends in human mobility, climate, and zoonotic spillover, under-
standing the interplay between connectivity and environmental suitability will
be increasingly necessary to contain emerging and re-emerging pathogens.

The geographic containment of emerging infectious diseases (EIDs)
is a cornerstone of pandemic prevention and the basis of global
agreements, including the International Health Regulations1, that
emphasise the prevention of national and international disease
spread2. Despite this, little is known about what factors contribute to
the early spread of EIDs. Outbreaksmay end quickly due to stuttering
transmission or successful containment, resulting in limited

empirical data. Moreover, surveillance and diagnostics may not be
sufficiently developed to accurately measure dispersal in the early
phases of the outbreak3,4. Dengue is a vector-borne EID that has
gradually expanded to over 120 countries since the 1940s with nearly
4 billion people now at risk5,6. Dengue spread is uniquely well-
documented across Central and South America due to a continent-
wide Aedes aegypti eradication programme that established early
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surveillance systems across a diverse range of eco-epidemiological
settings and delayed widespread dengue virus (DENV) transmission
until the late 1980s7. The ultimate failure of this programme to
contain dengue expansion created a unique case study on which to
better understand modern infectious disease emergence.

Understanding how connectivity (mobility between invaded and
non-invaded areas) and environmental factors shape routes of emer-
gence could enable the prediction of future spread patterns. Imple-
menting mosquito control in at-risk but not-yet invaded areas could
contain the geographic expansion of dengue, emergence of newDENV
serotypes8, and enable early response to novel and re-emerging
arboviruses transmitted by a common vector, such as Zika, chi-
kungunya and yellow fever. Interest in containment has only become
more acute as dengue’s global burden has ballooned9, recent serious
Zika10 and yellow fever11 outbreaks have attracted global attention, and
new dengue vaccines12 and Wolbachia mosquito replacement
technologies13 offer hope of augmenting historically poorly effective
and environmentally problematic vector control options14.

Fewcountries have been able to reliablymeasure the expansionof
dengue over decadal timescales15,16, with limited historical data avail-
able for most other settings8,17. Predictivemodels that characterise the
relationships between dengue spread and its known drivers such as
temperature, rainfall, and connectivity offer the best chance of infer-
ring generalisable mechanisms from limited data and allow useful
insights for future containment strategies. While dynamic models of
single outbreaks have incorporated the dual effects of mobility and
environmental drivers18, current frameworks for modelling long-term
EID geographic spread have focussed on either connectivity19 or
environmental factors20, despite the spread of species and diseases
relying on a close interaction of connectivity and environmental
suitability21,22 for dispersal. Environmental factors may play a greater
role in directing early spread if the pathogen is already circulating
among highly connected areas, while connectivity may become more
important in the later stages of spread as marginally suitable areas
require repeated introduction to trigger an outbreak23. Modern
sequencing techniques have allowed the geographic expansion of
contemporary outbreaks to be reconstructed using phylogenetic
methods24, but sparsehistorical sampling limits our ability to infer sub-
national patterns, particularly pre-2000.

Here, we develop a dynamic modelling framework that integrates
awide range of environmental and humanmobility-based features.We
validate its ability to make predictions of dengue spread using data
from 8026 municipalities over a 25-year timeframe across Mexico and
Brazil, two of the highest dengue burden and most eco-
epidemiologically diverse countries in Latin America. We then com-
bine these models with phylogenetic analyses and historical outbreak
records to test candidate origins of dengue in Brazil in the 1980s and,
with the addition of climate change projections, to predict which areas
in both countries are likely to be at risk up to 2039—demonstrating
how our framework can characterise emergence and identify high-
impact areas where interventions could limit spread.

Results
Observed patterns of spread 1996–2020
Mexico and Brazil have both observed substantial geographic expan-
sion of dengue since the establishment of their national dengue sur-
veillance programmes (Fig. 1). Herewe define invasion as a total annual
incidence above a country-specific threshold of ≥2 cases per 100,000
residents per year in Mexico and ≥20 cases per 100,000 residents in
Brazil. These thresholds optimised the balance between identifying
areas that, once invaded, regularly report cases (and can thus seed
onward spread) with maximising the number of observed invasion
events (allowing more detailed patterns of spread to be resolved). At
these thresholds, we find that invaded municipalities report cases in
84% of post-invasion years in Brazil and 65% of post-invasion years in

Mexico, reflecting differences in the higher prevalence of low trans-
mission, epidemic areas in Mexico (Supplementary Fig. 1).

In 1996, only 16 municipalities (0.65%) in Mexico met our defini-
tion of invaded andwere spread across nine states in the southern part
of the country with the biggest concentration in the eastern Pacific
coastal state of Veracruz. The initial spread was minimal, but between
2000 and 2010, 965 municipalities were invaded with spread up the
western and then eastern coastlines until the spread slowed into the
2010s (Fig. 1A, B). By the end of 2019, 1350 of 2456 municipalities
nationally (55.0%) had exceeded our threshold for invasion.

In Brazil, dengue was present in all but two states (Rio Grande do
Sul and Santa Catarina) and the Federal District (Distrito Federal) by
the time national dengue surveillance was established in 2001. Since
then, the number of total invaded municipalities has steadily grown
from 549 (9.96%) in 2001 to 4229 (76.8%) in 2019 (Fig. 1C, D). Only
isolated regions of the western and northern Amazon and southern
states were defined as not having established DENV transmission by
the end of 2019. Consistent with our expectation, patterns of expan-
sion in both countries have been complex and spatially heterogeneous
with spread frommultiple sources that do not follow simple diffusion
or smooth climatological gradients (Fig. 1A, C).

Modelling spread 1996–2020
To reconstruct, understand and project these complex patterns of
spread we developed a temporally-dynamic, geospatial modelling
approach. Our two-fold approach first uses a hierarchical survival
(temporal) model to predict the total number of municipalities inva-
ded each year without any connectivity or environmental covariates.
Second, a machine-learning (geospatial) model trained on year-on-
year changes in invasion sources and a range of environmental and
connectivity features determines the spatial distribution of invaded
municipalities each year (“Methods” section).

Despite important heterogeneities, the annual total number of
invaded municipalities was well represented by covariate-free para-
metric survival models that gave better predictive performance than
more flexible spline-based approaches (Supplementary Fig. 2A, B).
Furthermore, our expanding window timeseries cross-validation fit-
ting showed that both the functional form and parameterisation (tra-
jectory) of these survival models coalesce relatively quickly after 4–5
years of fitting data are available (Supplementary Fig. 2B and D). This
suggests that the long-term total number of invaded municipalities
each year is relatively predictable and that the timing of saturation can
be estimated even early on in the invasion process.

By fitting a machine-learning model, we showed that the spatial
distribution of whichmunicipalities were invaded each year could also
be characterised and predicted (Fig. 2, Supplementary videos 1 and 2).
Consistent with previous disease mapping studies25,26, we found that
increasing geospatial model complexity was necessary to capture the
non-linear and interacting influence of climate and connectivity fea-
tures. Gradient-boosted decision trees (GBDT) were found to be the
most optimal method and gave substantial improvements over a
simple logistic regression (AreaUnder theCurve [AUC]Mexico: 0.87 vs
0.94 and Brazil: 0.75 vs 0.88, Supplementary Fig. 3) when evaluated
using a simple random train-test split of the year-to-year spread data
(“Naïve model”). When this spread model was initialised with the
observed invaded areas at the beginning of the timeseries (1996
Mexico, 2001 Brazil) and then simulatedwith an annual timestep up to
the year 2019 (“Simulation model”) it could predict observed invasion
date within ± 2 years for 75% of municipalities in Mexico and 81% in
Brazil with even performance across sub-national regions (Supple-
mentary Fig. 4A, B). However, predicting which municipalities would
be invaded over the next calendar year (i.e. as would be required for
forecasting) was more challenging with an expanding window time-
series cross-validation (“Hindcast model”) showing low sensitivity,
particularly in Mexico (mean 0.13 and 0.21 for Mexico and Brazil
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respectively, Supplementary Fig. 4C, D). This suggests that higher
volumes of data are required to accurately predict the spatial pattern
of spread and that while year-on-year patterns of spread can be sto-
chastic, the longer-term spread trend may be more deterministic and
predictable.

Despite the strong predictive performance of the combined
temporal and geospatialmodel (“spreadmodel”), some locations were
consistently difficult to predict. For Mexico, the model under-
predicted the rate of spread in southern parts of the country and in
theYucatanpeninsula andover-predicted spread in somecoastal cities
(Fig. 2C). This may be due to our model underpredicting the relatively
higher spread potential of sources in the year-round southern tropics.
In Brazil, the model over-predicted the uniformity of the spread of
dengue into the country’s interior which showed more heterogeneity
in observed values than predicted (Figs. 1C and 2D, F), possibly sug-
gesting the involvement of more fine-scale mobility patterns in these
regions.

A range of environmental and connectivity features predicted
invasion risk (Fig. 3). Nighttime temperature and connectivity metrics
based on municipality adjacency, long-term migration patterns, and
radiation movement models were among the most consistently
important features in both countries with higher values conferring
greater invasion risk (Fig. 3A, C, Supplementary Fig. 5). This is con-
sistent with the known constraints temperature places on the

altitudinal and latitudinal limits of Ae. aegypti mosquitoes27 and the
role frequent, commuter-style human movement plays in spreading
dengue between peri-urban and urban environments19,28,29. Despite the
climatological and epidemiological differences between the two
countries, the spreadmodel selected features and effects were similar.
Models trained on Brazilian data and used to predict dengue spread in
Mexico, and vice versa, only resulting in minor drops in predictive
performance (Supplementary Fig. 6), suggesting the process of den-
gue spread could generalise and could be used in areas where dengue
is currently emerging (e.g., Argentina and Chile).

Overall, the combined invasion risk of all environmental features
outweighed the combined risk from connectivity features for 56% of
invasion events inMexico and 57% in Brazil but importance changes of
time and space were observed. Environmental features contributed
more to invasion risk in the early years before connectivity features
became more predominant from ~2010 onwards in both countries as
dengue became more widespread (Fig. 3B, E). Connectivity features
tended to contribute more to invasion risk in large cities and sparsely
populated areas (Fig. 3C, F). Combined these results suggest that, like
the spread of invasive species22, the early spatial spread of dengue is
shaped by environmental factors that allow a spreading epidemic to
establish in certain areas, resulting in a patchy but broad distribution
(Fig. 1A, C). As more areas become invaded, connectivity becomes
more important to increase the frequency of introduction to isolated

Fig. 1 | Spatiotemporaldistributionof reporteddengue-invadedmunicipalities
(Mexico: 1995-2019, Brazil 2001–2019).Distribution of reported dengue-invaded
municipalities over space (A, C) and time (B,D) for Mexico (A, B) and Brazil (C,D).
A municipality is defined as invaded in the year it first exceeds an optimised
cumulative incidence threshold (2 cases per 100,000 residents inMexico, 20 cases

per 100,000 residents Brazil, see “Methods” section). Source of Administrative
boundaries: The Global Administrative Unit Layers (GAUL) dataset, implemented
by FAO within the CountrySTAT and Agricultural Market Information System
(AMIS) projects. Source data are provided as a Source Data file.
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Fig. 3 | Feature importance summaries. Feature importance of gradient-boosted
decision tree models for Mexico (A) and Brazil (D) using Shapley value summary
plots. Colours indicate the relative valuesof each feature (rows) and their impacton
model prediction (positive values = increased invasion risk). Features are ordered
bymean impact onmodel output with the top variable conferring themost impact.
Temp. temperature, Std dev standard deviation, env. veg. index environmental
vegetation index. Timeseries plots andmaps show if the contribution to themodel-

predicted invasion risk is greater for all environmental features or all mobility
features for the year in which each municipality was invaded for Mexico (B, C) and
Brazil (E, F). Source of Administrative boundaries: The Global Administrative Unit
Layers (GAUL) dataset, implemented by FAO within the CountrySTAT and Agri-
cultural Market Information System (AMIS) projects. Source data are provided as a
Source Data file.

Fig. 2 | Predicted year of dengue invasion. Predicted year of invasion for Mexico
(A–C) and Brazil (D–F) since the beginning of national dengue surveillance (Mex-
ico: 1995–2019, Brazil 2001–2019). A, D give raw municipality-level predictions
while B, E summarise spread trends using thin-plate splines. C, F show smoothed
trends of model residuals where brown colours show areas where dengue was

reportedbefore predicted (or never predicted- assigned the value −5) by themodel
and green vice versa. Source of Administrative boundaries: The Global Adminis-
trative Unit Layers (GAUL) dataset, implemented by FAO within the CountrySTAT
and Agricultural Market Information System (AMIS) projects. Source data are
provided as a Source Data file.
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areas or areas that may only be environmentally suitable at cer-
tain times.

Mapping routes of spread
A closer examination of the mobility networks associated with the
observed invasion of the largest cities (Figs. 4 and 5) suggests that
invasion is a multi-stage process. For Monterrey, Guadalajara, Brasília,
and São Paulo, multiple lower-density neighbouring areas or nearby
cities were invaded in the years before the city centre itself. In all cases,
connectivity via long-distance air routes was present for many years
before the invasion occurred. In Brazil, Rio de Janeiro (invaded in or
before 2001) showed a high degree of air and migration connectivity
with both Brasília and São Paulo but invasion did not occur until 2010
and 2014 respectively (Fig. 4A, B), with Cancún (invaded since 2001)
playing a similar role inMexico (Fig. 5A, B). This would suggest that for
major cities to be invaded, connectivity by air is necessary (as also
demonstrated by the geospatial model (Fig. 3A, D)) but not sufficient

for the invasion which instead requires the combined importation
pressure of both nearby and longer distance links (Figs. 4 and 5). The
finding is in contrast with observations from Thailand where epidemic
waves were observed to spread through large city hubs in a general
urban-to-rural direction29,30, but may reflect differing distributions of
the highest vulnerability areas within cities in Thailand, Mexico, and
Brazil. Invasion route predictions are challenging to validate with
prospective data collection (although modern phylogeographic
methods offer somepotential31,32). However, such predictions could be
used to concentrate mosquito control in high-vulnerability areas
within a city or in its suburbs—enabling more effective and efficient
containment than the current, reactive methods.

Reconstructing the origins of DENV spread in Brazil
By the time nationwide dengue surveillancewas established inBrazil in
the year 2000, DENV transmission was widespread (Fig. 1C), making it
impossible to directly observe the early geographic origins of DENV

Fig. 4 | Routes of dengue importation inmajormunicipalities, Brazil. Predicted
routes of dengue importation for select large cities in the past (A, B) and future
(C, D) in Brazil. Maps show all previously invadedmunicipalities (red) and themost
connected previously invaded municipality for each different type of human
movement included in the spread model for the year in which each city was (or is

predicted to be) invaded. The invaded municipality is shaded in black. Source of
Administrative boundaries: The Global Administrative Unit Layers (GAUL) dataset,
implemented by FAOwithin the CountrySTAT and AgriculturalMarket Information
System (AMIS) projects. Source data are provided as a Source Data file.
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spread in Brazil, unlike in Mexico (Fig. 1A). Several possible sources
have been suggested based on sporadic outbreak reports and phylo-
genetic analyses of DENV sequence data. Sporadic outbreak reports17

suggest four potential geographically distinct introductions that pre-
ceded wider outbreak reports in their general vicinity: Rio de Janeiro
(RJ) 1986, Fortaleza (CE) 1986, São Paulo (SP) 1990 and Manaus (AM)
1996 (Supplementary Fig. 7). While outbreaks were reported in Brazil
prior to these dates, beginning with the 1981-82 Boa Vista outbreak,
such outbreaks did not persist across multiple years, limiting their
ability to seedwider spread33,34. Phylogenies reconstructed fromDENV

sequences (Fig. 6 andSupplementary Table 5) suggestDENV serotype 1
(D1, genotype I, lineage BR1) was circulating inRio de Janeiro statewith
a slightly earlier estimated date of arrival of 1983 (95% Credible Inter-
val, CI 1982–1985). This analysis also estimates an independent intro-
duction (D1, genotype I, lineage BR2) into northern Brazil in the late
1990s (Roraima state, assumed Boa Vista, 1998 CI 1996–1999, Fig. 3A).
Unlike the sporadic outbreak reports, these phylogenies do not sup-
port an independent introduction to São Paulo state around 1990 and
show no sustained lineages in the Northeast region until the mid-to-
late 1990s (D1-BR1, D2-BR1 and D3-BR1, Fig. 3A).

Fig. 5 | Routes of dengue importation in major municipalities, Mexico. Pre-
dicted routes of dengue importation for select large cities in the past (A, B) and
future (C, D) in Mexico. Maps show all previously invaded municipalities (red) and
the most connected previously invaded municipality for each different type of
humanmovement included in the spreadmodel for the year in which each city was

(or is predicted to be) invaded. The invaded municipality is shaded in black. *
Zapopan municipality. ** Nezahualcóyotl municipality. Source of Administrative
boundaries: The Global Administrative Unit Layers (GAUL) dataset, implemented
by FAO within the CountrySTAT and Agricultural Market Information System
(AMIS) projects. Source data are provided as a Source Data file.
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Assuming the same factors and processes that drove dengue
spread 2001–2019 also acted similarly prior to 2001, we can use our
spread model to predict the historical expansion of dengue in Brazil.
We can also test the relative likelihood of different candidate sources
of DENV introduction by comparing the predicted spread of dengue
from the simulation model initialised with different sources with the
observed distribution in 2001. Simulating spread 1983–2001 following
a single introduction in Rio de Janeiro did lead to spread in multiple
parts of the country, but with a bias towards cities on the East and
North coasts and limited spread inland, in contrast with the observed
distribution in 2001 (Fig. 1C). Adding an additional introduction to
Fortaleza in 1986 improved the pattern in the Northeast, but reco-
vering inland spread was only possible when a further introduction to
Manaus in 1996 was included (Fig. 6B, C). Adding additional or dif-
ferent combinations of sources did not improve model fit to the
observed distribution in 2001 (Fig. 6B), suggesting a limited number of

introductions are sufficient to explain the widespread rapid expansion
of dengue in Brazil.

Consistent with phylogenetic analyses, our spread model sug-
gests there was no sustained introduction to São Paulo around 1990
(as suggested by historical outbreak reports). However, our spread
model does support an introduction in theNortheast in themid-to-late
1980s, showing how our spread models can combine and overcome
gaps in epidemiological and sequence data (e.g., we only found 26
DENV sequences in the Northeast region prior to 2000). Although we
were able to reconstruct the broad pattern of historical invasion in
Brazil (Supplementary video 2), we were unable to predict invasion to
many smaller isolated inland municipalities leading to lower model
sensitivity (accuracy 0.85, sensitivity 0.31, specificity 0.91) when eval-
uated on the observed distribution in 2001. While these invasions
could have occurred due to further unobserved international intro-
ductions, these municipalities have no obvious connections outside

Fig. 6 | Predictedhistorical expansionofdengue inBrazil (1983–2001).Plausible
origins of dengue introduction are identified fromphylogenetic (horizontal clades)
and sporadic outbreak reports (vertical lines) records in (A). The fit of the spread
model to the observed distribution in the year 2001 when initiated with different
combinations of these sources is shown in (B) (only best-performing model with

1–5 sources shown) with predictions of the best fitting model up to 2001 shown in
(C). NPV negative predictive value, PPV positive predictive value. Source of
Administrative boundaries: The Global Administrative Unit Layers (GAUL) dataset,
implemented by FAOwithin the CountrySTAT and AgriculturalMarket Information
System (AMIS) projects. Source data are provided as a Source Data file.
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Brazil and may instead suggest that other forms of human movement
not accounted for in our models (e.g., multi-stop bus or truck traffic35

or fluvial travel, particularly in the Amazon region) may have been
more important for dengue spread prior to 2001.

More broadly, this independent evidence from DENV sequence
data also served to validate two key assumptions of our dengue spread
model. First, once introduced, DENV lineages persist for a long time
(10+ years) and present a continual threat of exporting risk to new
areas. Second, at least after 2001, introductions ofnovelDENV lineages
occur (or are first detected) in areas that already have sustained DENV
transmission, justifying the focus on domestic spread for these set-
tings and suggesting human immune dynamics may affect suitability
for the persistence of novel DENV genotypes36 as has been observed in
other longitudinal studies of DENV genotype replacement.

Predicting future spread between 2020 and 2039
The simulationmodel was then used to project which of the remaining
uninvaded areas are at risk of invasion between 2020 and 2039. Risk
over this time period is determined by a continuation of the spread
process, but also changing climatic and environmental factors that can
encourage or limit transmission in different areas6. We account for
changing environmental factors by projecting temperature, vegeta-
tion, and precipitation features based on the latest Coupled Model
Intercomparison Project Phase 6 (CMIP6) study37 (Supplementary
Information 1.4 and Supplementary Fig. 8).

We predict that dengue will continue to undergo significant
expansion between 2020 and 2039 with the percentage of

municipalities invaded increasing from 76.8% to 97.2% (95%CI
97.0%–97.4%) in Brazil and 55.0%–81.5% (CI 80.4%–82.7%) inMexico. In
Mexico, the spread is predicted to be primarily inland into the high-
altitude central plateau with 91.0% of future invasions municipalities
with an average elevation over 1000m (Fig. 7A, B, Supplementary
videos 1 & 2). This will include spread to the last few remaining dengue-
free large cities inMexicowith the areas around Tijuana, bordering the
USA in the far north, expected to be invaded between 2027 and 2030
and the first invasions into metropolitan Mexico City between 2038
and 2039 (Fig. 5C, D). Invasion into Tijuana is expected as a con-
tinuation of a gradual spread up the Gulf of California with the highest
invasion risk from the neighbouring municipalities of Ensenada and
Mexicali as well as the more distance regional centres of La Paz and
Guadalajara (Fig. 5C). The first invasions into the Mexico City metro-
politan area are expected to occur when longer distance connectivity
(Cancún) combines with links to other more proximal regional cities
(Aguascalientes and Puebla, Fig. 5D). In Brazil, the majority (60.7%) of
areas invaded 2020–2039 will be in the South region with the more
isolated areas of the state of Santa Catarina and Rio Grande do Sul
being the last to be invaded (Fig. 7C, D). With strong connections with
São Paulo in combination with a gradual advance of dengue down the
southern Brazilian coastline, the two biggest cities in southern Brazil
(Porto Alegre and Curitiba) are expected to be invaded in 2022 (CI
2022–2022) and 2024 (CI 2024–2025) respectively (Fig. 4C, D).Despite
frequent introductions, Porto Alegre rarely experienced sustained
transmission andhadaDENVseroprevalenceof less than 1% as recently
as 201528, however, in the first five months of 2022, the city

Fig. 7 | Predicted future spread of dengue in Mexico and Brazil 2020–2039.
A, C show the spatial distribution while B and D show the breakdown of invaded
municipalities over timewith respect to elevation inMexico and geographic region
in Brazil respectively. Error bars in B and D show the 95% credible intervals for the
total number of municipalities invaded per year for each year from 2020 onwards

based on an ensemble of five temporal survival models. Source of Administrative
boundaries: The Global Administrative Unit Layers (GAUL) dataset, implemented
by FAO within the CountrySTAT and Agricultural Market Information System
(AMIS) projects. Source data are provided as a Source Data file.
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experienced its first major outbreak with 3850 notified cases38 (27
cases per 10,000 residents), signalling the first year in which the area
exceeded our threshold for invasion.

The pattern of invasion risk resulting from a combination of
proximal and distal sources is expected to continue with the invasion
of smaller close by cities pre-empting the arrival of dengue (Figs. 4C, D
and 5C, D). This cumulative effect of importation pressure from mul-
tiple sources allows the last few remaining biogeographical barriers to
be overcome.

These predictions suggest a more extensive and rapid expansion
of dengue in Mexico and Brazil than previously thought. Previous
predictions of future dengue risk are derived from models that con-
sider environmental change, but not connectivity nor the non-linear,
dynamic, dependent nature of the underlying spread process6,39,40.
Environment-only, ecological nichemodelsmay over-attribute dengue
absence to environmental features, particularly as the areas that are
currently least environmentally suitable (e.g., dry, high altitude or
higher/lower latitude) are, for now, poorly connected with areas of
active transmission. This could be problematic for settings such as
Mexico and Brazil where the distribution of dengue is rapidly
expanding, exposing areas previously judged to be unsuitable to new
levels of invasion pressure, especially given the finding that con-
nectivity becomes increasingly important over time (Fig. 3B, E). The
predictions from these spread models represent a “business as usual”
scenario for dengue control efforts that are assumed to stay at current
levels, and thus they could be used to simulate and optimise different
containment strategies to limit future spread more effectively.

Discussion
Our analyses showed that the expansion of dengue in Mexico and
Brazil follows consistent and predictable pathways that are shaped by
an interaction between the environmental suitability of the destination
and connectivity with potential sources. By using models that account
for these drivers we showed that the modern spread of dengue in
Brazil could be explained by just three introductions to Rio de Janeiro,
Fortaleza andManaus between 1983 and 1996, identify likely proximal
and distal routes of invasion for specific cities, and project the timing
of future spread into highland regions of Mexico, including Mexico
City, and southern Brazil. This represents the first time, to our
knowledge, that spatial models of disease spread have informed ori-
gins, pathways, and future projections of an emerging infectious
disease.

These maps and models can be used to develop early warning
systems and containment strategies for dengue, related arboviral dis-
eases and, with adaptation, other EIDs41. Our country cross-validation
(Supplementary Fig. 6) suggests thatourmodels could immediately be
used to predict the spread of dengue in other countries, including
those where emergence is in earlier stages, although re-fitting to at
least five years of high-resolution data on spread would improve pre-
dictive performance (Supplementary Fig. 2). Another immediate
application of these models could be to predict the spread of new
DENV serotypes because serotype switching is commonly associated
with dengue outbreaks and more severe disease outcomes42,43. Here
we focus on the initial invasion of dengue, but comparisons between
this model and models with more complex covariates for immunity
based on past serotype prevalence could be used to test different
hypotheses about how between-serotype dynamics affect the emer-
gence of hyperendemicity. Due to shared vector species, our models
could also give insights into the current emergence and re-emergence
of Zika, chikungunya, and yellow fever in the Americas as well as
suggest how coordinated and targeted interventions could contain the
spread of these arboviruses to a more limited range than dengue.
Interest in such targeted containment strategies has recently been
boosted with successful trials of new interventions such as vaccines12

and the release of Wolbachia-invaded mosquitoes13. Disruption to

domestic and international human movement in response to the
COVID-19 pandemic revealed how dependent modern DENV trans-
mission is on connectivity, with an unexpected near-global decline in
incidence in 202044 and local elimination in somenon-endemic areas45.
Targeting mosquito control to high-risk spread routes at both origin
anddestination could achieve similar levels of containment and should
be studied as a future arbovirus containment strategy. The modelling
approach developed here could also be adapted to understand the
spread of other EIDs by re-selecting relevant features and collecting
high-resolution spatiotemporal data on disease spread. Seven of the
eight WHO-listed priority emerging pathogens46 require a vector to
spread or depend on interaction with a non-human reservoir. Emer-
gence risk will, therefore, depend on both environmental suitability
and connectivity necessitating modelling frameworks such as that
presented here. Adaptation of these frameworks to past outbreak data
could improve estimates of locations and times of the initial unob-
served zoonotic spillover which, in turn, could improve surveillance at
the animal-human interface and pandemic preparedness47.

Our results are subject to limitations with the data and model
assumptions that may affect the applicability of some of the results.
The proportion of DENV infections reported varies between andwithin
countries and over time48. While we saw no evidence of national-level
changes in surveillance policy increasing observed invasion rates
(Fig. 1B, D), surveillance gaps and biases may explain some dis-
crepancies between observed and predicted arrival times. We also
assumed the continual presence of dengue in a municipality once it
exceeds our invasion threshold. Changing immunity and the arrival of
new serotypes will change the infectivity of a municipality over time,
but previous studies in Southeast Asia have suggested that, despite
thesedifferences, transmission is surprisingly synchronous over broad
geographic areas49. Further analysis on the spread of epidemic waves
disaggregated by the magnitude of the epidemic in source locations
and seasons would be of interest since we did not consider intra-year
variations in spread processes50. Due to the limited availability and
comparability of international dengue data sources51, we were also
unable to include international importation into our spread models
and thus assume that geographic spread occurs primarily from
domestic sources. While international importation has been shown to
be an important driver of DENV serotype and lineage replacement34,
such introductions mostly occur (or are most commonly detected) in
areas where DENV has already been circulating, often for many years,
suggesting such model developments would be more important for
predicting serotype spread than, as we do here, the first arrival of
dengue.

In a time of unparalleled increases in human mobility, climate
change, and zoonotic spillover it has never been more important to
understand how these factors interact to shape EID emergence.
Uncontained EIDs, including dengue, provide a valuable opportunity
to understand disease spread with the ultimate goal of designing
better strategies to contain future pandemics.

Methods
Dengue spread data
Dengue case data was obtained at the municipality level (2nd admin-
istrative level) for Brazil and Mexico. Municipalities had a median size
of 355 square kilometres (interquartile range 161–898) and a median
population in 2010 of 12,257 (interquartile range 5414–27,863). For
Brazil, annual total dengue cases were extracted for 5570 munici-
palities for each year for which national data were available (January
2001–December 2019) from the Notifiable Diseases Information Sys-
tem (SINAN), obtained via the Ministry of Health Information Depart-
ment (DATASUS)15,52,53. Total annual dengue cases included suspected
and confirmed cases froma range of healthcare settings, and each case
had an associated infection time defined as the month of first symp-
toms. For Mexico, annual total dengue cases for 2456 municipalities
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were extracted for each year 1995–2019 from the Sistema de Vigilancia
Epidemiológica de Dengue via the Instituto Nacional de
Transparencia16. This database contains a mixture of case definitions
with only Dengue Haemorrhagic Fever (DHF) reported 2000–2008,
combined dengue and DHF 1995–1999 and 2009–2015, and combined
non-severe dengue, dengue with warning signs and severe dengue
2016–2019. These definitions include a non-specified mixture of sus-
pected and confirmed cases4,54. To estimate comparable case numbers
in the period 2000–2008, when only DHF cases were available at a
municipality level, we divided these case counts by the year-specific
national proportion of all dengue cases that were classified as “dengue
haemorrhagic fever” as reported by Dantés et al. 54. For Brazil, case
location was defined by the “estimatedmunicipality of infection”while
for Mexico the municipality in which the case was reported was
assumed to be themunicipality of infection.We assume the absenceof
reporting from a municipality in any particular year was indicative of
the absence of dengue cases. Case counts were converted to incidence
rates using the 2010 census population estimates for both countries.

Climate data
A range of time-varying, gap-filled, remotely-sensed climate datasets
generated by the Malaria Atlas Project55 were downloaded via Google
Earth Engine (https://developers.google.com/earth-engine/). These
included annual mean and standard deviation of enhanced vegetation
index (EVI), day and night land-surface temperature (LST), tasselled
cap brightness (TCB) and tasselled cap wetness (TCW), and annual
mean Landcover classification between the years 2000 and 2015. Each
of these features has been shown previously to be experimentally and
observationally associated with DENV transmission risk due to their
influence on mosquito survival, population size, human contact rate,
and DENV incubation rates6,27. All features were aggregated from their
original 5 km× 5 km resolution to the municipality scale using
population-weighted averages based on Worldpop 2015 UN-adjusted
estimates56. Latitude, longitude, and distance between municipalities
were calculated from the centroid of the municipality.

Connectivity estimates
To measure the degree of connectedness between dengue-invaded
source municipalities and potential vulnerable destinations we used
seven different estimates of human mobility between municipalities
that cover a spectrum of human movement types. Simple distance-
based measures included: (1) great circle distance between munici-
pality centroids and (2) municipality adjacency (binary yes/no).
Movement model-based measures included (3) structured gravity and
(4) radiation models57 that take into account the influence of uneven
population distributions. We also include quantitative measures of
human movement with (5) land-surface travel time58 to represent
landscape and infrastructural heterogeneities, (6) disaggregated flight
data from the global database of the International Air Transport
Association (www.iata.org) and (7) between-state census migration
data59 to represent long-termmovement flows which are also likely to
be correlated with visiting friends and relative traffic. Further details
on movement data sources and processing are available in Supple-
mentary Information Section 1.1.

Defining invasion
To classifymunicipalities as invaded or not invadedweexplore a range
of case count and incidence-based thresholds. We assume that inva-
sion is non-reversible and that once a municipality is classified as
invaded, it has the potential to seed invasions in other areas. Our
definition of “invaded” encompasses endemic areas with year-round
sustained DENV transmission, but also epidemic areas where frequent
large autochthonous outbreaks pose a risk for seeding further spread
even if they are not sustained locally over the long term. Our choice of
threshold for defining invasion aimed to balance sensitivity and

specificity (i.e., detect a high number of invasion events, but also
support the assumption that invadedmunicipalities continue to report
ongoing transmission in post-invasion years). To optimise this
threshold, we simulated a range of case and incidence-based thresh-
olds and calculated: (i) the number of municipalities defined as inva-
ded over the timeseries and (ii) the percentage of years in which
dengue cases are reported in post-invasion years (Supplementary
Fig. 1). The country-specific invasion threshold was chosen based on
the value that lies closest to the most optimal point ([100,100], Sup-
plementary Fig. 1).

Constructing a spread dataset
Once invasion criteria were established, we constructed a spread
dataset by separating municipalities into invaded or not-yet invaded
categories by the end of each calendar year (Mexico: 1995–2019, Brazil
2001–2019). Year-specific environmental characteristics for each
municipality were calculated and combined with year-specific metrics
for each human movement type. Each human movement feature
summarised the flux between each vulnerable municipality and its
most closely connected DENV-invaded municipality with the list of
invaded municipalities being updated annually. Collinearity between
features was assessed by creating correlograms of Pearson correla-
tions using Harrell’s method60, with a threshold of p < 1 × 10−6 to
account for multiple hypothesis testing. Features with Pearson corre-
lations greater than 0.75 (or less than −0.75) were considered for
removal. Based on this process, four sets of collinear pairs emerged,
with one feature in each pair removed from the final model. We
removed latitude rather than the standard deviation of night-time
land-surface temperature because meteorological features have a
direct relationship with mosquito growth rates27, Aedes suitability
rather than mean night-time land-surface temperature due to the
former not varying over time, great circle rather than friction surface
movement due to the latter’s closer link to human movement data58,
and finally gravity model movement rather than radiation model
movement due to previous infectious disease spread studies that have
suggested the superiority of radiation models due to their closer
alignment with high-frequency movements19,57. All features were
centred and scaled to have a mean of 0 and a standard deviation of 1
prior tomodel training and testing. A full list of features included in the
final model is given in Fig. 3.

Spread model structure
Our approach is designed to overcome three main challenges in
modelling EID spread: (i) its drivers aremultifactorial and complex, (ii)
temporal label imbalance (few invaded at the beginning, few unin-
vaded by the end) and (iii) that spread is spatially conditional with the
probability of invasion dependent on the invasion status of other
areas. To address these we formulate a hierarchical spread model
where we: (i) usemachine-learningmethods to capture non-linear and
interacting feature effects6 in a geospatial model that predicts annual
invasion probabilities for each uninvaded municipality, (ii) fit an
independent survival model (temporal model) to the national number
of municipalities invaded to estimate the total number of invasions
that should occur in any given year, and (iii) implement spread model
prediction in a dynamic simulation framework where newly invaded
areas and features are updated annually to capture the temporal
dependence in the spread process.

The geospatial model aims to predict the probability of invasion
of municipality i based on climate features within municipality i and
connectivity to other invaded municipalities. We considered a wide
range of supervised, statistical machine-learning models including:
basic logistic regression (LR), penalised logistic regressions (lasso,
ridge, and elastic net regression), k-nearest neighbours (KNN), deci-
sion tree (DT), random forest (RF), gradient-boosted decision trees
(GBDT, XGBoost implementation), and amultilayer perceptron (MLP).
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All models were developed using the Tidymodels (v 0.1.0) R package61,
which provides a unified framework for machine-learning workflows.
To compare the relative performance of machine-learning methods
for the geospatial model we first run a preliminary repeated naïve
cross-validation of the spread data. We split municipality-year data-
points for each country randomly into ten independent 75% training
and 25% testing sets with no stratification for time or location. We
tuned hyperparameters for each model by running a grid search over
the hyperparameter space in combination with 5-fold cross-validation
on the training set (Supplementary Information Section 1.2). Once
optimal hyperparameters were found (i.e., those that maximised AUC
over the 5-folds), we evaluated model performance on the held-out
test sets. We considered three metrics commonly applied to classifi-
cation problems: area under the receiver operating characteristic
curve (AUC) tomeasure discrimination, sensitivity (SN), and specificity
(SP). For the initial model comparison stage, we set the classification
threshold by minimising the absolute value of the difference between
SN and SP on the training set.

The temporal model aims to predict the total number of munici-
palities that are invaded in any given year. To estimate this we fitted a
range of parametric survival models (exponential, Weibull, gamma,
log-normal, Gompertz, log-logistic, and generalised gamma) and, for
comparison, a non-parametric one-knot spline survival model to the
annual number of municipalities invaded for each country using the
flexsurv R package62. The spread model combines the geospatial and
temporal sub-models by taking the annual invasion probabilities from
the geospatial model, ranking them from highest to lowest then
defining the top n municipalities as invaded where n is the annual
number of expected invadedmunicipalities from the temporal model.
To identify the optimal functional form for the temporalmodel at each
time point we compared spread models with different functional
forms over an expanding window timeseries cross-validation. The
training data window began in 2003 in Brazil and 2000 in Mexico
expanding until 2016 for both countries to ensure both training and
testing datasets included at least three years of data. Predictive per-
formance between models was assessed by root mean squared error
between the predicted and observed number of invaded munici-
palities each year.

Assessing the predictive performance of the combined
spread model
The predictive performance of the combined spread model was
assessed through three different cross-validation experiments that
assessed different aspects of the models predictive ability42,63. In each
of these, the geospatial and temporal models are re-fit to the training
data (althoughmachine-learningmodel selection and hyperparameter
optimisation were not repeated). First a naïve 75% training 25% testing
cross-validation was performed that split spread data randomly and
did not account for the temporal dependence of the data but is more
comparable to conventional machine-learning prediction approaches
and provides a useful comparator for other cross-validation approa-
ches. Second, a “hindcast” expanding window timeseries cross-
validation fitting procedure was implemented. In this, we succes-
sively attempted to predict which municipalities would be invaded in
year t given the patterns of spread in all years before year t and given
which areas were invaded in year t – 1. This gradually expanded the
amount of training data informing our model predictions and did not
carry forward correct or incorrect predictions as the observed inva-
sions status of eachmunicipality was re-assigned each year. Finally, we
ran a longer-term “simulation” timeseries cross-validation where the
model was fit to all years of data for each country, but only initialised
with the invaded area information at the beginning of the timeseries
(2001 for Brazil, 1995 for Mexico). Step-wise annual predictions were
then made up until 2019 with predicted invasion events carried for-
ward year-to-year. This tested the ability of the model to reconstruct

longer-term patterns of spread given a long-term average estimate of
the factors driving spread and defined origins, and this approach was
most relevant for testing the ability of the model to extrapolate to
times outside the data date ranges. The simulation approach also
allowed us to evaluate the year of arrival prediction residuals (i.e., year
invaded – year predicted). We evaluated model performance across
these setups in terms of year-over-year AUC, SN, and SP as well as
visually with calibration and channel plots (Supplementary Fig. 4). A
comparison between the naïve, hindcast, and simulation approaches
evaluates the generalisability of the underlying spread process across
different timescales.

To assess the generalisability of the fitted models for making
predictions in different countries we conducted a between-country
cross-validation using the simulation approach (i.e., trained onMexico
spread data and tested on Brazil spread data given the initial invaded
municipalities in Brazil and vice versa).

Interpreting the fitted model
To gain some insights into how different climate and connectivity
featureswere linked to spread risk in the geospatialmodelwecompute
Shapley values64,65 of the model fit to data from all years under the
simulation approach. The Shapley values indicate how different values
of features influence model predictions, but remain a simplification of
their effect due to complicated interactions between features in an
XGBoost model. To assess the relative role of climate and connectivity
in driving dengue invasion, we calculate the combined contribution to
model-predicted invasion risk of all movement and all environment
features for each municipality in the year in which it was invaded.

To estimate the geographic sources of some key invasion events
since 2000, we examined the human movement data at a more gran-
ular level for invasion events of Brasília (2010), São Paulo (2014),
Monterrey (2005) and Guadalajara (Zapopan municipality, 2009). We
included all connectivity features as the geospatial model fit a clear
positive relationship with each feature (as assessed by Shapley values,
Fig. 3). We then mapped the most connected municipality to the
invaded area, as determined by each different human movement
feature.

Projecting historical spread in Brazil to identify the origins of
the spread
Because dengue spread throughout Brazil before the establishment of
nationwide surveillance the geographicorigins of spread areunknown.
To estimate patterns of dengue spread before the year 2000 we
assembled a list of candidate geographic origins from phylogenetic
analyses and outbreak reports. We then tested the likelihood of each
candidate source by initialising our spread model with each source,
simulating spread up to the year 2001, and then assessing correlation
with the observed distribution of invaded municipalities in 2001.

To identify candidate locations and years of introduction, we
examine a database of 8309 epidemiological records and 10,444DENV
genome sequences. Using a previously described dengue occurrence
database17, we identified early clusters of reported cases identified Rio
de Janeiro (1986), Fortelaza (1986), Riberão Preto (1990), and Manaus
(1996) as possible geographically distinct sources of sustained spread
(Supplementary Fig. 7). To obtain estimates from genomic data we
downloaded publicly available DENV genome sequences (≥8000 base
pairs globally ≥1000 for Brazil) from GenBank/NCBI66 and selected
sequences that included country of origin (and region for Brazilian
sequences) and year of collection (n = 10,444). Sequence alignments
were performed with minimap2 v2.2467 and gofasta v1.1.068. An initial
globalmaximum-likelihood (ML) treewas inferred and used to identify
the clades corresponding to the main Brazilian DENV genotypes using
IQTREE269, then ML phylogenies for each genotype were inferred
separately. Visual inspection of these genotype ML trees identified
nine main phylogenetic lineages for which we then estimated the
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spatiotemporal origins using a Bayesian phylogeographic framework
in BEAST v.1.10.570. All lineages with an origin date pre-2000 were
considered as candidate origin sources. Further details on the identi-
fication of candidate sources from outbreak reports and phylogenetic
analyses are available in Supplementary Information Section 1.3.

Each candidate source was then used to initialise the spread
model (fit to all data under the “simulation” approach) which was then
simulated up to the year 2001 and then evaluated. All combinations of
candidate sources were also tested to represent scenarios where the
modern spread of dengue in Brazil is the product of multiple inde-
pendent introductions. The likelihood of different candidate sources
and their combinations was expressed as an improvement in fit to the
observed distribution in 2001 relative to a spread model initialised
with the earliest candidate source (Rio de Janeiro 1983) as evaluated by
AUC, sensitivity, specificity, positive predictive value and negative
predictive value.

Projecting future spread
For both countries, we projected the future spread until 2039. We
initialised our models with the known invaded municipalities in 2019
and simulated the spread for each successive year. To account for
changing mobility and climate features in the future and in the past
when projecting historical spread we project values based on the
national trend in the most relevant matched feature from either the
Tier-1 CMIP6 future projection scenarios37 for climate features or an
equal weight of population and GDP trends for mobility features.
Further details on this projection method are available in Supple-
mentary Information Section 1.4 with summary outputs in Supple-
mentary Fig. 8. To estimate uncertainty in the projected invasion date,
we repeat the future simulations with low, medium, and high spread
rate scenarios. These are based on the 97.5, 50 and 2.5 centile spread
rate predictions from an ensemble of the predictions from the five
temporal models fit to the most recent data in the timeseries cross-
validation (i.e., 2001–2019, 2001–2018, 2001–2017, 2001–2016 and
2001–2015).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Dengue case count data is publicly accessible for Brazil from the Minis-
tério da Saúde’s DATASUS system (http://tabnet.datasus.gov.br/cgi/
deftohtm.exe?sinanwin/cnv/denguebr.def, http://tabnet.datasus.gov.br/
cgi/tabcgi.exe?sinannet/cnv/denguebr.def, http://tabnet.datasus.gov.br/
cgi/deftohtm.exe?sinannet/cnv/denguebbr.def) and is available for
Mexico from the Sistema de Vigilancia Epidemiológica de Dengue which
can be accessed by contacting the Instituto Nacional de Transparencia
(https://home.inai.org.mx). Processed versions of both datasets are pro-
vided in the study repository. Dengue virus sequence data was obtained
from GenBank/NCBI (https://www.ncbi.nlm.nih.gov/genbank/). Climate,
environmental and surface travel time covariates are freely available from
the Malaria Atlas Project (https://data.malariaatlas.org/maps) and can be
downloaded via Google Earth Engine (https://developers.google.com/
earth-engine/). High-resolution population data and state-level migration
estimates can be freely obtained fromWorldPop (https://www.worldpop.
org). Flight data is not freely available but can be purchased from IATA.
Processed versions of all datasets used in analyses are provided in the
study Figshare repository: https://doi.org/10.6084/m9.figshare.
22047905.v2. Source data are provided with this paper.

Code availability
All analyses were performed in the computing software R (version
4.0.1)71 and Rstudio72 (v2022.12.0) using the following packages:
geosphere73 (v1.5-18), spdep74 (v1.2-7), tidyverse75 (v1.3.0), Hmisc60

(v4.7-2), tmap76 (v3.3), tidymodels61 (v0.1.0), flexsurv62 (v2.2.0),
SHAPforxgboost77 (v0.1.0). An archived version of all the code used for
in this paper is available in the following Zenodo repository: https://
doi.org/10.5281/zenodo.10890182. Larger processed variable files for
environmental and humanmovement datasets have been deposited in
the following Figshare repository: https://doi.org/10.6084/m9.
figshare.22047905.v2.
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