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Revealing the spatial nature of sublattice
symmetry

Rong Xiao1 & Y. X. Zhao 2

The sublattice symmetry on a bipartite lattice is commonly regarded as the
chiral symmetry in theAIII class of the tenfoldAltland–Zirnbauer classification.
Here, we reveal the spatial nature of sublattice symmetry and show that this
assertion holds only if the periodicity of primitive unit cells agrees with that of
the sublattice labeling. In cases where the periodicity does not agree, sub-
lattice symmetry is represented as a glide reflection in energy–momentum
space, which inverts energy and simultaneously translates some kbyπ, leading
to substantially different physics. Particularly, it introduces novel constraints
on zero modes in semimetals and completely alters the classification table of
topological insulators compared to class AIII. Notably, the dimensions corre-
sponding to trivial and nontrivial classifications are switched, and the non-
trivial classification becomesZ2 instead ofZ. We have applied these results to
several models, including the Hofstadter model both with and without
dimerization.

Symmetry-protected topological band theory has been one of the
main focuses of condensedmatter research for around two decades1–3.
For the tenfold Altland–Zirnbauer symmetry classes involving time-
reversal symmetry (T), particle-hole symmetry (C), and chiral sym-
metry (Π), various periodic topological classification tables have been
produced4–14, which played a seminal role in organizing and discover-
ing novel topological phases.

The original paper by Altland and Zirnbauer concerned the
Bogoliubov–de Gennes (BdG) Hamiltonians for superconductors4. In
this context, Π was naturally introduced as a combination of T and C,
namely Π =CT for the algebraic completeness. More strictly, Π = isCT,
where s =0, 1 and the front coefficient is is assigned to ensure the
convention (Π)2 = 1. For the one-particle Hamiltonian H, the particle-
hole symmetry C anti-commutes with H, so the chiral symmetry Π is a
unitary operator that anti-commutes with the one-particle Hamilto-
nian H,

fH,Πg=0: ð1Þ

Meanwhile, on a bipartite lattice consisting of two equal sublattices A
and B, the sublattice symmetry assigns ± 1 for A-sites and B-sites,
respectively, and therefore can be represented as S = diag(1A, − 1B) (see

Fig. 1). If hopping occurs only from one sublattice to the other, the
sublattice symmetry S anti-commutes with the one-particle Hamilto-
nian H as well

fH,Sg=0: ð2Þ

Hence, the sublattice symmetry S and chiral symmetry Π usually are
not distinguished in the literature3–5,7–14, and the two terms, “sublattice”
and “chiral”, have been used interchangeably. Furthermore, the
topological classification for sublattice symmetry is commonly
believed as a completely solved problem, since it is understood that
the topological classification tables of chiral symmetry can be directly
applied to crystals with sublattice symmetry.

In this work, we reveal an essential difference between chiral
symmetry Π and sublattice symmetry S. In the BdG Hamiltonian, Π as
the combination of T and C is an internal symmetry, since T and C are
both internal symmetries. However, genericallyA and B sublattices are
spatially separate on a bipartite lattice (see the two simple examples in
Fig. 1), and therefore the sublattice symmetry S has an inherent spatial
nature.

Considering the spatial nature, we can classify sublattice sym-
metries into two categories. If the periodicity of the primitive unit cells
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agrees with that of the A–B labeling of lattice sites, the sublattice
symmetry falls into class I, as demonstrated by the
Su–Schrieffer–Heeger (SSH) model in Fig. 1a15. Otherwise, it falls into
class II, where the 1Dmodelwith uniformnearest neighborhoppings in
Fig. 1b serves as a simple example.

Only class-I sublattice symmetry adheres to the theory of chiral
symmetry, while class-II sublattice symmetry is represented as a glide
reflection in energy–momentum space, leading to completely differ-
ent topological physics.

There are two scenarios to consider for class-II sublattice sym-
metry. In the first scenario, each primitive unit cell comprises an odd
number of states. The symmetry constraint results in 4n + 2 zero
modes with n =0, 1, 2,⋯ , meaning that the minimum number of zero
modes is two. Therefore, to achieve an insulator, we need to examine
the second scenario where each primitive unit cell contains an even
number of states. In this case, the number of zero modes is 4n
with n =0, 1, 2,⋯ .

Consequently, the topological classification table differs sig-
nificantly from that of chiral symmetry. It becomes nontrivial in even
dimensions and trivial in odd dimensions, whereas the table for chiral
symmetry is nontrivial in odd dimensions and trivial in even dimen-
sions. The nontrivial classification is now given asZ2 rather thanZ for
chiral symmetry.

Sublattice symmetry is a pervasive feature observed in various
quantum materials16–21, as well as in appropriately designed artificial
crystals such as photonic and acoustic crystals, periodic mechanical
systems, cold atoms in optical lattices, and periodic-electric arrays22–35.
Thus, ourwork not only enhances our understanding of a fundamental
aspect of sublattice symmetry-protected topology but also holds sig-
nificant potential for wide applications in topological physics.

RESULTS
Two classes of sublattice symmetries
Let us start with enunciating the two classes of sublattice symmetries.

For a lattice model, once the primitive unit cell is chosen, the
translation symmetry is described by unit translation operator Li,
whichmaps each unit cell to its neighbors. If the translation symmetry
is also preserved by the sublattice bipartition, translation operators
commute with the sublattice operator [Li, S] = 0. Then, the sublattice
symmetry is in class I with eachunit cell having the sameA-B labelingof
states (see Fig. 1a). Class-I S can be effectively regarded as an internal
symmetry in the k space due to [Li, S] = 0, and therefore adheres to all
topological classifications for chiral symmetry Π.

Meanwhile, it is also ubiquitous that some translation operators
exchange A and B sublattices. Then, a unit cell and its neighbor related
by such a translation operator have opposite A–B labeling (see Fig. 1b),
and the sublattice symmetry is in class II. For class-II S, at least one
translation operator, say Lx, anti-commutes with S,

fLx ,Sg=0: ð3Þ

This is because Lx inverts the sign assigned by S on each state, i.e.,
LxSL

�1
x = � S (see Fig. 1b).
If more than one translation operators anti-commute with S, one

can always recombine these translation operators Li to form transla-
tion operators L0i, where only one of L0i anti-commutes with S. Impor-
tantly, the two sets of translation operators, Li and L0i, correspond to
the same primitive unit cells. For instance, if {Lx, S} = {Ly, S} = 0, we can
make the recombination Ld = LxLy with [Ld, S] = 0. Then, Lx and Ld form
another set of translation operators for the same primitive unit cells.

Thus, without loss of generality, to analyze the bulk topology, we
assume Lx as the only translation operator that anti-commutes with S
hereafter.

Two representations of symmetry algebra
To analyze the implications of Eq. (3) on band structures, we introduce
two natural conventions to define the k space, primitive unit cells and
double unit cells, which correspond to two equivalent representations
of the symmetry algebra in Eq. (3).

In the first convention, the k space is defined from the primitive
unit cells, i.e., the primitive translation operator Lx is represented by
Lx = e

ikxa with a the lattice constant. As Eq. (3) can be written as
SLxS−1 = − Lx, we obtain SeikaS−1 = − eika = ei(k+π/a)a. This leads to a sig-
nificant consequence: S translates kx to kx +π/a with π/a a half reci-
procal lattice constant. Hereafter, we set a = 1 for simplicity, and
accordingly

S : kx 7!kx +π: ð4Þ

Let US be the k-space unitary operator of S. The symmetry identity
{H, S} = 0 is represented in the k space by

USHðpÞðkx ,
�kÞUy

S = �HðpÞðkx +π,
�kÞ, ð5Þ

where �k denotes the remaining components of k except for kx. One
may formallywrite S=USLx

π in k spacewithLx
π the translation operator

of kx by π. Then, {H, S} = 0 is manifestly equivalent to Eq. (5).
The consequence of Eq. (5) in band structure is that for each

eigenstate ∣uðkx ,
�kÞ� with energy EðkÞ, the transformed state

US∣uðkx ,
�kÞ� satisfies

HðpÞðkx +π,
�kÞUS∣uðkx ,

�kÞ�= � EðkÞUS∣uðkx ,
�kÞ�: ð6Þ

Hence, the band structure represented in the ðE,kÞ space features a
glide reflection symmetry, i.e., it is invariant under the coordinate
transformation,

ðE,kx ,
�kÞ 7! ð�E,kx +π,

�kÞ: ð7Þ

The energy–momentumglide reflection symmetry is demonstrated by
the single band illustrated in Fig. 2a.

In the second convention, we double the unit cells, i.e., each unit
cell consists of two neighboring primitive unit cells along the x direc-
tion. The translationoperator that transforms eachdoubledunit cell to
its nearest neighbor is the square L2x , and therefore the kx coordinate is
defined by L2x = e

ikx �2a. To simplify the notation, we set 2a = 1. Since

Lx

a

b

Fig. 1 | Models for two classes of sublattice symmetries. A and B sublattice sites
are denoted by solid and hollow circles, respectively, and the signs ± at lattice sites
are assigned by the sublattice symmetry. The primitive unit cells are indicated by
the dashed loops. a The SSH model. The sublattice labeling and the unit cells have
the same periodicity. b The 1D lattice with uniform nearest neighbor hopping
amplitudes. The period of unit cells is a half of that of the sublattice labeling. The
unit-cell translation Lx exchanges two sublattices and therefore inverts ± signs.
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½S,L2x �=0, S can be represented in the usual way as

US = τz � 1N , ð8Þ

where N is the number of states in a primitive unit cell and τ’s are the
Pauli matrices acting in the sublattice space. As usual, fHðdÞðkÞ,USg=0
leads to

HðdÞðkÞ= 0 QðkÞ
QyðkÞ 0

� �
τ

, ð9Þ

with Q(k) an N ×N matrix.
It is significant to note that for the doubled unit cells the primitive

translation operator Lx acts as a nontrivial unitary operator in the k
space36, and takes the general form,

LðdÞ
x =

0 RðkxÞ
eikx RyðkxÞ 0

� �
τ

, ð10Þ

where R(kx) is a unitary operator and the concrete expression can be
found in Supplementary Note 1. The commutation relation
½LðdÞ

x ,HðkÞ�=0 leads to

QyðkÞ= eikx RyðkxÞQðkÞRyðkxÞ: ð11Þ

Then theHamiltonian canbe transformed to beUHðdÞðkÞUy = τx � hðkÞ
with hðkÞ= eikx=2RyðkxÞQðkÞ being Hermitian. More details are given in
the section of reducedHamiltonian in the doubled unit cell convention
in Methods.

Two conventions correspond to two equivalent representations
of the symmetry algebra in Eq. (3). The energy band structure of
HðdÞðkÞ can be obtained from folding that of HðpÞðkÞ. A general
descriptionofband folding canbe found in ref.36. Below, let us proceed
toderive thephysical consequences for both gapless andgapped cases
using the two representations, respectively.

Zero-mode numbers
For the implications of class-II sublattice symmetry on metals or
semimetals, it is sufficient to consider 1D systems without loss of

generality, and it is convenient to work under the convention with
primitive unit cells. Here, we adopt the terminology “zero mode”,
which refers to a crossing point of the energy bands at zero energy. For
dD systems, a zero mode will extend into a (d − 1)D Fermi surface
across the Brillouin zone.

The symmetry algebra in Eq. (3) can lead to strong constraints on
zeromodes because of the resultant glide reflection symmetry in band
structure [see Eqs. (6) and (7)]. There are two elementary scenarios to
consider.

In the first, a single band E0ðkÞ preserves the glide reflection
symmetry, i.e.,

E0ðk +πÞ= � E0ðkÞ: ð12Þ

If E0ðk0Þ>0, then E0ðk0 +πÞ= � E0ðk0Þ<0. Then, generically there are
2n + 1 zero modes in the interval [k0, k0 +π) with n = 0, 1, 2,⋯ . Fur-
thermore, the energy curve in the interval [k0 +π, k0 + 2π) is deter-
mined by that in [k0, k0 +π) through the glide reflection symmetry (see
Fig. 2a). Consequently, in each 2π period, generically there exist 4n + 2
zero modes.

In the second, a pair of bands EaðkÞ and E�aðkÞ together preserve
the glide reflection symmetry, i.e.,

Eaðk +πÞ= � E�aðkÞ: ð13Þ

If the two bands do not cross, then the band structure has a gap and
there are no zero modes (see Fig. 2b). But, if the two bands have one
crossing point at k0∈ [0,π), there exists another crossing point at
k0 +π∈ [π, 2π) because of Eq. (13) (see Fig. 2c). As each crossing point
corresponds to two zero modes, the number of zero modes is a mul-
tiple of four, namely 4n.

From the two elementary scenarios, we can conclude the follow-
ing results for the aforementioned two cases of class-II sublattice
symmetry. i) Each primitive unit cell contains an odd number of states.
Since there exist odd unpaired single bands, the number of zero
modes is equal to 4n + 2. ii) Each primitive unit cell contains an even
number of states. Since there exist even unpaired single bands, the
number of zero modes is equal to 4n.

This canbe explicitly verified for two1D latticemodels in Fig. 3a, b.
In Fig. 3c, d, weplot the energy spectrumof twomodels. For themodel
in Fig. 3a, each unit cell consists of three sites, and therefore, it should
have 4n + 2 zeromodes according to our theory. This is verified by the
band structure plotted in Fig. 3c, where we observe six zero modes,
namely, n = 1. For the model in Fig. 3b, the unit cell contains two sites.
Indeed, we observe eight zero modes in the band structure in Fig. 3d,
consistent with the symmetry constraint of 4n zero modes.

Moreover, the constraints on zero modes can be applied to
understand zero modes in the famous Hofstadter model with
Φ = 2πp/q flux per plaquette37,38. Here, p and q are coprime integers.
The two cases of q being even and odd correspond precisely to the
presence of even and odd sites in each unit cell, respectively. Hence,
odd (even) q leads to 4n + 2 (4n) zero modes. More details about the
Hofstadter model are given in the Supplementary Note 2.

Topological classification and invariants for insulators
Let us proceed to consider the topological classification of the insu-
lators with class-II sublattice symmetry. As previously emphasized, an
insulator exists only if each unit cell contains even states.

To derive the topological classifications, it is more convenient to
work with the doubled unit cell convention. In this convention, the
symmetry algebra can be encapsulated as

fLðdÞ,Sg=0, ½LðdÞ�2 = eikx , S2 = 1,

fS,HðdÞðkÞg=0, ½LðdÞ,HðdÞðkÞ�=0:
ð14Þ

a

b c

Fig. 2 | Two elementary scenarios for zeromodes. a A single band preserving the
glide reflection in the (E,k) space with two zero modes. The band is plotted in the
left panel. Its energy-inverted image is plotted in the right panel andmarked in light
blue in the left panel for reference. The energy-inverted image is related to the
original band by k↦ k +π. bA pair of gapped bands preserving the glide reflection.
c A pair of bands preserving the glide reflection with four zero modes.
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Based on the algebraic relations, the derivation of the topological
classification table, namely Table 1, has been provided in the section of
topological classifications in Methods.

Compared to the topological classifications for class AIII or class-I
sublattice symmetry, we observe from Table 1 two significant differ-
ences: i) The classification for class-II sublattice symmetry is nontrivial
in even dimensions, while it is nontrivial in odd dimensions for class
AIII; ii) The nontrivial classification for class-II sublattice symmetry
corresponds to Z2 rather than Z for class AIII.

To understand why the classification is trivial in odd dimensions
for class-II sublattice symmetry, it is noteworthy that under the dou-
bled unit cell convention the winding numbers ofQ(k) in Eq. (9) vanish
for all odd dimensions as a consequence of the algebraic relations (14).
The derivation details are provided in the section of vanishing winding
numbers in Methods.

The Z2 topological invariants in even dimensions originate from
the symmetry constraint (5), namely the glide reflection symmetry in
the ðE,kÞ space. The topological invariants can be formulated under
both conventions. Here, we demonstrate the formulation under the
primitive unit cell convention. The essential idea of formulating these
topological invariants can be illustrated in two dimensions.

For HðpÞðkx ,kyÞ, let us consider the Berry phases γ y
± ðkxÞ of con-

duction and valence bands for a 1D ky-subsystem H1D
kx
ðkyÞ :

=HðpÞðkx ,kyÞ with given kx. Here, the Berry phases are defined as
γ y
± ðkxÞ=

H
dky a

y
± ðkx ,kyÞwith aμ

± : = iTrAμ
± , and the Berry connections

Aμ
± are defined as ½Aμ

± �ab = ± ,a,k
�

∣∂μ∣± ,b,k
�
from the conduction and

valence states ∣± ,a,k
�
, respectively.

We consider the half Brillouin zone (BZ) τ1/2 with kx∈ [ −π, 0) as
illustrated in Fig. 4a. For the boundary 1D systems H1D

0 and H1D
�π , we

have USH1D
0 Uy

S = �H1D
�π from Eq. (5). Hence, the valence states ofH1D

�π

and the conduction states of H1D
0 are related by the unitary transfor-

mation US, and therefore γ y
�ð�πÞ= γ y

+ ð0Þmod 2π. It is well known that
the sum of γ± for a 1D insulator is equal to zero modulo 2π, i.e.,
γ y
+ ð0Þ+ γ y

�ð0Þ=0mod 2π. Hence, we can get γ y
�ð�πÞ+ γ y

�ð0Þ=
0mod 2π. Further considering the general identity

R
τ1=2

d2k f�ðkx ,kyÞ+
γ y
�ð�πÞ � γ y

�ðπÞ 2 2πZ from Stokes’ theorem39, we can formulate the
Z2 topological invariant as

ν =
1
2π

Z
τ1=2

d2k f �ðkx ,kyÞ+
1
π
γ y
�ð�πÞmod 2: ð15Þ

Here, f �ðkx ,kyÞ : = ∂kx ay
� � ∂kyax

� is the Abelian Berry curvature
of valence bands ofHðpÞðkx ,kyÞ. The above reasoning has justified that
the formula is valued in integers. In fact, its integer value is gauge
invariant only modulo 2, since a gauge transformation transforms
γ y
�ð�πÞ to γ y

�ð�πÞ+2πn with n the winding number of the gauge
transformation.We note that topological invariants of analogous form
appeared previously but with completely different symmetry origins
for quantization39,40.

If we can derive the Berry phase γ y
�ðkxÞ as a smooth function of kx,

the topological invariant is nontrivial if andonly if γ y
�ðkxÞ crossesπodd

times40–42. Therefore, for an insulator with nontrivial ν = 1, there must
be in-gap edge states located at each edge parallel to the x direction. A
geometric interpretation of the Z2 topological invariant (15) and its
implications to the bulk-boundary correspondence have been pre-
sented in the section of bulk-boundary correspondence in Methods.

The 2D topological insulators can be demonstrated by dimerized
Hofstadter models. Specifically, we consider the dimerized Hofstadter
model with Φ =π/2 (see Fig. 4c). The topological invariant (15) can be
read off from the flow of the Berry phase γ y

�ðkxÞ (see Fig. 4b). Since it
crosses π once in kx∈ [ −π, 0), the Z2 topological invariant (15) is
nontrivial. The band structure of the model on a slab geometry with

Table 1 | Topological classification table of insulators for two
classes of sublattice symmetries

Class Dim 1 2 3 4 5 6 7 8
Alg

I [S, Lx] = 0 Z 0 Z 0 Z 0 Z 0

II {S, Lx} = 0 0 Z2 0 Z2 0 Z2 0 Z2

“Dim” and “Alg” stand for spatial dimensionality and algebraic relation, respectively. The class-IS
is equivalent to the chiral symmetry in class AIII in the tenfold Altland–Zirnbauer symmetry
classes.

......

...
...

ttt
J1

J2
teteeiiΦΦ

tete2i2iΦΦ

te3iΦ

Φ ΦΦ

ΦΦ

ΦΦΦ

Φ

ΦΦ

ΦΦ

ΦΦ

τ1/2

a b

c d

Fig. 4 | Topological invariant and topological edge states. a The Berry flux
through one half of the BZ and the Zak phases of the 1D subsystems with kx = ±π

and0.bTheBerry phase γ(kx) as a functionof kx, which crossesπonce inonehalf of
the BZ. c Schematic of the dimerized Hofstadter model withΦ =π/2. J1 and J2 stand
for the two alternatively distributed hopping amplitudes along the y direction.
tdenotes the hopping amplitude along the xdirection, andΦdenotes themagnetic
flux per plaquette. d The band structure of the model in c with the slab geometry.
The edge states at two boundaries are marked in blue and red, respectively. The
parameter values are chosen as t = J1 = 1.0 and J2 = 2.0.

t

-t

Jλ
t
J

λ... ... ... ...

a b

c d

Fig. 3 | Two lattice models of semimetals. a A chain with three sites in each unit
cell and a flux of π threading each plaquette. b A chain with two sites in each unit
cell and without flux. t and J stand for the nearest-neighbor hopping amplitudes
along the x and y directions, respectively. λ denotes the long-range hopping
amplitude. All hopping amplitudes are real, and positive and negative ones are
marked in blue and red, respectively. The primitive unit cells are surrounded by the
dashed loops. c, d plot the band structures of the models with t = J = λ = 1.0 in (a)
and (b), respectively. There are six and eight zeromodes in (c) and (d), respectively.
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the finite y dimension is plotted in Fig. 4d. We observe a pair of
topological edge states appearing on the two edges, respectively.
Notably, the spectrum of each edge preserves the sublattice sym-
metry, since it is invariant under the energy–momentum glide reflec-
tion symmetry in Eq. (7). Additionally, the edge bandmay be detached
from the bulk bands, depending on the parameter values and
boundary termination of the model.

Alternatively, theZ2 topological invariants (15) canequallywell be
formulated in the doubled unit cell convention, where a reduced
Hamiltonian h(k) naturally arises with “twisted” boundary conditions
hðkx + 2π,

�kÞ= � hðkx ,
�kÞ (see the section of reducedHamiltonian in the

doubled unit cell convention in Methods). Instead of the half BZ, we
just apply all the rationale on the whole BZ for h(k).

The 2D topological invariant (15) can be readily generalized to any
higher even dimensions 2n by replacing the Berry curvature and Berry
phase by their higher dimensional counterparts, namely the nth Chern
character and Chern–Simons form, respectively43. For more details,
see the section of topological invariants in Methods.

DISCUSSION
In conclusion, by revealing the intrinsic spatial nature of sublattice
symmetry, we discovered the class-II sublattice symmetry. Unlike the
class-I sublattice symmetry, the class-II sublattice symmetry cannot be
regarded as chiral symmetry in the tenfold symmetry classes. It is
represented as the glide reflection symmetry of the energy band
structure, which reverses the energy and translates one momentum
coordinate by half of the reciprocal lattice constant. As a result, it
introduces novel constraints on zero modes and leads to a different
topological classification table.

Class-I and class-II sublattice symmetries are distinguished by
whether the spatial period of the hopping amplitudes is the same
as that of the bipartition of sublattices. Just like class-I sublattice
symmetry, class-II sublattice symmetry ubiquitously exists in crystals
as long as the hopping within the same sublattice is ignorable.
Therefore, our work has wide applicability for the analysis of crys-
talline condensed matter and the design of artificial crystals, con-
sidering the distinct properties of class-II sublattice symmetry. For
instance, the dimerized Hofstadter models studied in our work are
important models in condensed matter physics, but their symmetry
structure revealed here has long been unrecognized. Various meta-
materials have rapidly expanded with their high tunability to simu-
late crystalline topological phases. Our revealing of the spatial nature
of sublattice symmetry provides a structuring principle for meta-
materials and paves the way for realizing these novel topological
phases.

Based on the fundamentals established here, one can further
explore how the class-II sublattice symmetry can greatly enrich
symmetry-protected topological phases. It can diversify symmetry
classes by including time-reversal symmetry, particle–hole symmetry,
and crystal symmetry. Therefore, it provides an extended framework
for exploring topological phases, similar to what has been done with
class-I sublattice symmetry. Moreover, since sublattice symmetry has
played a significant role in the development of non-Hermitian topo-
logical physics44–48, it is interesting to explore the implications of our
theory for non-Hermitian topological phases.

Methods
Reduced Hamiltonian in the doubled unit cell convention
In this section, we show that the symmetry algebra in Eq. (14) leads to
essentially the same symmetry constraint as Eq. (5).

Due to the translation symmetry in Eq. (10), the Hamiltonian can
always be transformed to be

UHðdÞðkÞUy = τx � hðkÞ: ð16Þ

Here, UðkxÞ=diagðeikx=2RyðkxÞ, 1NÞ and

hðkÞ= eikx=2RyðkxÞQðkÞ, ð17Þ

where Eq. (11) has been used. It is significant to notice that h(k) is
Hermitian, h†(k) = h(k), and hence can be regarded as a “reduced
Hamiltonian”. However, the reduced Hamiltonian h(k) is not periodic
for kx, but satisfies the “twisted” boundary conditions

hðkx + 2π,
�kÞ= � hðkx ,

�kÞ: ð18Þ

Thus, comparing the twoequations (18) and (5), we arrive at essentially
the same symmetry constraint in both conventions: Translating the
(reduced) Hamiltonian by a certain length along kx inverts it. It is this
symmetry constraint that naturally gives rise to the Z2 topological
invariants in even dimensions (see Table 1).

Vanishing winding numbers
In onedimension, for theHamiltonian in Eq. (9)withdoubledunit cells,
one might still try to calculate the winding number of class AIII fol-
lowing the conventional prescription

ν = 1
2πi

H
dk ½DðkÞ��1∂kDðkÞ, ð19Þ

with DðkÞ= detQðkÞ. It is straightforward to derive from Eq. (17) that
detQðkÞ= dethðkÞdet½e�ik=2RðkÞ�. detQðkÞ is completely determined
by the translation operator rather than the concrete form of the
Hamiltonian, which already indicates that Q(k) is topologically trivial.
By using the concrete form of R(k), we have detRðkÞ= eiMk and there-
fore detQðkÞ= dethðkÞ, which is a real-valued function since h(k) is
Hermitian and hence gives a zero winding number. Here, we have
assumed that there are M A-sites and M B-sites in each
primitive unit cell.

In higher odd dimensions 2n + 1 with n ≥ 1, theZ-invariant in class
AIII is given by

W ½~Q�=Cn

Z
BZ

trð~Qd ~QyÞ
2n+ 1

, ð20Þ

with Cn = − n!/[(2n + 1)!(2πi)n+1]. Here, ~Q is given by the usual definition
of flattened Hamiltonian as ~QðkÞ=RðkxÞ~hðkÞe�ikx=2 where ~h is Hermi-
tian unitary with ~h

2
= 1. Using the well-known identity W[UV] =W[U] +

W[V], we have

W ½~QðkÞ�=W ½RðkxÞ�+W ½~hðkÞe�ikx=2�: ð21Þ

The first term on the right-hand side vanishes because R only depends
on kx. Recalling that W ½~h� vanishes for ~h is Hermitian unitary, the
vanishing of W ½~hðkÞe�ikx=2� can be understood.

Under the convention with primitive unit cells, the Hamiltonian
HðpÞ cannot be converted into an anti-diagonal form, and therefore the
definition ofwinding number for classAIII does nothold anymore.One
might still intend to calculate the Zak phase γ of valence bands, which
turns out still be trivial.

With the doubled unit cells, the winding number ν is well defined
as above and γ =πνmod 2π. The Zakphase is invariant under doubling
the unit cells or folding the BZ. Since ν = 0, γ must be trivial. Alter-
natively, one can directly prove γ =0mod 2π with primitive unit cells.

When in the presence of energy gap at half-filling, among the 2M
bands, there areM conductionbands andM valence bands,which form
M pairs according to the sublattice symmetry [see Eq. (6)]. Hence, we
may label the M pairs by (n, − n) with n = 1, 2,⋯ ,M. Then, Eq. (6)
implies the following identity for the Berry connection of each energy
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band

anðk +πÞ=a�nðkÞ, ð22Þ

with an(k) = 〈un(k)∣i∂k∣un(k)〉. The Berry phase of the half-filling gap is

γ =
XM

n = 1

I
dk a�nðkÞ=

XM

n=�M

Z π

0
dk anðkÞ, ð23Þ

which can be determined by

γ = i ln
det½UðπÞ�
det½Uð0Þ� : ð24Þ

where UðkÞ= ð∣u�MðkÞ
�
, � � � ,ju+MðkÞÞ. Moreover, class-II sublattice

symmetry ensures det½Uðk +πÞ�= det½UðkÞ�, indicating a trivial Berry
phase, γ =0.

Topological classifications
The topological classification table in Table 1 exhibits strong topolo-
gical classifications in the sense of strong topology in the tenfold
topological classifications. That is, the Brillouin torus Td is reduced to
the Brillouin sphere Sd as the base space of the topological classifica-
tion. The standard spherical coordinates are (ϕ, θ1,⋯ , θd−1) with
ϕ∈ [0, 2π) and θi∈ [0,π].

We now consider a general scenario, namely the topological
classification of gapped Hamiltonians HdðkÞ with k∈ Sd under the
symmetry constraints,

fHdðkÞ,Γdi ðkÞg=0: ð25Þ

Here, fΓdi ðkÞ,Γdj ðkÞg= 2δijλiðkÞ with λi(k) being functions from Sd to C,
and i = 1, 2,⋯ ,M labels the set of symmetries.

The dD Hamiltonian can be mapped to the (d + 1)D Hamiltonian,

Hd + 1ðk,θdÞ= sin θdτ1 �HdðkÞ+ cosθdτ2 � 1 ð26Þ

with θd∈ [0,π]. SinceHd + 1ðk,θdÞ is constant at θd =0 and θd =π,Hd + 1

is based on Sd+1. The (d + 1)D Hamiltonian satisfies the symmetry con-
straints

fHd + 1ðkÞ,Γd + 1
μ ðkÞg=0: ð27Þ

Here, μ =0, 1,⋯ ,M, and

Γd + 1
0 = τ3 � 1, Γd + 1

i = τ1 � Γdi ðkÞ: ð28Þ

For the previous M symmetry operators, we still have
fΓd + 1

i ðkÞ,Γd + 1
j ðkÞg=2δijλiðkÞ. More importantly, the emergent chiral

symmetry Γd + 1
0 is required, which anti-commutes with all Γd + 1

i , namely
fΓd + 1

0 ,Γd + 1
i ðkÞg=0, and satisfies ðΓd + 1

0 Þ2 = 1.
Furthermore, given any (d + 1)D Hamiltonian Hd + 1ðkÞ with the

above symmetry constraints, we canmap it to the (d + 2)DHamiltonian,

Hd + 2ðk,θd + 1Þ= sinθd + 1Hd + 1ðkÞ+ cosθd + 1Γ
d + 1
0 , ð29Þ

wherek∈ Sd+1. TheHamiltonian is basedon Sd+2 because it is constant at
θd+1 = 0 and π. Now, Γd + 1

0 is broken, and the others are preserved with
Γd + 2
i = Γd + 1

i . The symmetry algebra is restored to the case of dD
Hamiltonian.

Notably, the two maps (26) and (29) are invertible for homotopy
equivalence classes. Recall that two Hamiltonians are in the same
homotopy class if and only if one canbe deformed to the other with all
symmetries preserved and the energy gap never closed. Thus, recur-
sively applying the two maps leads to a sequence with the same

topological classifications. Moreover, all even (odd) dimensions cor-
respond to the same symmetry algebra, and therefore are in the same
symmetry class. This underlies the so-called twofold Bott periodicity
for class A and AIII in the tenfold topological classifications, and also
for the class-II sublattice symmetry in Table 1.

Let us return to a detailed elucidation of our problem. To fit the
above construction, we recombine the symmetry operators as

ΓdðkxÞ= iSLðdÞ, S, ð30Þ

both of which anti-commute with the Hamiltonian. Here, the super-
script “d” denotes the space dimensionality and “(d)” indicates the
doubled unit cell convention. Below, we explicitly present the two
maps for our classification problem.

d = 1 Let us start with considering the 1D Hamiltonian H1DðkxÞ. It
satisfies the symmetry constraint,

fH1DðkxÞ,Γ1DðkxÞg=0, ð31Þ

with ½Γ1DðkxÞ�
2
= eikx .

d = 2 Then, the 1D Hamiltonian H1DðkxÞ can be mapped to the 2D
Hamiltonian,

H2Dðkx ,θ1Þ= sinθ1τ1 �H1DðkxÞ+ cosθ1τ2 � 1 ð32Þ

under the symmetry constraints

fH2DðkxÞ,Γ2DðkxÞg=0, fH2DðkxÞ,Sg=0: ð33Þ

Here, Γ2D(kx) = τ1⊗ Γ1D(kx) and S= τ3⊗ 1, with ½Γ1DðkxÞ�
2
= eikx and S2 = 1.

Importantly, the two symmetry operators anti-commutewith eachother,

fΓ2DðkxÞ,Sg=0: ð34Þ

d = 3 With the constant chiral symmetry operator S, the 2D
Hamiltonian can be mapped to the 3D Hamiltonian,

H3Dðkx ,θ1,θ2Þ= sinθ2H2Dðkx ,θ1Þ+ cos θ2S: ð35Þ

With Γ3D(kx) = Γ2D(kx), the symmetry constraint is given by

fH3DðkxÞ,Γ3DðkxÞg=0: ð36Þ

Recursively applying the two maps, we observe that all even
dimensions correspond to class-II sublattice symmetry. The topologi-
cal classifications are equal to that of d = 1. Without loss of generality,
we assume the concrete symmetry operator,

Γ1DðkxÞ=
0 1N

eikx 1N 0

� �
: ð37Þ

The flattened Hamiltonian is restricted to the general form by the
symmetry,

eH1DðkxÞ=
AðkxÞ �ie�ikx=2BðkxÞ

ieikx=2BðkxÞ �AðkxÞ

" #
, ð38Þ

where A and B are Hermitian matrices with

Aðkx + 2πÞ=AðkxÞ,Bðkx +2πÞ= � BðkxÞ: ð39Þ

Moreover, the condition ½eH1DðkxÞ�
2
= 1 is equivalent to

A2 +B2 = 1, ½A,B�=0, ð40Þ
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which in turn just means the matrix U(kx) =A(kx) + iB(kx) is unitary.
Then, the topological classification of the 1D system is equivalent to
the classification of unitary-matrix valued functions under the twisted
periodic condition,

Uðkx + 2πÞ=UyðkxÞ: ð41Þ

It is well known that such functions have a Z2 classification, corre-
sponding to the parity of the winding number in a 4π period. Thus,
class-II sublattice corresponds to the Z2 classification in even
dimensions.

To see the trivial classification in odd dimensions, we can con-
struct another sequence by the twomaps. Then, the corresponding 1D
system is just the Hamiltonian with an additional chiral symmetry
S = τ3⊗ 1N to the Hamiltonian (38). The consequence of S simply cor-
responds to the elimination of A. Then, the Hamiltonian is fully char-
acterized by the Hermitian unitary matrix distribution B(kx) with
B(kx + 2π) = − B(kx), which corresponds to trivial classification.

Topological invariants
In this section, we present the general form of the Z2 topological
invariants for class-II sublattice symmetry. Recall that the Berry con-
nection of valence bands is defined as

½AμðkÞ�ab = h�,a,kj∂μj � ,b,ki, ð42Þ

which gives the Berry curvature,

F μν = ∂μAν � ∂νAμ + ½Aμ,Aν �: ð43Þ

To formulate the general form of topological invariants we introduce
the differential forms of the Berry connection and curvature,

A=Aμdkμ,F =
1
2
F μνdkμ ^ dkν : ð44Þ

Note that F =dA+AA, where the product of two forms is implicitly
assumed as the wedge product. Then, the nth Chern character is given
by

ChnðF Þ= 1
n!

Tr
iF
2π

� �n

ð45Þ

which is a 2n form. The Chern–Simons form is given by

Q2n�1ðA,F Þ= 1
ðn� 1Þ!

i
2π

� �n Z 1

0
dt TrAF ðn�1Þ

t ð46Þ

whereF t = tdA+ t2AA. Note thatQ2n�1ðA,F Þ is a 2n − 1 form43. Locally,
the Chern character is the total derivative of the Chern–Simons form43,
i.e.,

ChnðF Þ=dQ2n�1ðA,F Þ ð47Þ

Accordingly, the Z2 invariant in 2n dimensions is formulated as

ν2n =
Z
τ1=2

ChnðF Þ � 2
Z
∂τ +

1=2

Q2n�1ðA,F Þmod 2: ð48Þ

Here, τ1/2 is the half BZ, namely τ1/2 = [ −π, 0] × T2n−1 and ∂τ +
1=2 is the

boundary T2n−1 with kx = −π. Note that the two boundaries ∂τ ±
1=2 have

opposite Chern–Simons integrals modulo 2 as they are related by the
class-II sublattice symmetry.

We note that the previously used identity W[UV] =W[U] +W[V]
can be understood as a consequence of the gauge transformation of

the Chern–Simons integral. The Chern–Simons integral,

CS2n+ 1½A�=
Z
T2n+ 1

Q2n+ 1ðA,F Þ, ð49Þ

transforms as

CS2n+ 1ðAU Þ � CS2n + 1ðAÞ=W ½U� ð50Þ

under the gauge transformation43,

AU =UAUy +UdUy: ð51Þ

Then, we consider the gauge transformation UV. It can be imple-
mented directly as

CS2n+ 1ðAUV Þ � CS2n+ 1ðAÞ=W ½UV �: ð52Þ

Alternatively, we first implement the gauge transformation V on AU,
which leads to

CS2n+ 1ðAUV Þ � CS2n+ 1ðAU Þ=W ½V �, ð53Þ

and then successively implement U according to Eq. (50). Thus, we
observe that W[UV] =W[U] +W[V].

Bulk-boundary correspondence
It is important to elucidate the bulk-boundary correspondence of
topological invariants as has been done for the tenfold topological
classifications49. Here, we present a geometric picture for the Z2

topological invariant (15) in two dimensions. This pump interpretation
connects the bulk topological invariant to the edge states.

The BZ of HðpÞðkÞ can be partitioned into two parts, τ1=2 ∪ �τ1=2,
with τ1/2 = [ −π, 0) × [ −π,π). Due to the sublattice symmetry constraint
(5), only one half of the BZ is independent. Specifically, knowing the
band structure over τ1/2, we canmapout the band structureover τ1/2 by
the sublattice symmetry. Therefore, it is sufficient to focus on τ1/2.

Since ky is periodic, we can write τ1/2 = [ −π, 0) × S1 as a cylinder.
Over the fundamental domain τ1/2 = [ −π, 0) × S1, we can always choose
a complete set of continuous states ∣unðkÞ

�
, which are periodic along

ky. Then, the corresponding Abelian Berry connection aμ
�ðkÞ is also

periodic along ky. Accordingly, we can compute the Berry phase γ y
�ðkxÞ

that is continuous from kx = −π to 0. From Stokes’ theorem, we have

R
τ1=2

d2k f � =
R 0
�π dkx∂kx

γ y
�ðkxÞ

= γ y
�ð0Þ � γ y

�ð�πÞ:
ð54Þ

Hence, the Z2 topological invariant can be rewritten as

ν =
1
2π

½γ y
�ð�πÞ+ γ y

�ð0Þ�mod 2: ð55Þ

The path of γ y
�ðkxÞ must cross 0 or π when varying kx from −π to 0.

Then Z2 topological invariant can interpreted as

ν =Wπ mod 2, ð56Þ

whereWπ denotes the number of times that γ(kx) crosses π. Therefore,
we obtain a geometric interpretation of ν, that is, ν is nontrivial if and
only if γ y

�ðkxÞ crosses π odd times (see Fig. 4b).
Hence, it is significant to observe that the nontrivial topological

invariant ν = 1mod 2 ensures that there exists at least one k0
x 2 ½�π,0Þ

with γ y
�ðk0

x Þ=πmod 2π. But, the quantized Berry phase π of the 1D ky-
subsystemwith kx = k

0
x implies the existenceof an in-gapmode at each

end. Hence, as reflected in the boundary BZ parametrized by kx
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together with the continuity of the band structure, the nontrivial
topological invariant leads to a band that contains edge states in the
band gap.

Two remarks are ready for the edge states. First, from the argu-
ment above, we see that the topological edge band does not neces-
sarily connect valence and conduction bands in the bulk as in the case
of the Chern insulator. It is also possible that the edge band is com-
pletely detached from the bulk bands. Second, the argument of above
accounts for the topological edge band in the half of the BZ with
kx∈ [ −π, 0). The topological edge band in the other half of the BZwith
kx∈ [ −π, 0) can be mapped out from this by using the class-II sub-
lattice symmetry. Moreover, by the continuity of band structure,
generically the band for kx∈ [ −π, 0) crosses the zero energy, because
kx = −π and kx =0 are related by the sublattice symmetry and therefore
are of opposite energies.

Above we discussed the bulk-boundary correspondence for two
dimensions. The arguments and generic features of the topological
boundary states can be readily generalized to any even dimensions,
where we use the pump of the Chern–Simons integral in a half of the
BZ. Note that the specialization of the Chern–Simons integral in one
dimension is just the Berry phase, and it is well-known that a half
quantized Chern–Simons integral leads to boundary states.

Detailed information for lattice models
Wenowpresentmore information for latticemodels that demonstrate
our theory. Further details can be found in Supplementary Note 2.

For the gapless phase, we consider two 1D lattice models, as illu-
strated in Fig. 3a, b. For both models, the translation symmetry
exchanges A and B sublattices, and therefore their sublattice symme-
tries fall into class II. In Fig. 3a, b, all hopping amplitudes are real, with
positive and negative ones marked in blue and red, respectively. Each
plaquette of the model in Fig. 3a carries π flux. We set the values of
parameters as t = J = λ = 1.0 in Fig. 3c, d.

For the topological insulator phase, we consider dimerized Hof-
stadtermodels, inwhich dimerization opens a gap at zero energy50.We
choose to work in the special gauge configurations so that only the
hoppings along x-direction pick up a nontrivial phase factor, as illu-
strated in Fig. 4c.We set the values of parameters asΦ =π/2, t = J1 = 1.0,
and J2 = 2.0 in Fig. 4b, d. The energy dispersion of these in-gap edge
states can be easily obtained by the boundary effective theory, as
demonstrated in Supplementary Note 3.

Data availability
The data generated and analyzed during this study are available from
the corresponding author upon request.

Code availability
All code used to generate the plotted band structures can be found at
https://doi.org/10.24433/CO.5326929.v1.
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