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Multimodal analysis of cfDNA methylomes
for early detecting esophageal squamous cell
carcinoma and precancerous lesions

Jiaqi Liu 1,2,6, Lijun Dai3,6, Qiang Wang4,6, Chenghao Li3,6, Zhichao Liu 5,
Tongyang Gong 1, Hengyi Xu1, Ziqi Jia2, Wanyuan Sun1, Xinyu Wang3, Minyi Lu1,
Tongxuan Shang2, Ning Zhao1, Jiahui Cai1, Zhigang Li 5, Hongyan Chen 1 ,
Jianzhong Su 3 & Zhihua Liu 1

Detecting early-stage esophageal squamous cell carcinoma (ESCC) and pre-
cancerous lesions is critical for improving survival. Here, we conduct whole-
genome bisulfite sequencing (WGBS) on 460 cfDNA samples from patients
with non-metastatic ESCC or precancerous lesions and matched healthy con-
trols. We develop an expanded multimodal analysis (EMMA) framework to
simultaneously identify cfDNAmethylation, copy number variants (CNVs), and
fragmentation markers in cfDNA WGBS data. cfDNA methylation markers are
the earliest and most sensitive, detectable in 70% of ESCCs and 50% of pre-
cancerous lesions, and associated with molecular subtypes and tumor
microenvironments. CNVs and fragmentation features show high specificity
but are linked to late-stage disease. EMMA significantly improves detection
rates, increasing AUCs from0.90 to0.99, anddetects 87%of ESCCs and62%of
precancerous lesions with >95% specificity in validation cohorts. Our findings
demonstrate the potential of multimodal analysis of cfDNA methylome for
early detection and monitoring of molecular characteristics in ESCC.

Esophageal cancer (EC) is one of the most prevalent gastrointestinal
malignancies and the sixth leading cause of cancer-related mortality
worldwide1. Esophageal squamous cell carcinoma (ESCC), the pre-
dominant histological subtype of EC, accounts for approximately 88%
of new EC cases, with the majority occurring in Eastern and Central
Asia2. ESCC exhibits a dismal prognosis characterized by one of the
lowest 5-year overall survival rates (18.5% and 36.9% in the US and
China, respectively)3, which is largely attributed to late-stage
diagnosis4. In contrast, early-stage ESCC, such as intramucosal ESCC,

and precursor lesions like intraepithelial neoplasia (IEN), can achieve
nearly 100% five-year disease-specific survival rates through endo-
scopic en bloc resection, obviating the need for systematic
treatment5–7. Therefore, early detection is critical for enhancing the
survival and quality of life for ESCC patients.

The gold standard for diagnosing ESCC and its precursor lesions
remains endoscopy with iodine staining8. However, the widespread
adoption of endoscopic screening faces challenges, including low
compliance and the substantial cost of conducting endoscopic
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examinations formillions of eligible individuals in high-risk regions like
China9. Liquid biopsymethods, capable of detecting circulating tumor
DNA (ctDNA)within cell-freeDNA (cfDNA) in plasma, offer a promising
avenue for non-invasive early cancer detection10,11. However, few stu-
dies have assessed the utility of liquid biopsy in ESCC diagnosis12.

Advancements in cfDNA biology, coupled with the exponential
growth in data volume, have enabled the detection of tumor-specific
alterations with unparalleled precision, encompassing genetic13,
epigenetic14, and fragmentomic features15. In a recent multi-omics
analysis of cfDNA within the Circulating Cell-free Genome Atlas
(CCGA), whole-genome cfDNA methylation emerged as the most
promising signal for cancer detection, outperforming fragmentation
features and genetic variants16. However, there are still some chal-
lenges with methylation-based approaches for detecting ctDNA.

First, the intrinsic value of genetic variants (e.g., copy number
variants; CNVs) and fragmentation features (e.g., fragment size)
embeddedwithinwhole-genomebisulfite sequencing (WGBS) data has
been underappreciated17. A concurrent analysis of cfDNA methylation
markers, genetic variants, and fragmentation features within a single
WGBS dataset is needed. Second, given the pivotal roles of both
genetic and epigenetic aberrations in the transition fromprecancerous
lesions to ESCC18–20, the mutual complementarity and combined per-
formance of these multi-omics features remain unclear. Third, the
biological significance of cfDNA methylation markers and their utility
for subtyping and prognosis are largely unknown.

Here, we conducted WGBS on 460 cfDNA samples from 230
patients with non-metastatic ESCC or precancerous lesions and 230
matched healthy controls (HCs) from multiple centers. To simulta-
neously examine the cancer-associated differentially methylated
regions (DMRs), CNVs, and fragmentation features within cfDNA
WGBS data, we developed a comprehensive approach termed Expan-
dedMulti-Modal Analysis (EMMA). This approach allowed us to profile
the complementarity, temporal dynamics, and detection efficacy of
epigenetic and genetic features within cfDNA for ESCC. Eventually, we
determined the biological relevance of optimal cfDNA methylation
features in this context.

Results
Overview of the EMMA framework in cfDNA whole-genome
bisulfite sequencing
To enhance the early detection of ESCC, we developed the EMMA
framework based on a “tissue-cfDNA-tissue” strategy (Fig. 1a). Initially,
we identified ESCC-derived DMRs and CNVs from paired WGBS and
whole-genome sequencing (WGS) data of primary tumors and mat-
ched adjacent non-neoplastic tissues of 155 ESCC cases from our pre-
vious cohort, the ESCC Genome and Epigenome Atlas (ECGEA)18.
Subsequently, we examined the ESCC-derived DMRs and CNVs in
cfDNA WGBS data. Based on the fact that fragments originating from
tumor cells appear to be shorter than fragments from normal cells21,
we further calculated the proportion of short cfDNA fragment sizes as
the fragment size ratios (FSRs) in cfDNA WGBS data. Next, we
employed random forest-based machine learning frameworks, utiliz-
ing DMRs alone, DMRs in combination with CNVs, and all three fea-
tures (DMRs, CNVs, and FSRs), using a dataset containing 150 ESCC
patients and 150 matched HCs. The performance of each diagnostic
model was independently assessed in an external ESCC cohort and a
precancerous cohort. Additionally, we correlated the optimal DMRs
with integrated multi-omics-based molecular subtypes, the tumor
microenvironment (TME), survivals, and transcriptomic profiles in the
paired ESCC tissue samples.

Our study encompassed a diverse cohort, including 150 untreated
patients with ESCC or esophageal high-grade intraepithelial neoplasia
(HGIEN, namely stage-0 ESCC) from theCancerHospital of theChinese
Academy of Medical Sciences and Peking Union Medical College in
Beijing, China (CHCAMS, the discovery/training cohort), 30 untreated

ESCC patients from the Shanghai Chest Hospital in Shanghai, China
(the external validation cohort), 50 patients with esophageal IEN from
CHCAMS (the precancerous validation cohort), and 230HCs, each age-
and gender-matched within their respective cohorts (Fig. 1b; Supple-
mentary Table 1). We collected a median of 2mL of plasma from each
participant (n = 460) before any medical intervention. The cfDNA
concentrations were consistent in ESCC patients and controls (Sup-
plementary Fig. 1). WGBS was employed to assess the cfDNA methy-
lome of each participant, with the 460 cfDNA samples representing
approximately 89% coverage of the reference genomewith an average
depth of 9.51× (Supplementary Fig. 1).

Identification and performance of cfDNA methylation markers
We initially identified 41,199 DMRs among the 155 ESCC tissues and
their corresponding adjacent non-neoplastic tissues in the ECGEA
cohort. To quantify the proportion of ctDNA within the cfDNA sam-
ples, we utilized a previously established computational framework14.
This framework relied on specific DMR patterns associated with ESCC.
We calculated ‘cfDNA malignant ratios’ to estimate ctDNA content
accurately within the samples. In cfDNA, we identified 650 DMRs by
comparing WGBS data from 150 ESCC patients with 150 HCs from
CHCAMS. Subsequently, the cfDNA malignant ratio for each DMR was
calculated in every sample. Utilizing a random forest algorithm, we
generated predictionmodels based on cfDNAmalignant ratios derived
from theseDMRs, ranging from2 to650, using data from thediscovery
cohort (Supplementary Fig. 1). Consequently, a specific set of 50
optimal DMRs demonstrated the highest discriminatory power in
distinguishing between malignant and benign plasma samples
(Methods; Supplementary Fig. 2). The final predictionmodel, denoted
as the ESCC-cfMeth score, was constructed using the cfDNAmalignant
ratios of these 50 markers (Fig. 2a and Supplementary Fig. 3a),
including 40 hypo-DMRs and 10 hyper-DMRs. In terms of perfor-
mance, the ESCC-cfMeth score achieved an area under the curve (AUC)
of 0.90 (95% CI, 0.87–0.94) in the 10-fold cross-validation within the
discovery cohort. In the external validation cohort, the AUC was 0.89
(95% CI, 0.81–0.98), and in the precancerous validation cohort, it
reached 0.87 (95% CI, 0.80–0.94; Fig. 2b). Using a cutoff threshold of
0.5, the prediction model achieved accuracies of 82.33%, 85.00%, and
78.00% in the discovery, external validation, and precancerous vali-
dation cohorts, respectively (Methods; Supplementary Table 2).

The ESCC-cfMeth scores were significantly higher in ESCC
patients than HCs in both the training and external validation cohorts.
Notably, ESCC-cfMeth scores were also increased in patients with IENs
in the precancerous cohort (Fig. 2c). However, the scores did not
further increase with the progression of the ESCC stages, implying the
scores could reflect the biological characteristics of early-stage disease
including precancerous lesions, but cannot be used an indication of
tumor progression (Fig. 2d). To gain further mechanistic insights, we
annotated the genes of the optimal 50 DMRs. Among the 35 annotated
genes located within or proximal to the 50 DMRs (within ±2 kb of the
gene body or promoter), 16 genes exhibited significant differences at
transcription levels in 155 ESCC tissues compared with their corre-
sponding adjacent tissue samples (Supplementary Data 1). Notably,
ZNF132, a tumor suppressor gene playing a key role in ESCC
development22, displayed significant down-regulation with a hyper-
methylated promoter. Conversely, seven genes with hypomethylation
within their gene bodies, including FLT1 and LINC00680, which impact
cancer cell invasion23 and promote ESCC progression as competing
endogenous RNA24, respectively, showed upregulation. Additionally,
ID1 was up-regulated with a hypomethylated promoter (Fig. 2e),
potentially contributing to ESCC tumorigenesis25. To reveal the bio-
logical significance of these classical functional genes in early-stage
ESCC, we analyzed and validated the expression levels of these genes
in 10-pair tissue samples of stage-I ESCC and normal tissues from a
published dataset [GSE213565]26. Similarly, ZNF132 was significantly
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The discovery cohort in Beijing, China

Model training and cross-validation
Statistical models were developed to detecting ESCC using cfDNA based on the malignant ratio the 50 optimal DMRs (ESCC-cfMeth score) and
combing with CNVs and FSDs (EMMA model).

External validation cohort
(Shanghai, China)
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Top 50 ESCC-driven DMRs were identified in cfDNA. Whole-genome CNVs and FSDs were fitted in two parameters for each.

50 Matched HCs

Fragment sizes CNVs

155 paired tissue samples

Fig. 1 | Study design and patient enrollment. a An approach called ‘expanded
multimodal analysis’ (EMMA) has been developed using machine learning to
enhance the detection of ctDNA from cfDNA in plasma samples. This is achieved by
comprehensively analyzing cancer-derived differentially methylated regions
(DMRs), copy number variants (CNVs), and fragmentation features in the cfDNA
whole-genome bisulfite sequencing (cfWGBS) data. The cancer-derived DMRs and
CNVs were initially identified from paired WGBS and whole-genome sequencing
(WGS) data of primary tumors and matched adjacent non-neoplastic tissues of 155
patients with esophageal squamous cell carcinoma (ESCC). Subsequently, the
ESCC-derived DMRs and CNVs were examined in cfWGBS data and further utilized
with the proportion of short cfDNA fragment sizes to train the diagnosticmodels in
the discovery cohort. The performance of each diagnostic model was indepen-
dently assessed in an external ESCC cohort and a precancerous cohort. To unveil

the biological significance of these optimal DMRs, we correlated them with multi-
omics-based molecular subtypes and transcriptomic profiles in the paired ESCC
tissue samples. b The discovery cohort encompassed 150 patients with ESCC or
high-grade intraepithelial neoplasia and 150 matched health controls to construct
the diagnostic model using different cfDNA features. The performance of each
diagnostic model was evaluated independently in an external ESCC cohort and a
precancerous cohort. ESCC esophageal squamous cell carcinoma, IEN intrae-
pithelial neoplasia,WGSwhole-genome sequencing,WGBSwhole-genomebisulfite
sequencing, cfWGBS cfDNA WGBS, RNAseq RNA sequencing, HC healthy control,
CNV copy number variant, DMR differentially methylated region, IM immune
modulation, CCAcell cyclepathwayactivation, IS immune suppression, NRFANRF2
oncogenic activation.
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down-regulated and LINC00680 was significantly up-regulated, which
indicates their potential function in early-stage ESCC. However, FLT1
and ID1were also up-regulated butwithout significance in stage-I ESCC
(Supplementary Fig. 3b). Taken together, these findings not only
underscore the reliability and interpretability of these cfDNA methy-
lation features for ESCC diagnosis but also indicate their potential
functional relevance in ESCC progression.

Identification of CNVs in cfDNA for ESCC detection
In addition to cfDNA methylation markers, we also focus on the value
of cfDNA-derived CNVs for ESCC diagnosis. We initiated this by com-
paring ESCC tissues with adjacent neoplastic tissues within the ECGEA

cohort using WGS data as the gold standard, establishing a robust
foundation for identifying ESCC-derived somatic CNVs. Subsequently,
we developed a WGBS-based approach to identify recurrent CNVs in
both tissue and cfDNA samples (Fig. 3a). The genome of each sample
was partitioned into 1-Mb bins, and a Hidden Markov Model was
applied to assess the depth of each bin relative to the baseline estab-
lished by the software. After CG correlation, log2 ratios were com-
puted for each bin to determine CNV events. Most CNVs identified in
the WGS data, including 72.68% of amplifications (1016/1398) and
88.22% of deletions (1153/1307), were successfully identified in paired
WGBS data from tissue samples. Patient 002 from the ECGEA cohort
serves as an illustrative example, where most amplifications and
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deletions identified in WGS data were also observed in the paired
WGBS data (Fig. 3b). Subsequently, CNVs detected in both WGS and
WGBS data from tissue samples were compared, with only the shared
CNVs were retained for further analysis in cfDNA.

To delineate the CNV profile in cfDNA, we employed ichorCNA27.
In cfDNA, 38.19% of amplifications (388/1016) and 17.17% of deletions
(198/1153) identified in WGS and WGBS data from tissue samples were
successfully identified. To improve specificity, we focused on regions
exhibiting recurrent CNVs in three or more cfDNA samples. In com-
parison to CNV events in HCs, we found significantly higher CNV event
rates in 153 regions in ESCC patients, with 111 amplified regions and 42
deleted regions (Fig. 3c). Within these 153 recurrent CNV regions,
14.67% of ESCC patients in the discovery cohort, 23.33% in the external
validation cohort, and 6.00% of IEN patients exhibited CNV events, all
of which exceeded the HC groups in their respective cohorts (2.00%,
0%, and 2.00%;p = 8.3 × 10−5, 0.01, and0.62, respectively; Fisher’s exact
test). Notably, the incidence of CNV events gradually increased from
HGIEN and was positively correlated with cancer stages and grades
(Fig. 3d). Collectively, these results highlight the high specificity of
CNV events in cfDNA among healthy individuals (ranging from 98.00%
to 100%) and their positive correlation with tumor progression and
late-stage disease.

There are 583 genes located in the regions of CNV markers in the
ESCC cfDNA. Of those genes, 27 and 301 are amplified on chromo-
somes 3 and 8, respectively, while 120 are deleted on chromosome 4.
However, even thoughourpreviouswholegenome sequencing studies
showed that 11q13.3 amplification containing CCND1 is recurrent in
ESCC tissues19, there was no amplification event was observed on
chromosome 11 in the ESCC cfDNA. This could be attributed to the
damage inflicted on certain cfDNA fragments by the bisulfite conver-
sion process during WGBS, further attenuating the signals of CNVs in
these regions. To reveal the potential function of these genes, we
annotated these genes using oncogenes from the ONGene database28

and analyzed the association between the expression levels of these
genes with the prognosis in the tissue samples in our previous ECGEA
cohort18 (Supplementary Data 2). As a result, 41 genes were found to
have significant associations with prognosis in ESCC patients, includ-
ing nine-teen genes with amplifications in chromosome 8 and eight
genes with deletions in chromosome 4. Some of these genes were
reported to be associated with late-stage events in cancer including
immune evasion, treatment resistance, and metastasis, such as
FBXO3229 within the amplifications in chromosome 8 and FOXA130

within the amplifications in chromosome 14.

Fragment size measurement in cfDNA WGBS data
To further reveal the multimodal features of cfDNA, we conducted a
comprehensive analysis of cfDNA fragment size profiles in the dis-
covery cohort. Notably, cfDNA samples from both ESCC patients and
HCs exhibited peaks at 166 bp. However, a higher proportion of

shorter fragments (90–150bp) was observed in the ESCC groups
(Fig. 4a), consistent with previous findings in cfDNA studies related to
ESCC31.

We calculated the FSR by assessing the ratio of short fragments in
cfDNA to the human genome. These ratios were determined within
5-Mb bins, yielding 579 FSR features (Fig. 4b, c). No significant differ-
ence in the average FSR was found across all bins between ESCC
patients and HCs in the discovery cohort. However, we identified 83
binswith significantly elevated FSRs in ESCCpatients compared toHCs
(p < 0.05), indicating position-dependent changes in cfDNA fragmen-
tation. Consequently, compared to matched HCs, the average FSRs
within these 83 selected bins were significantly higher in ESCCpatients
in both the discovery cohort and the external validation cohort
(p = 0.032 and 2.6×10−7, respectively). Interestingly, this significant
difference was not observed in IEN patients from the precancerous
validation cohort (p =0.33; Fig. 4d).

To explore the diagnostic potential of these findings, we devel-
oped a predictive model using the FSRs from the 83 selected regions
(Methods). However, this model displayed limited discriminatory
abilities in both the external validation cohort and the precancerous
validation cohort (AUCs = 0.54 and 0.53, respectively; Supplementary
Fig. 4). The variable performance of FSR between the ESCCs and IENs
suggests a potential correlation between the proportions of short
cfDNA fragment sizes and tumor progression.

Accurate detection of ESCC and precancerous lesions with the
combined EMMA model
To improve the diagnostic capability, we integrated genetic and epi-
genetic features into a combined EMMA model. Notably, the optimal
50 DMRs and 153CNV regions were predominantly located in different
regions of the human genome. Specifically, 74.54% of the optimal
DMRs (13769/18980) were located within the 83 selected FSR regions,
suggesting that cancer-derived cfDNAwasenriched in these regions. In
contrast, CNVs were enriched in regions such as 5p and 8q, with less
overlap with the FSR regions (Fig. 5a; Supplementary Fig. 5). While
there was no significant association between the ESCC-cfMeth score,
average FSR, and the CNV events in the discovery cohort (Supple-
mentary Fig. 5), complementary relationships were observed among
these features in ESCC patients in the discovery cohort (Fig. 5b).

To reduce the dimensionality of the CNV features in 153 regions
and FSRs in the 83bins, we created two composite parameters for each
modal (Fig. 1a). Next, we developed two combined diagnostic models
through separate random forest models in the discovery cohort with
10-fold cross-validation: one combining the 50 DMRs with two CNV
parameters (DMR plus CNV model) and another combining the 50
DMRs with two CNV parameters and two FSR parameters (EMMA
model). Both combined models demonstrated significantly improved
performance compared to the ESCC-cfMeth score in the discovery
cohort as determined by the 10-fold cross-validation (AUC =0.98, 95%

Fig. 2 | Cell-free DNAmethylationmarkers and their detectionperformance for
esophageal squamous cell carcinoma. a Among the differentially methylated
regions (DMRs) identified in esophageal squamous cell carcinoma (ESCC) tissues,
650 DMRs were recalled through an adjusted p value <0.05 (two-sided Wilcoxon
test), favoring DMRs with ESCC average values (n = 150) more significant than
healthy controls (n = 150) in the discovery cohort, as determined by the malignant
ratio. The figure shows malignant ratios with the p value of the top ten DMRs as
examples. Data are presented as median values with maximums and minimums.
b The diagnostic performances of the ESCC-cfMeth score were evaluated in the
discovery cohort (tenfold cross-validation, the curve of each color indicating one
cross-validation), the external validation cohort, and the precancerous validation
cohort. The black curves represent the receiver operating characteristic (ROC)
curves and the blue areas indicate the 95% confidence intervals (CI). c The final
predictionmodel (ESCC-cfMeth score) was constructed using the cfDNAmalignant
ratios of the optimal 50markers. The ESCC-cfMeth scores were significantly higher

in patients with ESCC and intraepithelial neoplasia (IEN) than the HCs in the dis-
covery cohort and the validation cohorts (two-sided Mann–Whitney U-test,
p <0.01). Data are presented as median values with maximums and minimums.
d Compared to the HCs, the ESCC-cfMeth scores were robustly elevated among
ESCCs of different stages (left; n = 30, 9, 6, and 15, respectively) and IENs (right;
n = 50, 12, and 38, respectively). Data are presented as median values with max-
imums and minimums. e Differential expression of functional genes was found
within the 50 optimal DMRs in comparison of gene expression between ESCC
tissues and paired adjacent non-neoplastic tissues (n = 155) using a two-sided Wil-
coxon test or t test (p < 2.2 × 10–16 for ZNF132, p = 1.1 × 10–8, 2.7 × 10–14, and 0.078 for
LINC00680, FLT1, and ID1, respectively). Data are presented as median values with
maximums and minimums. ESCC esophageal squamous cell carcinoma, IEN
intraepithelial neoplasia, LGIEN low-grade IEN, HGIEN high-grade IEN, HC healthy
control, DMR differentially methylated region, AUC area under curve, CI con-
fidence interval. Source data are provided as a Source Data file.
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CI: 0.97–1.00 for the DMR plus CNV model and AUC=0.99, 95% CI:
0.98–1.00 for the EMMAmodel, as opposed to the ESCC-cfMeth score
with an AUC=0.90, 95% CI: 0.87–0.94; p = 2.5 × 10−7 and 5.6 × 10−8;
Supplementary Fig. 5). Similar superior performance of the DMR plus
CNV model and the EMMA model was observed in the external vali-
dation cohort (AUCs = 0.94 and 0.95, respectively, vs. 0.89 for the
ESCC-cfMeth score) and the precancerous validation cohort (AUCs =
0.89 for both combined models and 0.87 for the ESCC-cfMeth
score; Fig. 5c).

To achieve a specificity of more than 95%, a cutoff point was
selected for the EMMA model. In comparison to the ESCC-cfMeth
score, the EMMAmodel improved sensitivities from 70% to 87% in the
external validation cohort and from 50% to 62% in the precancerous
validation cohort (Fig. 5c; Supplementary Table 3). Overall, the EMMA

model increased the detection rate to 62% for IENs, 78% for stage I, 83%
for stage II, and 93% for stage III ESCCs, while maintaining specificities
>95% in two independent validation cohorts (Fig. 5d). In the external
validation cohort, the detection rates increased across all stages. FSR
contributed to one additional stage-I ESCC, and CNV events were
detected in two additional stage-II/III ESCCs. Additionally, the EMMA
model identified one stage-I ESCC patient and one stage-III ESCC
patient who were not detected by any of the three single-modal
models (Fig. 5e). Convincingly, a similar increase in detection rates was
also observed in IENs (Supplementary Fig. 5).

To estimate the potential benefits of increased detection rates for
early-stage ESCC and precancerous lesions, we conducted an adapted
interception analysis using published baseline data of Chinese ESCC
patients as an example6,32–34. When the ESCC-cfMeth and EMMA
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approaches are implemented, the 5-year overall survival rates of ESCC
patients in China show potential improvement by early detection and
intervention at the IEN stage (Fig. 5f). Comparatively, the EMMA
model, which integrates multi-modal data, demonstrates higher sur-
vival benefits in the assumed clinical scenario compared to the ESCC-
cfMethmodel, which solely utilizes cfDNAmethylation. Depending on
the test interval, ranging from5 years to continuous testing (idealized),
the ESCC-cfMethmodel exhibited a potential increase in 5-year overall
survival rates by 26.90% to 35.25%. In contrast, the EMMAmodel shows
a potential increase of 33.87% to 41.95%. Specifically, when the EMMA
approach is applied annually at the IEN stage, the 5-year overall survival
of ESCC patients in China could further increase by 6.9% compared to
the ESCC-cfMethmodel (40.22% vs. 33.37%). Our findings indicate that
cfDNA methylation markers outperform CNV and fragmentation
markers, particularly in early stages and precancerous lesions. Multi-
modal analysis could further enhance their detection performance in a
cost-effective and sample-saving manner, potentially improving sur-
vival rates (Fig. 5g).

Biological significance of cfDNA methylation markers
We examined the methylation levels of the 50 DMRs from the ESCC-
cfMeth model across 81 common cell types35, confirming their ESCC-
specificity (Supplementary Fig. 6). To evaluate the value of theseDMRs
in ESCC molecular subtyping, we classified the 155 ESCC patients into
three groups based on the average methylation levels of these 50
DMRs using hierarchical clustering in the ECGEA cohort. These groups
were labeled methylation-dominant (n = 69), methylation-moderate
(n = 54), and methylation-poor (n = 32) (Fig. 6a). No significant differ-
ences were found in gender, age, stage, tumor location, or grade
among these groups.

In our previousmulti-omics analysis of the ECGEA cohort18, ESCCs
were categorized into four subtypes: cell cycle pathway activation
(CCA), NRF2 oncogenic activation (NRFA), immune suppression (IS),
and immune modulation (IM). The CCA subtype was characterized by
recurrent CNVs and the CpG island methylator phenotype (CIMP),
while IM cases tended to respond more effectively to immunotherapy
than the other subtypes. Notably, we found themethylation-dominant
group contained a higher proportion of ESCCs belonging to the CCA
subtype (37.68% [26/69]) compared to the methylation-moderate
(18.52% [10/54], p =0.03) and methylation-poor (9.38% [3/32],
p = 4.0 × 10−3) groups. Conversely, the methylation-dominant group
had a lower proportion of ESCCs belonging to the IM subtype (15.94%
[11/69]) compared to the methylation-moderate (42.59% [23/54];
p = 1.2 × 10−3) and methylation-poor (43.75% [14/32]; p = 5.5 × 10−3)
groups (Fig. 6b). Next, we investigated the TME components in these
three groups and found the methylation-dominant group had more
epithelial cells and fewer immune cells than the other two groups (all
p <0.05; Fig. 6c). These findings highlight the diagnostic methylation
markers could be potential biomarkers for distinctmolecular subtypes
and TME in ESCC.

Subsequently, we examined genes and pathways associated with
methylation features by conducting differential expression and gene
ontology (GO) analysis of gene expression in ESCC tissues, comparing
the methylation-dominant group to the methylation-poor group. Our
analysis revealed that 153 genes showed significant differential
expression (Benjamini-Hochberg-adjusted p <0.05). The methylation-
dominant group showed GO enrichment in cell division-related path-
ways, including organelle fission, nuclear division, mitotic nuclear
division, and chromosome segregation. In contrast, the methylation-
poor group exhibited enrichment in immune-related pathways,
including T-cell activation, mononuclear cell differentiation, and lym-
phocyte differentiation (Fig. 6d). Furthermore, the methylation-
dominant group displayed better survival outcomes than the other
two groups, especially in patients with grade-II ESCC (p =0.02; Sup-
plementary Fig. 7). Thus, the differential gene expression and survival

disparities align with the molecular subtypes and cell components
in ESCC.

Previously, esophageal CIMP (E-CIMP) was defined based on 208
promoter sites displaying hypermethylation in over 50% of ESCC
samples in the ECGEAcohort18. Remarkably, we found themethylation-
poor group (12.50% [4/32]) exhibited a low proportion of ESCCs with
positive E-CIMP compared to the methylation-dominant (52.17% [36/
69]; p = 1.5 × 10−4) and methylation-moderate (38.89% [21/54]; p =0.01;
Supplementary Fig. 8). We also surveyed the prevalence of CNVs in
153 selected regions in tissue samples from the ECGEA cohort. Intri-
guingly, themethylation-dominant group had the highest rate of CNV-
positive ESCCs (68.12%, 47/69), likely due to the highly active cell cycle
and cell division pathways. However, the methylation-moderate
(51.85%; 28/54) and methylation-poor (56.25%; 18/32) groups still
exhibited considerable rates of CNV-positive ESCCs, which was not
significantly different from the methylation-dominant group (both
p >0.05; Supplementary Fig. 8). This observation is consistent with the
contribution of CNV features to the EMMA model. Collectively, our
findings indicate the potential utility of the cfDNA methylation mar-
kers formolecular subtyping and guiding treatment decisions in ESCC.

Mutations in TP5336,37 and APOBEC genes38 as well as the APOBEC
mutational signatures (SBS2/13)39 were frequently observed in ESCC
patients. However, there were no significant differences in the somatic
mutation rates in TP53 and APOBEC genes and the proportion of the
APOBECmutational signatures between the three groups (all p >0.05;
Supplementary Fig. 8). The proportion of the APOBEC mutational
signatures was also not associated with the status of carrying CNV in
ESCC patients. We also investigated the overlapping of TP53 and
APOBEC genes with the multimodal markers and found these genes
were not within the regions of either DMRs or CNVs (Supplementary
Table 4). However, TP53 andAPOBEC3geneswerewithin the regions of
FSRs, which indicates a probably higher proportion of ctDNA in cfDNA
in these regions. Thus, identifying the mutations in genes like TP53 in
cfDNA might further improve the detection rate of ESCC.

Discussion
Non-mutational epigenetic reprogramming recently emerged as a
pivotal hallmark of cancer40. Among various epigenetic modifications,
DNAmethylation is themost extensively studied in humans, serving as
a stable biomarker for cancer development and cell-of-origin35,41,42.
Aberrant DNA methylation specific to disease progression has also
been identified as a key characteristic in early-stage cancer42,43 and
even in pre-invasive cancer lesions20,44. Extensive profiling studies have
revealed complex and distinctiveDNAmethylation profiles in cancer45.
Consequently, these profiles are now being incorporated into cancer
diagnostic criteria and have the potential to become standard proce-
dures conducted at major medical centers46–49.

Despite the increased adoption of the cfDNAmethylationmarkers
in liquid biopsy as a promising tumor-naïve strategy for cancer early
detection, studies on their biological significance and combination
with other cfDNA features are still lacking. Our study introduces the
EMMAframework anddemonstrates its potential for enhancingwhole-
genome methylation-based cfDNA analysis, which is considered the
most sensitive method for cancer detection16, through a multimodal
analysis. We conducted a comprehensive analysis of cfDNA methyla-
tion, CNVs, and fragmentation features in cfDNA from individuals with
ESCC/IEN and HCs. Our findings reveal a distinct cfDNA methylation
pattern that remains highly sensitive throughout all stages of ESCC,
including early stages and precancerous lesions (IENs). In contrast, the
CNVs and FSRs are related to late-stage ESCC and showed high spe-
cificity (e.g., 98%-100% for CNV events). Understanding the com-
plementarity and timing of these cfDNA features will guide the
development of cfDNA-based detection strategies tailored to indivi-
duals at varying risks across different cancer stages (Fig. 5g). Further-
more, we correlated the cfDNA methylation markers with the
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molecular subtypes and TME components, expanding their potential
application in dynamic monitoring of molecular characteristics and
therapeutic decision-making.

For identifying the bona fide ctDNA in cfDNA, multimodal
analysis has improved accuracy while remaining cost-effective and
sample-saving. However, in the previous CCGA study16, genetic and
fragmentomics features obtained through additional paired tar-
geted sequencing and WGS did not demonstrate complementarity
when combined with cfDNA methylation to improve detection
sensitivity. In our study, we expanded the genome-wide multimodal
analysis of cfDNA to encompass three omics, and our results con-
firmed the improved performance of the integrated EMMA model.
Importantly, EMMA could detect additional cases of early-stage
ESCCs and IENs that yielded negative results when using three
separate models (Fig. 5e and Supplementary Fig. 4). This improve-
mentmay result from increased complementarity of themultimodal
information obtained from a single assay. Other studies have also
reported elevated detection rates in similar approaches, including
combining genome-wide mutational and fragmentation analyses of
cfDNA by the GEMINI and DELFI13 and simultaneous detection of
methylation markers and mutations in cfDNA by the Mutation
Capsule Plus technology50.

In a previous study, CNVs were analyzed using WGBS data of 84
ESCC and paired paraneoplastic tissues51. Regions with CNVs exhibited
higher intratumor DNA methylation heterogeneity than non-CNV
regions, indicating a close link between DNA methylation and CNVs.
However, limited studies have been conducted on detecting CNVs
using WGBS data, potentially due to the alterations and sequence
preferences induced by bisulfite treatment. Consequently, identifying
CNVs in WGBS data within cfDNA poses greater challenges. In our
study, we developed an ESCC-specific approach to identify recurrent
CNVs in cfDNA WGBS data, which were consistently observed in both
WGS and WGBS data from tissue samples (Fig. 3c). This approach
reduced false-positive rates while maintaining high specificity. Thus,
the rates of CNV events were notably higher in patients with ESCC and
IENs, and they correlated with tumor stages and grades (Fig. 3d).

Although integrating the three cfDNA features enhanced the
performance of the EMMA model, they collectively exhibited strong
consistency in revealing malignancy. In cfDNA, most optimal DMRs
were located in regions with significantly high ratios of short fragment
sizes, potentially indicating a higher proportion of ctDNA in these
regions (Supplementary Fig. 4). Further, tissue samples from the
methylation-dominant group in the ECGEA cohort had the highest
prevalence of CNV events, aligning with a previous study on ESCC52.
This observation is consistent with the enrichment of the CCA subtype
in the methylation-dominant group, which is characterized by recur-
rent CNVs18.

We investigated the biological significance of identified optimal
methylation markers in cfDNA. To begin, DMRs were identified in
WGBS data extracted from a large number of paired ESCC tissue
samples, and specificity was validated through comparisons with
multiple cell types (Supplementary Fig. 5). Within these DMRs, we
uncovered known functional genes associated with ESCC displaying
significantlydifferent expressions. Subsequently, we categorized ESCC
patients into three groups based on the methylation levels of the
optimal DMRs. The methylation-dominant group exhibited a higher
prevalence of the CCA subtype and epithelial cell components, which
also correlatedwith better survival. In contrast, the analysis of the TME
and differential expression showed that the elevated immune cell
presence and immune processes may diminish the signal from ESCC-
related methylation features (Fig. 6c, d). The methylation-moderate
and methylation-poor groups had a higher proportion of ESCC
patients belonging to the IM subtype (Fig. 6b). This subtype is more
sensitive to immunotherapy than other ESCC subtypes, which indi-
cates the potential of cfDNA testing in predicting and monitoring

immunotherapy responses53. Collectively, our study provides a com-
prehensive insight into the biological and clinical significance of cfDNA
methylation markers and offers a non-invasive tool for dynamic
monitoring of molecular characteristics in ESCC.

Our studyhas several limitations. First, despite the analysis ofover
1000 whole-genome datasets, our validation cohorts were relatively
small. Second, the potential function of these multimodal markers is
still unknown, especially in precancerous lesions. Third, we derived
CNVs and fragmentation features from WGBS data in a cost-effective
and sample-saving manner. However, some cfDNA fragments may be
damaged during the bisulfite conversion in WGBS, potentially weak-
ening the signals of CNVs and fragmentation features when compared
to those generated directly from WGS data of cfDNA. Fourth, as the
mutation calling is unreliable in WGBS data, mutations were not
enrolled in this multimodal model. While accurately identifying the
mutations in genes like TP53 in cfDNA using additional approaches
might further improve the detection rate of ESCC. Furthermore, the
survival benefits and prognostic significance of the ESCC-cfDNA and
EMMA model require further validation in large-scale real-world
cohorts.

In conclusion, we have conducted a comprehensive analysis of
cfDNAmethylation, CNVs, and fragmentationmarkers in liquid biopsy
to enableultra-early detection of ESCC. By analyzing cfDNAWGBSdata
through a multimodal approach, we have identified several staging-
specific markers and their complementarity. Our study not only sig-
nificantly enhanced the non-invasive detection capabilities of ESCC
but also holds the potential for dynamic molecular monitoring and
treatment guiding.

Methods
Ethics approval and consent to participate
This study was reviewed and approved by the relevant ethics com-
mittees, including the Institutional Review Boards of Shanxi Medical
University and Shanxi Cancer Hospital (ECGEA cohort), the institu-
tional review board and the independent ethics committee of the
National Cancer Center, Cancer Hospital, Chinese AcademyofMedical
Sciences (CHCAMS, the discovery cohort and the precancerous vali-
dation cohort), and the ethics committee of the Shanghai Chest Hos-
pital (the external validation cohort). Written informed consent was
obtained from each participant.

Study populations and clinical evaluation
The ECGEA cohort18 consisted of 155 untreated patients diagnosed
with ESCC between May 2017 and July 2018 at Shanxi Cancer Hospital,
China. Samples of ESCC tissue and paired adjacent normal/non-neo-
plastic tissue were collected before any treatment. The discovery
cohort comprised 150 patients diagnosed with ESCC or HGIEN of the
esophagus and 150 gender- and age-matched HCs from the CHCAMS
between May 2019 and December 2022. All the ESCC patients under-
went surgery or endoscopic resection. The external validation cohort
enrolled 30 patients with ESCC and 30 gender- and age-matched HCs
from the Shanghai Chest Hospital between October 2022 and
December 2022. The precancerous validation cohort consisted of 50
patientswith esophagus IENwhounderwent endoscopic resection and
50 gender- and age-matched HCs from the CHCAMS between August
2022 and February 2023.

Each patient’s final diagnosis of ESCC or IEN was pathologically
confirmed. At least three pathologists reviewed the tumors indepen-
dently to ensure histological consistency with ESCC and classified
them based on WHO criteria. The clinical staging was determined
according to the eighth edition of the American Joint Commission of
Cancer (AJCC) classification for ESCC54. HCs were excluded from any
malignant disease through a 6-month follow-up. This study followed
the STARD (Standards for Reporting of Diagnostic Accuracy Studies)
guidelines55.
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Whole-genome multi-omic analysis in ESCC tissues and paired
adjacent normal tissue
Genomic DNA and total RNA were extracted from the primary tumors
and matched adjacent non-neoplastic tissues of 155 ESCC cases from
our previous ECGEA cohort18. To construct the WGS library, approxi-
mately 300ng of high-quality DNA was fragmented to an average size
of 150–200bp using the Covaris LE220 Sonicator (Covaris, USA), then
whichwas prepared utilizing the TruSeq NanoDNA LT Library Prep Kit
(Illumina, USA). For the WGBS library preparation, 200ng of high-
quality DNA was mixed with 1% unmethylated Lambda DNA and frag-
mented to a 300bp insert size using the Covaris LE220 Sonicator
(Covaris, USA). This was followed by end repair and adenylation. The
fragmented DNA was then ligated with methylated adapters. Bisulfite
treatment was conducted following the instruction manual of the EZ
DNA Methylation-Gold Kit manual (Zymo Research, USA). The result-
ing single-strand DNA fragments were amplified by polymerase chain
reaction (PCR) using the KAPA HiFi HotStart Uracil+ ReadyMix kit
(Roche Diagnostics Roche Diagnostics) and purified. For the con-
struction of the RNA library, approximately 1μg of high/medium-
quality RNA was utilized as the input material. Both cytoplasmic and
mitochondrial rRNA were removed using the Ribo-Zero Gold kit (Illu-
mina, USA). The rRNA-depleted sequencing libraries from the total
RNA were prepared using the Illumina TruSeq Stranded Total RNA
Gold preparation kit (Illumina, USA).

The WGS, WGBS, and RNAseq libraries were quantified using the
Qubit dsDNA HS Assay (Thermo Fisher Scientific, USA). The size dis-
tribution of the resulting sequencing libraries was analyzed using the
Agilent BioAnalyzer 2100 (Agilent, USA). Paired-end sequencing was
performed using an Illumina NovaSeq6000 following Illumina-
provided protocols.

Blood collection and plasma isolation
Peripheral blood samples (10mL per person) were collected from all
participants before treatment. Blood samples were collected in the
EDTA blood collection tubes (Becton Dickinson, USA) and stored at a
temperature of 4 °C for no longer than 2 hours before undergoing
centrifugations (1800 × g for 10min at 4 °C for plasma collection and
16,000× g for 10min at 4 °C for removal of cellular debris).

Cell-free DNA extraction and quantification
The cfDNA was extracted from a median of 2mL of plasma using the
QIAmp Circulating Nucleic Acid Kit (Qiagen, USA) with the Qiagen
QIAvac 24 Plus vacuum manifold and QIAvac Connecting System
(Qiagen, USA) according to the manufacturer’s recommendations.
Then, cfDNAwas quantified byQubit 3.0 using the dsDNAHS Assay Kit
(Life Technologies, USA). At last, DNA was stored at −80 °C for further
analysis.

Cell-free DNA methylation library preparation
Cell-free DNA (5-50ng) was spiked with 0.5% unmethylated lambda
DNA (Promega, USA), which was sheared by the Covaris S220 instru-
ment (Covaris, USA) to ~350 bp and subjected to bisulfite conversion
with EZ DNA Methylation-Lightning Kit (Zymo Research, USA). The
converted DNAwas processed into library preparation with Accel-NGS
Methyl-Seq DNA Library Kit and Methyl-Seq Dual Indexing Kit (Swift
Biosciences, USA) according to the manufacturer’s protocol.

Library quantification and whole genome bisulfite sequencing
(WGBS) for cell-free DNA
The Prepared libraries were quantified with Qubit dsDNA HS Assay Kit
(Life Technologies, USA) and KAPA Library Quantification Kit (KAPA
Biosystems, USA), and the library quality was assessed using Agilent
2100 Bioanalyzer (Agilent, USA). Paired-end 150bp sequencing was
performed for each library on the Illumina HiSeq platform to a mean
coverage depth of 10× for cfDNA.

Quality control, data processing, and analysis
Quality control analyses were generated for the raw data using the
FastQC (version 0.11.8, www.bioinformatics.babraham.ac.uk/projects/
fastqc/). For tissue samples, trim_galore (version 0.6.0, www.
bioinformatics.babraham.ac.uk/projects/trim_galore/) was employed
to filter low-quality read data and trim adapters, retaining high-quality
data with a quality score greater than 20. For cfDNA samples, the
bbduk tool from bbmap was utilized to customize a WGBS adapter
library and perform adapter trimming to preserve more fragment
information. Subsequently, reads were aligned to the hg38 genome
using Bismark56 (version 22.1) to identify the optimal alignment strat-
egy. Duplicate readswere removed using the deduplicate_bismark tool
from bismark. Finally, the bismark_methylation_extractor tool was
employed to calculate genome-wide methylation levels. The
Samtools57 suite (version 1.9) manipulated alignments in the BAM
format. We used bedtools58 utilities (version 2.30.0) for the compar-
ison, manipulation, and annotation of genomic features in Browser
Extensible Data (BED).

Algorithms for identification of cfDNA methylation markers
In the ECGEA cohort, we extracted DMR and CNV features fromWGBS
and WGS data in 155 pairs of ESCC tissue samples. These features and
the FSRs served as the basis for developing a computational frame-
work for identifying early-stage ESCC patients using plasma cfDNA.

DMRs feature selection
From 460 cfDNA samples, 300 samples (ESCC: HCs = 150: 150) from
theCHCAMSwere selected as the training set, whichwas employed for
feature selection and model construction. To mitigate overfitting, all
models in this study underwent 10-fold cross-validation using random
forest modeling. Initially, a preliminary set of 650 DMR features was
selected through an adjusted p value < 0.05 (Wilcoxon test), favoring
DMRs with ESCC average values more significant than normal, as
determined by the malignant ratio14. Subsequently, to minimize costs
and reduce the required blood volume for single omics analysis,
selecting the minimum number of features that maximally incorpo-
rated information about ESCC was essential. Based on the inflection
point of model accuracy, the optimal number of features was deter-
mined to be 50 (Supplementary Fig. 1). Following, the optimal 50
features (Supplementary Figs. 2 and 3a) were selected using the
recursive feature elimination (RFE) strategy for classifier development.

We performed DMR annotation using ChipSeeker59 and the
TxDb.Hsapiens.UCSC.hg38.knownGene database, which includes
human gene transcripts and is accessible via Bioconductor. The pro-
moter region was defined as −2 to +2 kb of the transcription start
site (TSS).

Generation of the ESCC-cfMeth scores by machine learning
We constructed a random forest model, the ESCC-cfMeth score, using
the ‘caret’ (version 6.0-93) package with 50 DMRs in the training
dataset. The model employed default settings of 500 decision trees,
with the number of randomized variables chosen at each split. The
model’s performance was rigorously assessed using ‘ROC’ as the eva-
luation metric. It underwent multiple rounds of meticulous 10-fold
cross-validation, iteratively tuning parameters to maximize ROC
values, ensuring robust performance evaluation. Ultimately, themodel
parameters ‘mtry’ were set as 2. Next, the ESCC-cfMeth score was
evaluated in the internal cross-validation, external validation, and
precancerous validation sets. To calculate the detection accuracy,
samples with ESCC-cfMeth scores ≥ 0.5 were classified as ESCC sam-
ples, whereas those below 0.5 were considered non-ESCC/healthy.

Identification of CNVs in WGBS data
Since no reliable tools are available for calculating CNVs inWGBS data,
we developed an algorithm for identifyingCNVs inWGBSdata inspired
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by previous literature on WGS or WGBS data analysis60,61. Fragment
counting involved standardizing sample data to a uniform depth and
segmenting the genome into 1000-kb regions, yielding 2701 regions,
with fragment counts quantified within each region. Subsequently,
data denoising was performed to address the biased distribution of
fragment counts in regionswithGCcontent ranging from0.3% to0.6%,
which can lead to false positives. A well-established method, locally
weighted regression (LOESS), was employed for GC bias correction.
The LOESS method employs the following cubic function as weights:

BðxÞ= ð1� x2Þ2, xj j<1,
0, xj j≥ 1:

(
ð1Þ

W ðxÞ= ð1� x3Þ3, xj j<1,
0, xj j≥ 1:

(
ð2Þ

The x is the CG rate. The selection of weight functions involves
using the W function (cubic function) in the first iteration and subse-
quently employing the B function (quadratic function)

Employ weighted regression to derive the model:

ŷ=XðXTWXÞ�1
XTWy ð3Þ

The y is the raw fragment number, and ŷ is the predictive fragment
number.

In the final step, CNV regions were identified using the GC-
corrected fragment counts, calculated according to a specific formula.
Themodel classification was executed using Gaussian mixture models
from the ‘mclust’ package (version 5.4.5, https://github.com/Japrin/
mclust) to cluster the log2Ratio values, and hidden Markov models
(HMM) fromthe ‘HMM’package (version 1.0.1, https://CRAN.R-project.
org/package=HMM) were employed to refine the clustering results.

log2 Ratio= log2
Ft

Fn
ð4Þ

Where Ft is the fragment number in the tumor regions, Fn is the
fragment number in the normal regions.

For cfDNA CNV analysis, due to the diverse ctDNA components in
cfDNA samples, a previously established method was employed to
extract ctDNA counts within 1000 kb regions, serving as input for
ichorCNA62. To retain ESCC tissue information, only recurrent CNV
regions (present in three or more tissue samples) were analyzed in
cfDNA. In the recurrent regions, CNV events were compared between
the cfDNA in ESCC patients and those in the HCs from the discovery
cohort using a simple Wilcoxon test (p <0.05). Finally, 153 regions
were selected with significant differences.

Fragment size profiling
The FSR profile examines the ratio of short fragments within the
human genome. As defined in previous reports, short fragments fall
within 100-150 bp27,46,47. The human autosomes were partitioned into
non-overlapping 5Mb bins, and within these bins, the ratios of short
fragments were computed, resulting in a total of 570 FSR features. A
student’s t test was employed with a significance threshold of p <0.05
to identify differential features for input into the machine learning
algorithms, resulting in 83 FSRs.

However, incorporating these numerous but information-
deficient features directly into the model, even with lower weights,
could lead to decreased model performance. Therefore, feature
dimensionality reduction was performed using Multidimensional
Scaling (MDS), a data dimensionality reduction and visualization
method that transforms high-dimensional data into a lower-
dimensional space (e.g., two or three dimensions). MDS preserves

the distance relationships between data points while allowing for
intuitive data observation and analysis. Subsequently, 83 FSRs were
reduced to 2 dimensions (stress=1.38). Afterward, a 10-fold cross-
validation random forest model was established in the training set
using the two-dimensional FSRs, followed by validation on two inde-
pendent test sets.

Generation of the DMR plus CNV model and the EMMA model
Furthermore, we incorporated the CNVs and FSRs information to
enhance the performance of the ESCC-cfMeth model. Similar to the
feature dimensionality reduction process in FSRs, CNV features in 153
regions were also reduced to two dimensions using the MDS. Finally,
separate random forest models were established with 10-fold cross-
validation for CNVs, FSRs, the DMRs plus CNVs model, and the EMMA
model (namely, the DMRs plus CNVs plus FSRs model).

Clinical benefits estimation
We adopted an interception model designed by Hubbell et al. to
evaluate the potential clinical benefits of our diagnostic model in the
real-world setting32. The clinical benefits were estimated according to
current stage-specific diagnostic yields of ESCC33, the average annual
rate of progression from IEN to ESCC6,34, the shift rates of stages in
ESCC32, and the 5-year overall survival rates of IENs6 and ESCCs of
different stages33. The code for the original interception model is
available at https://github.com/grailbio-publications/Hubbell_CEBP_
InterceptionModel.

Calculating the average DNA methylation levels
An internal toolset called ‘meme_tools’ was developed by us, which
comprises two major utilities: the towig and the bed_mean_methy.
meme_tools can convert files in various formats into methylation level
(0–1) wig files and calculate the average methylation levels within
specified regions. In this study, towig was used to convert compressed
bed files containing single-base methylation levels from 155 pairs of
tissue samples derived from Bismark into wig files. Subsequently,
bed_mean_methy was employed to calculate the average methylation
levels within 650 DMRs and 50 selected DMRs. Running these calcu-
lations on a tissue sample is highly efficient, with minimal resource
requirements (only 10 GB ofmemory) and a runtime of approximately
3minutes. The same procedures were applied to calculate average
methylation levels within 81 previously published cell-type-specific
regions (Supplementary Fig. 5), except for removing missing CG sites
before conversion into wig files.

Cell type estimation
Cell type deconvolution scores, including epithelium cells, immune
cells (including CD8+ T cells, CD4 +T cells, and macrophages), and
stroma cells (including endothelial cells and fibroblasts), were calcu-
lated by R package ‘xcell’ (version 1.1.0)63 with the default gene sig-
natures and “RNA-seq” mode.

Differential expression and gene set enrichment analysis in
RNAseq data
Hierarchical clustering was utilized to stratify subjects based on the
DNA methylation levels of 50 DMR features within 155 ESCC tissue-
based datasets to discern distinct population groups characterized by
varying DNA methylation states. Both samples and DMRs were clus-
tered using the Euclidean distance andWard’s agglomerationmethod.
To identify differentially expressed genes among populations with
different DNA methylation states, we employed the Wilcoxon Rank-
Sum Test to identify genes that exhibited significant upregulation or
downregulation in the respective DNA methylation state pairs.

For differential expression analysis between the methylation-
dominant and methylation-poor clusters, R package ‘DESeq2’ (version
1.32.0)64 wasutilized. Afterward, the lfcShrink functionwas used for log
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fold change corrections. A total of 3221 significant genes (Padj<0.1, BH
method) were selected, in which 920 genes were upregulated in the
methylation-dominant cluster while 2301 genes were upregulated in
the methylation-poor cluster. These genes were subjected to further
enrichment analysis using the R package ‘clusterProfiler’ (version
4.0.5)65 with default parameters. For dimensionality reduction, the top
500 variable genes were selected for principal component analysis
(PCA), and the first two PCs were reserved. Then, clustering was per-
formed using the Louvain algorithm.

GO enrichment analyses were performed by the enrichGO func-
tion in the R package ‘clusterProfiler’ (version 3.10.1)66. Only the term
“biological process” was selected for GO enrichment analysis. Enrich-
ment with FDR was adjusted by Benjamini-Hochberg multiple
comparisons.

Statistical analysis
The receiver operating characteristic (ROC) curves were constructed
using the ‘pROC’ package (version 1.18.0)67. The sensitivity, specificity,
positive predictive value (PPV), negative predictive value (NPV),
accuracy, and the corresponding 95%CI were also calculated using the
‘pROC’ package. Kaplan-Meier analysis and log-rank tests were con-
ducted using the R-package ‘survival’68 for the overall survival analysis.
All statistical analyses (including student’s t test, Wilcoxon, and
ANOVA) were performed in R (version 4.2.0)69. Significance was
determined with a threshold of p <0.05. Bar charts, bar plots, pie
charts, line graphs, and other visualizations were generated using the
‘ggplot2’ package (version 3.4.2). Heatmaps were created using the
‘ComplexHeatmap’ package (version 2.14.0).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TheWGBS data from 460 cfDNA samples generated in this study have
been deposited in the Genome Sequence Archive (GSA) for Human
database under accession number HRA006113. According to the GSA-
human guidelines, the data are available for all non-profit use through
a request to the data access committee or the corresponding author
(Prof. Zhihua Liu, email: liuzh@cicams.ac.cn) with responses addres-
sed within 14 working days. After access has been granted, the data is
available for one year. The multi-omics genome-wide data from tissue
samples is available through the GSA database for Human database
under accession code HRA003107 (WGS & RNA-seq, https://ngdc.
cncb.ac.cn/gsa-human/browse/HRA003107) and HRA003533 (WGBS,
https://ngdc.cncb.ac.cn/gsa-human/browse/HRA003533). Source data
are provided with this paper.

Code availability
The codewasprovided in anopen-source repository inGithub (https://
github.com/packageandcode/EMMA)70.
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