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Inflammation and mitophagy are
mitochondrial checkpoints to aging
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Cellular and organismal aging have been con-
sistently associated with mitochondrial dys-
function and inflammation. Accumulating
evidence indicates that aging-related inflamma-
tory responses are mechanistically linked to
compromised mitochondrial integrity coupled
with mtDNA-driven CGAS activation, a process
that is tonically inhibited by mitophagy.

Both cellular senescence and organismal aging are accompanied by a
multitude of pathophysiological alterations, encompassing (but not
limited to) accumulating oxidative damage to macromolecules
including DNA, impaired metabolism, and inflammation1. All these
defects are intimately connected with yet another hallmark of aging:
mitochondrial dysfunction1. Indeed, defectivemitochondria are prone
to overproduce reactive oxygen species (ROS), are unable to support
physiological metabolism, and can elicit potent inflammatory
reactions1,2. Importantly, aging biological systems also exhibit a
decrease in the proficiency of homeostatic processes such as autop-
hagy, a lysosome-dependent mechanism for the degradation of
damaged or otherwise potentially harmful cytoplasmic entities1. In line
with this notion, multiple experimental maneuvers that promote
autophagy (such as caloric restriction) have been shown to extend
lifespan in a variety of model organisms including mice1.

That said, whether aging-associated alterations emerge as a con-
sequence of defects in cellular adaptation or instead perturbations of
homeostasis ultimately overwhelm the cellular capacity for adaptation
remains to be formally elucidated. Irrespective of this and other
unknown, the acquisition of a senescent phenotype by aging cells has
been shown to involve an autocrine/paracrine mechanism linked to
type I interferon (IFN) signaling as elicited not only by DNA damage3,
but also by mitochondrial dysfunction4. Thus, mitochondrial integrity
stands out as amajor gatekeeper for the control of genetic, metabolic,
and inflammatory homeostasis1. Recent data from Jimenez-Loygorri
et al. demonstrate that mitophagy (a specialized variant autophagy
that degrades defective mitochondria)5 limits aging-associating neu-
rological decline by suppressing inflammatory reactions driven by
primary mitochondrial dysfunction coupled with mitochondrial DNA
(mtDNA) release and consequent cyclic GMP-AMP synthase (CGAS)
signaling6.

Jimenez-Loygorri et al. set out to examine the activation of the
molecular machinery for mitophagy across different organs in old
versus young mice expressing a pH-sensitive reporter that enables the
discrimination of cytosolic (mCherry+GFP+) versus lysosomal
(mCherry+GFP−) mitochondria (so-called mito-QC mice). Surprisingly,
in some organs such as the retina, mitophagy was higher in old vs

young mice. In line with this notion, the retina of aged mice exhibited
increased markers of mitophagy (but not general autophagy) activa-
tion including the PTEN-induced kinase 1 (PINK1)-dependent phos-
phorylation of ubiquitin at S65. Such an increase in mitophagy was
accompanied not only by ultrastructural markers of mitochondrial
damage (e.g., swollen mitochondria, mitochondria exhibiting cristae
disruption) but also by the cytosolic accumulation of mtDNA and
consequent CGAS activation, culminating in (1) the stimulator of
interferon response cGAMP interactor 1 (STING1)-dependent activat-
ing phosphorylation of the transcription factor interferon regulatory
factor 3 (IRF3) at S396, and (2) the expression of multiple IRF3 targets,
including several interferon-stimulated genes (ISGs) like interferon
beta 1 (Ifnb1). Similar observations were obtained with primary normal
human dermal fibroblasts (NHDFs) from aged individuals, globally
suggesting that PINK1-mediatedmitophagy is activatedduring aging in
response to primary mitochondrial dysfunction6.

Next, Jimenez-Loygorri and colleagues investigated the impact of
experimental interventions that alter mitophagic activity on the aging
retina. Urolithin A (UA), which indirectly inhibits mechanistic target of
rapamycin (MTOR) signaling, promoted mitophagy in the retina of
both young and aged mice, a precess that in the latter setting was
associated with significant improvements in recognition memory,
night vision, synaptic integrity and limited aberrant integration of light
stimuli compared to untreated old mice. Moreover, UA decreased the
amount of total and CGAS-bound mtDNA in the cytosolic fraction of
the retina from aged mice, which was accompanied by a reduction in
genetic signatures of CGAS signaling and type I interferon (IFN)
responses6. In line with this finding, cytosolic mtDNA accumulation as
elicited by ABT-737 –which promotes mitochondrial outer membrane
permeabilization (MOMP) by enabling BCL2 associated X, apoptosis
regulator (BAX) and BCL2 antagonist/killer 1 (BAK1) oligomerization7 –

and QVD –which blocks caspases to prevent the suppression of CGAS
signaling downstreamofMOMP8,9 – in immortalized retinal pigmented
epithelial ARPE-19 cells was significantly inhibited by UA. Accordingly,
UA not only abolished CGAS activation but also limited ROS produc-
tion and restored oxidative phosphorylation in ARPE-19 cells exposed
to ABT-737 and QVD. Of note, the CGAS inhibitor G140 also limited
mitophagy as driven by MOMP in ARPE-19 cells, but failed to alter
cytosolic mtDNA accumulation6. These findings suggest that mito-
phagic responses promoted by mitochondrial dysfunction in the aged
retina may depend, at least in part, on CGAS signaling.

To obtain additional insights into their observations, Jimenez-
Loygorri and collaborators co-silenced PINK1 and parkin RBR E3
ubiquitin-protein ligase (PRKN, which encodes another molecular
component of the mitophagy apparatus)5 in ARPE-19 cells exposed to
ABT-737 and QVD, finding that cytosolic mtDNA accumulation as eli-
cited by MOMP in the context of caspase inhibition is aggravated by
mitophagy defects, which also abolish the effects of UA. Conversely,
inhibition of mitochondrial biogenesis with chloramphenicol reduced
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cytosolicmtDNAaccumulation asdriven by ABT-737 andQVD inARPE-
19 cells while preserving their sensitivity to UA6.

In conclusion, Jimenez-Loygorri and colleagues demonstrated
that mitophagy decelerates aging by suppressing inflammatory
responses downstream of primary mitochondrial dysfunction and

consequent mtDNA-dependent CGAS signaling (Fig. 1). Together with
recent data from us and others4,10–13, these findings point to a central
role for the mitochondrial checkpoint in a multitude of pathophysio-
logical settings, including aging, autoimmunity, adaptive immune
responses as well as cancer sensitivity to (immuno)therapeutics. Thus,
since mitophagy acts as a major gatekeeper of the mitochondrial
checkpoint, pharmacological strategies to enforce it (mitophagy acti-
vators) or weaken it (mitophagy inhibitors) may have broad ther-
apeutic applications. Importantly, the activation of apoptotic
executioner caspases as elicited by widespread MOMP has been con-
sistently shown to suppress CGAS signaling by a variety of
mechanisms14,15. In line with this notion, aging cells appear to experi-
ence sublethal degrees of MOMP (also known as minority MOMP) that
are compatible with cell survival but promote senescence and
inflammatory responses2,4. These observations raise the intriguing
possibility that strategies to elicit the sublethal activation of execu-
tioner caspases in the absence of accrued MOMP might suppress
aging-associated inflammation without causing cell death, as would
inhibitors of CGAS, STING1, or IRF3. Additional work is required to
formally investigate these possibilities.
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Fig. 1 | Mitophagy-dependent enforcement of themitochondrial checkpoint in
stressedand aging cells.Mitochondrial dysfunction as spontaneously emerging in
aging cells or as elicited by exogenous stressors such as radiation therapy and
chemotherapy can be accompanied by the permeabilization of mitochondrial
membranes, hence compromising the integrity of themitochondrial checkpoint. In
this context, mitochondrial DNA (mtDNA) released or bulging from permeabilized
mitochondria operates as a potent activator of cyclic GMP-AMP synthase (CGAS),
hence initiating a stimulator of interferon response cGAMP interactor 1 (STING1)-
dependent signaling cascade that culminates with the transactivation of multiple
interferon-stimulated genes (ISGs), including interferon beta 1 (IFNB1). The efficient
removal of compromised mitochondria as ensured by PTEN induced kinase 1
(PINK1)- and parkin RBR E3 ubiquitin protein ligase (PRKN)-dependent mitophagy
tonically suppresses such an aging- and stress-associated inflammatory phenotype.
Of note, mitochondrial outermembrane permeabilization (MOMP) asmediated by
BCL2 associated X, apoptosis regulator (BAX) and BCL2 antagonist/killer 1 (BAK1) is
also associated with the release of cytochrome c, somatic (CYCS), culminating in at
least some degree of caspase 9 (CASP9) and CASP3 activation, which precipitates
apoptotic cell death as it suppresses CGAS signaling. Whether activating apoptotic
caspases to sublethal degrees in the absence of accrued MOMP may decelerate
aging by limiting mtDNA-driven CGAS activation remains to be elucidated. IRF3
interferon regulatory factor 3.
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