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An approach to identify gene-environment
interactions and reveal new biological
insight in complex traits

Xiaofeng Zhu 1 , Yihe Yang 1, Noah Lorincz-Comi 1, Gen Li1,
AmyR.Bentley 2, Paul S. deVries 3,MichaelBrown 3,AlannaC.Morrison 3,
Charles N. Rotimi 2, W. James Gauderman4, Dabeeru C. Rao5,
Hugues Aschard 6,7 & the CHARGE Gene-lifestyle Interactions Working Group*

There is a long-standing debate about the magnitude of the contribution of
gene-environment interactions to phenotypic variations of complex traits
owing to the low statistical power and few reported interactions to date. To
address this issue, the Gene-Lifestyle Interactions Working Group within the
Cohorts for Heart and Aging Research in Genetic Epidemiology Consortium
has been spearheading efforts to investigateG× E in large and diverse samples
through meta-analysis. Here, we present a powerful new approach to screen
for interactions across the genome, an approach that shares substantial simi-
larity to the Mendelian randomization framework. We identify and confirm 5
loci (6 independent signals) interacted with either cigarette smoking or alco-
hol consumption for serum lipids, and empirically demonstrate that interac-
tion and mediation are the major contributors to genetic effect size
heterogeneity across populations. The estimated lower bound of the interac-
tion and environmentally mediated heritability is significant (P < 0.02) for low-
density lipoprotein cholesterol and triglycerides in Cross-Population data. Our
study improves the understanding of the genetic architecture and environ-
mental contributions to complex traits.

Current genome-wide association studies (GWAS) focus on detecting
genetic variants that lead to different phenotype means across geno-
type groups1,2, and have identified a large number of genetic loci that,
in some cases, explain large proportions of the trait’s SNP-
heritability3–5. While it is commonly agreed that complex traits are
influenced by genetic and environmental factors and their
interactions6–9, there is a long-standing disagreement about the

magnitude of theG× E contribution to heritability becauseof different
theoretical models and assumptions10,11. As pointed out in ref. 12,
arbitrarily defined parameterizations of genetic effects with non-
additive gene actionsmay explain the samedegree of genetic variation
as the currently prevailing additive model. Thus, while using additive
genetic models such as polygenic risk scores to predict individual
quantitative or qualitative phenotypes has become standard5, these
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models may not be fully informative in understanding genetic
architecture.

Interactions are often studied secondarily in comparison to
additive variance, whose advantage is to explain most of the correla-
tions among relatives and fit natural selection model well10,13. Theore-
tical studies have demonstrated that a significant portion of variance
can be explained by an additive model even when the genetic con-
tribution to aphenotype is purely throughG× E14. This limitation is one
of the key factors explaining the low power of approaches modeling
interactions conditional on additive variance. As a result, studies
focusing on detecting G× E at the genome-wide level are seldom
considered as primary analyses. By contrast, the joint evidence ofmain
genetic and G× E effects, in addition to the G× E alone, is tested in the
Gene-Lifestyle Interactions (GLI) Working Group within the Cohorts
for Heart and Aging Research in Genetic Epidemiology Consortium
(CHARGE)9,15, where only a modest number of genetic loci have been
identified through testing for G× E alone16–19. The joint test limits our
ability to determine to what degree the currently identified loci reflect
evidence for G× E contribution, making it difficult to understand the
precise interplay between genetic and environmental factors.

Concurrently, Mendelian randomization (MR) has been devel-
oped and widely applied to study causal relationships between risk
exposures and outcomes in the post-GWAS era20,21. Although an MR
approach has been used to explain G× E22, the underlying connection
between testing pleiotropic variants in the MR framework and the
detection of G× E is currently unclear. Here, we conceptually connect
G× E withMR framework, illuminate their similarities and demonstrate
that the test of horizontal pleiotropy in MR23,24 can be used for
detecting G× E. Based on this principle, one can identify G× E using
existing available GWAS and GWIS summary statistics. We applied this
approach to the summary statistics from the Global Lipids Genetics
Consortiumstudy (GLGC,n = 1.65M)3 and the summary statistics in the
interaction analysis with cigarette smoking and alcohol drinking in the
CHARGE GLI working group17, with replication using direct interaction
tests performed in the UK Biobank (UKBB) data. Although the UKBB
data accounted for about one third of sample in the GLGCconsortium,
theoretical work suggests that such replication is statistically inde-
pendent (Supplementary Note)

Results
Testing G × E and mediation based on Mendelian
randomization (MR)
Traditionally a genome-wide interaction study (GWIS) with an envir-
onmental exposure on a quantitative trait Y is modeled through a
linear regression:

Y = β0 +β1G+β2E +β3G× E + ϵ, ð1Þ

whereβ1,β2 andβ3 correspond to the ‘main’ effectofG (in thepresence
of E), the main effect of E and the interaction effect of G× E, respec-
tively, and ϵ is a random noise. Here G, E, and G× E represent a gen-
otype value, environmental factor, and their interaction respectively.
For simplicity, we do not include any covariates, but it will not affect
the general conclusion. The interaction effect is evaluated by the direct
test statistic Tdirect = β̂

2

3=var β̂3

� �
, where β̂3 refers the estimate from the

regression model (1). Theoretical work indicates that the test statistics
for the main effect β1 = 0 and the interaction effect β3 =0 are corre-
lated, with the correlation coefficient equal to �μE=

ffiffiffiffiffiffiffiffiffiffiffi
μ2
E + σ

2
E

p
, where μE

and σ2
E are the mean and variance of the environmental factor in the

data14. However, the power of the direct test is usually low because of
the collinearity between G and G× E which induces a covariance
between the estimates of β1 and β3. This covariance produces uncer-
tainty (i.e. larger standard error) which by itself reduces power for
testing either β1 or β3, even if the underlying truemodel includesG× E
alone (i.e., β1 = 0 and β3≠0)

10,14.

In practice, a GWAS is routinely conducted first when studying the
genetic contribution to a trait, which is typically done through a linear
regression model without including environmental factors, i.e.,

Y =α0 +αG+ ϵ, ð2Þ

where we refer to α as the ‘marginal’ effect from a GWAS (in the
absence of E) to differentiate from the main effect β1 in model (1). We
show that α � β1 =

ρσE1
σG1

β2 + ðμE1 +
ρσE1
σG1

Þβ3, where ρ is the mediation

contribution of G through E, μE1, σE1, and σG1 represent the environ-
mental mean, standard deviation, and genotype standard deviation in
GWAS data, respectively, suggesting that testing the hypothesis H0:
α–β1 = 0 for the difference between the marginal and main effects is
equivalent to testing for the combined effect of G× E and mediation,
and further reduces to testing for the G× E when G and E are inde-
pendent (i.e., ρ=0, Supplementary Note). This hypothesis can be

tested by the statistic Tdif f = ðα̂ � β̂1Þ
2
=varðα̂ � β̂1Þ, where α̂, β̂1, and

their corresponding standard errors are estimated from theGWAS and
GWIS analyses, respectively. In fact, Tdif f and Tdirect are equivalent
whenGWAS andGWIS are performed in the samedata.We verified this
property using real data analysis in the GLI studies17, from which the
summary statistics of the marginal, main, and interaction effects are
available and themarginal effectwasobtained after adjusting for E.We
observed that the correlationbetween the statistics of theTdif f and the
direct test is 0.98 for LDL and current smoking (Supplementary Fig. 5).
However, GWAS is often performed in a much larger sample than the
GWIS because of data availability. The environmental exposure may
have different distributions in cohorts for conducting GWAS andGWIS
(i.e., differentmean and variance). Furthermore, models (1) and (2) are
likely to be performed by two different groups of investigators, which
will bring variation across studies in trait definitions, trait measure-
ment procedures, quality control procedures, and covariates. More-
over, the summary statistics are obtained through meta-analyses in
both GWAS and GWIS analyses, which can bring additional variation
and confounding factors, including population stratification and
cryptic relatedness, leading to a potentially invalid comparison
between the marginal and main effects. In fact, it has been reported
that the confounding of population stratification is not sufficiently
corrected in large GWAS25,26. Therefore, directly using Tdif f to screen
the genome can be biased even for testing the combined contribution
of interaction and mediation.

To overcome this bias, we note that themarginal effect estimate α̂
and the main effect estimate β̂1 have a linear relationship,

α̂ =θβ̂1 +
ρσE1

σG1
β̂2 + μE1 +

ρσE1

σG1

� �
β̂3, ð3Þ

where θ reflects the contribution of main effect to marginal effect,
which converges to 1 when GWAS and GWIS are conducted using
homogeneous measurements of phenotypes and environments
(“Methods”). The genetic variants with no G× E and no mediation will
fall on the regression line but the variants with G× E or mediation will
depart from this line. We do not expect this pattern to be system-
atically impacted by the variation across studies. Therefore, we search
the genetic variants that depart from this regression line to test the
combined effect of G× E and mediation, providing θ can be correctly
estimated. This idea is conceptually the same as the MR framework

when we introduce a pseudo exposure eX , representing a polygenic
score of the trait (Fig. 1). We do not need to construct this pseudo
exposure in our analysis because we work directly on the summary
statistics under the MR framework. We then estimate the causal effect

θ of the pseudo exposure eX on trait Y in the MR framework and the
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G× E effect ormediation through E is tested in the sameway as testing
for horizontally pleiotropic variants23. In doing so, we first select a set
of independent variants associated with trait Y and perform the

inverse variance weighted analysis to estimate θ, denoting as θ̂. Sec-
ond, we test the G× E or mediation of a genetic variant through E by

the statisticTMR GxE =
α̂�θ̂β̂1

� �2

var α̂�θ̂β̂1

� � ∼ χ21 . This test can beperformedby the

iterative Mendelian randomization and pleiotropy (IMRP)
approach23,27. The statistic TMRGxE is an asymptotically unbiased test
for testing the combined effect of G× E and mediation through E
(Supplementary Note).

Two-step procedure for testing G ×E
Note that TMR GxE likely tests for the combined effect of G× E and
mediation unlessG and E are independent (i.e., ρ=0). To test forG× E,
we propose a two-step procedure by using TMRGxE to screen the whole
genome and then performing Tdirect on the variants surviving the

TMRGxE screen. We set the significance level at 5 × 10−8 for the first step
(TMR GxE test), and the significance level at 0.05/X for the step 2 Tdirect

test, where X is the number of independent significant variants in the
first step/test. This two-step procedure can increase power at the
screening step when there is interaction and mediation and increases
power at the direct testing step by substantially reducing the multiple
comparison burden. TMRGxE and Tdirect are not independent (Supple-
mentary Note), and therefore, the variants detected by the two-step
procedure could still reflect the contribution of mediation and G× E,
and it is necessary for further replication by performing Tdirect in
independent data. To mitigate this problem, we can exclude the var-
iants identified through GWAS of E, which could represent large
mediation effect.

Type I error rate and power of TMR GxE and the two-step
procedure
We first performed a series of simulations to investigate the type-I
error rate and power of TMRGxE in the absence of mediation. In

Fig. 1 | IlluminationofMendelian randomization andG × E.A Left panel: the path
diagram of the MR, where U refers to all confounders. Genetic variants (G) con-
tributing to outcome Y through mediation of exposure X are often selected as the
valid genetic instrumental variables (black paths). Genetic variants contributing to
Y through both black and red paths independently are horizontal pleiotropic var-
iants. Genetic variants contributing to Y through confounders (U) are invalid
instrumental variables and need be blocked (x). Right panel: a scatter plot of effect
sizes of genetic instrumental variants for an exposure and an outcome. Each +
corresponds to the 95% confidence intervals of the exposure effect size (horizontal
line segment) and the outcome effect size (vertical line segment). The horizontal
pleiotropic variants (red +) depart from the regression line and can be separated
from the variants with no pleiotropic effect (blue +). B Left panel: the G× E fra-
mework, with the goal of testing G× E. Instead of an explicit exposure, we create a
pseudo exposure eX , which can be viewed as a polygenic score for trait Y based on
marginal effect sizes. However, our analysis does not require estimating this

pseudo exposure. The genetic variants associated with the pseudo exposure eX but
not through either the environment E or G× E are valid instrumental variables. The
genetic variants interacting with E can be viewed the same as horizontally pleio-
tropic variants in the MR framework. Genetic variants associated with Y via med-
iation through E can contribute toboth thepseudoexposure eX and Y, and thus have
similar effects as G× E and cannot be distinguished from G × E. Thus, testing the
combined effect of interaction and mediation is conceptually equivalent with
testing the horizontally pleiotropic effect in the MR framework. Right panel: a
scatter plot of genetic variants for GWIS main effects and GWAS marginal effects.
Each + corresponds to the 95% confidence intervals of the GWIS main effect size
(horizontal line segment) and theGWASmarginal effect size (vertical line segment).
Like the horizontal pleiotropic variants in the MR framework, G × E variants (red +)
depart from the regression line and can be separated from variants with no G× E
assuming no mediation.
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simulations we observed that E(θ̂) is close to 1 and the estimate θ̂
converges to 1 when sample size increases, which is expected by the-
oretical prediction (Fig. 2A and Supplementary Fig. 6a). The direct
estimate of the interaction effect β3 as well as of α̂ � β̂1θ̂

� �
=μE is also

unbiased (Fig. 2B, Supplementary Fig. 6b), although the standard error
of α̂ � β̂1θ̂

� �
=μE is affected by the environmental means in GWAS and

GWIS. When no mediation is present, the type-I error rates for both
TMR GxE and the direct test are well controlled (Fig. 2C and Supple-
mentary Fig. 6c)). The power of TMRGxE depends on multiple para-
meters, includingμE and allele frequency inGWAS andGWIS and is less
powerful than TDirect when the environmental mean in GWAS is lower
(Fig. 2D and Supplementary Fig. 6d). Additional simulations for the
estimates of θ̂, interaction effect α̂ � β̂1θ̂

� �
=μE , type-I error rate and

power are presented in Supplementary Figs. 7–9.
We next investigated the performance of TDirect , TMR GxE and the

two-step procedure when mediation is present and multiple variants
are tested. We generated 20 independent variants with one variant
having mediation, interaction, or both. All three tests have well con-
trolled type I error rates when mediation is absent (Fig. 2E and Sup-
plementary Fig. 10A). When mediation is present, the type-I error rate
was still well controlled, although inflation can be observed for the
two-step test and TMRGxE when E contributes to 5% of the outcome
variation and the samples between GWAS and GWIS are completely
overlapped (Supplementary Fig. 10B, C). This inflation was caused by
mediation and quickly disappeared when the overlapping rate
between GWAS and GWIS subjects was reduced. The statistical power
of TMRGxE and the two-step procedure for testingG× E wasmuchmore
improved than TDirect when mediation was present (Fig. 2F and Sup-
plementary Fig. 10D–F).

Identifying gene-smoking and gene-alcohol drinking interac-
tions to serum lipids
We applied the two-step procedure to search for genetic variants
interacting with cigarette smoking and alcohol drinking for serum
lipids, using the summary statistics of high-density lipoprotein cho-
lesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and tri-
glycerides (TG) from the GLGC (n = 1.65M) and the CHARGE GLI
(n = 134 K). To mitigate the effects of mediation through cigarette
smoking or alcohol drinking, we excluded all lociwith P-value < 5 × 10−7

reported in the early GWAS of cigarette smoking status or alcohol
drinking28, which represent relatively large effect sizes of variants on
cigarette smoking and alcohol drinking. We observed that θ̂ ranged
from 0.92−1.33, 0.95−1.62, 0.83−1.25, 0.87−1.37, and 0.95–1.28 for
European, African, Asian, Hispanic, and Cross-population data,
respectively (Supplementary Data S1). The departure of θ̂ from 1 sug-
gests that the phenotype treatments, analysis protocols, and correc-
tions for population structure were not identical between the GLGC
and CHARGEGLI consortiums. For example, CHARGEGLI performed a
natural logarithmic transformation to the lipid measurements,
whereas GLGC further performed an inverse normal transformation.
The number of principal components (PCs) for correcting populations
was also different between GLGC and CHARGE GLI. Despite these
discrepancies, we did not observe an inflation for TMRGxE , with the
genomic control λ values being close to 1 (range 0.93–1.05, Supple-
mentary Data S2).

Using TMRGxE to screen the genome,we observed 15 genome-wide
significant loci consisting of 17 independent signals (P < 5 × 10−8,
r2<0:1), including 4 and 5 loci for LDL-C, 7 and 5 loci for HDL-C, and 5
and 6 loci for TG, interacting with cigarette smoking and alcohol
drinking or mediating through them, respectively (Fig. 3A–C, G–I,
Supplementary Data S3a). All but 3 loci have been reported to be
associated with either cigarette smoking or alcohol drinking in the
recent largest GWAS study with over 3 million samples29, suggesting
the contribution of both G× E and mediation. Since we already
excluded the cigarette smoking and alcohol drinking variants

identified from a relatively smaller study28, these detected variants
should represent modest mediation effects. Locus-specific plots of all
significantly associated loci are presented in Supplementary Fig. 11,
which suggest that multiple protein-coding genes are present in these
loci. Strikingly, all the loci have previously beenmapped to lipids traits
except RPL5P26 on chromosome 10. The G× E or mediation loci are
clearly departing from most of the lipids-associated variants
(Fig. 3D–F, J–L). The population-specific TMRGxE results are presented
in Supplementary Fig. 12, which are also consistent with the Cross-
population results, although the main contribution comes from the
European population.

By applying the two-step procedure, we observed that 8 of the 17
independent signals are significant when using the direct test TDirect

after correcting for the 17 tests and 4 environmental factors (Table 1,
P < 7.35 × 10−4). In comparison to the direct test in GWIS, the two-step
procedure identifiedmoreG× E signals for each of the three lipid traits
and four environmental factors (Supplementary Data S3b). This pro-
vides additional support for the enhanced statistical power of the two-
step procedure. The tissue enrichment analysis using the GWAS-based
pathway analysis tools, MAGMA30 and FUMA31, suggest that these loci
are enriched in liver, hippocampus, small intestine, and stomach tis-
sues (Supplementary Fig. 13). Multiple loci were colocalized with
expression quantitative trait loci (eQTLs) in the corresponding liver,
lung, and blood tissues in the genotype-tissue expression database
(GTEx)32 (Supplementary Fig. 14).

Independent replication
We next attempted to replicate the evidence for these 8 independent
signals in the UKBB. Although the UKBB data accounted for about one
third of samples in theGLGCconsortium, the direct test statistic TDirect

calculated in the UKBB is independent of TMRGxE , so are the TDirect test
statistics calculated in UKBB and CHARGE GLI, thus qualifying this as
an independent replication (Supplementary Note). Six of the 8 signals
are replicated in the UKBB after adjusting for 32 tests (P < 1.56 × 10−3),
and 5 of them were genome-wide significant by the TDirect test in
combined CHARGE GLI and UK Biobank data (Table 1). All 8 indepen-
dent signals have the same interaction direction in CHARGE GLI and
UKBB except LPL, which is not significant in UKBB (Supplementary
Data S3a). The CETP and SMARCA4 loci are the only two loci with no
reported mediation evidence through either cigarette smoking or
alcohol drinking.

We now aim to understand if the interaction evidence observed in
this study has an alternative explanation33 because of linkage dis-
equilibrium (LD) with a variant which has causal effect on cigarette
smoking or alcohol drinking. To examine this, we searched if there
exists a variant(s) at each of the loci in Table 1 explaining the observed
interaction evidence in the UKBB. However, we did not observe such
variants (Supplementary Fig. 15), suggesting that the interaction evi-
dence presented in Table 1 is genuine. In total, we identified 5 loci
consisting of 6 independent signals that have evidence of interaction
with either cigarette smoking or alcohol drinking.

G × E interaction and mediation to SNP heritability
Since α̂ � β̂1θ̂ refers to the combined interaction and mediation con-
tribution to the marginal effect, we use α̂ � β̂1θ̂ to estimate the herit-
ability contributed by the interaction and mediation through the LD
score (LDSC) regression34. Note that this heritability is a lower boundof
the phenotype variance contributed by the G× E and mediation
through E and is a part of the heritability estimated through the mar-
ginal effect, which is often referred to as the SNP-heritability in GWAS.
In both Cross-Population (Fig. 4A) and European population (Fig. 4B),
we observed significant interaction and mediation heritability
(P < 0.03) with ever cigarette smoking for LDL-C, and alcohol con-
sumption or cigarette smoking for TG, suggesting that the heritability
estimates based on marginal effects also include significant
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is close to 1 as expected.B Box plots of the direct estimate of β3 in GWIS

(top panel) and by α̂ � β̂1θ̂
� �

=μe through MR- G× E analysis (bottom panel). The
box plots are interpreted the same as in (A) accordingly. Both the estimates of β3

and that by α̂ � β̂1θ̂
� �

=μe are unbiased. Here s = −1 refers to the scenario when the

main effect and interaction effect have opposite effect directions; s = 0 refers to no
main effect; and s = 1 refers to the scenario when the main effect and interaction
effect have the same effect direction. C Type I error rate comparison between
TMR GxE and thedirect test for differentmain and interaction effect directions. Both
TMR GxE and the direct test maintain the type I error rate well.D Power comparison
between TMR GxE and the direct test for different main and interaction effect
directions. E, F 20 variants were tested when mediation was present or not. The
simulation details were described in ”Methods”. E Type I error comparison for
TDirect , TMR GxE and two-step procedure. The dash lines represent the 95% con-
fidence interval. F Power comparison for TDirect , TMR GxE and two-step procedure.
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LDL-C x Current Drinking

LDL-C x Regular Drinking

LDL-C x Current Smoking

LDL-C x Regular Smoking

HDL-C x Current Drinking

HDL-C x Regular Drinking

HDL-C x Current Smoking

HDL-C x Regular Smoking

TG x Current Drinking

TG x Regular Drinking

TG x Current Smoking

TG x Regular Smoking

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

(J) (K) (I)

Fig. 3 | Manhattanplots,marginal andmain effect size comparisons.The circle
Manhattan plots of gene × alcohol drinking interactions for A LDL-C; B HDL-
C; and C TG, respectively. The genome-wide significant loci are presented in
red dots. The marginal and main effect sizes corresponding to alcohol
drinking for D LDL-C; E HDL-C, and F TG, respectively. The colored circles

represent the genome-wide significant loci and gray circles represent insig-
nificant loci by TMR GXE test. The circle Manhattan plots of gene × cigarette
smoking interactions for G LDL-C; H HDL-C; and I TG, respectively. The
marginal and main effect sizes corresponding to cigarette smoking for J LDL-
C; K HDL-C, and L TG, respectively.
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contributions from G× E and mediation through the corresponding
environment factors (Supplementary Data S4).

G × E interaction and mediation to heterogeneity of genetic
effect sizes across populations
As noted in Eq. (3), the marginal effect estimate of a genetic variant in
GWAS consists of the G× E andmediation contribution when the G× E
and mediation occur. Because of the environment heterogeneity
across populations, we expected that the marginal effect sizes of the
variants will be less correlated across populations for the variants with
than without G× E interaction or mediation. We calculated the mar-
ginal effect size correlations between European, African, Hispanics,
and Eastern Asian for these variants reported in Graham et al3 after
excluding the variants in Supplementary Data S3a where their G× E
interactions or mediations were observed in this study. Similarly, we
calculated the marginal effect size correlations for the variants in
SupplementaryData S3a.We compared the correlation and observed a
median of 24.4% drop of the cross-population correlation coefficient
(Fig. 5), strongly support that G× E interactions or mediations con-
tribute to the marginal effect size heterogeneity across populations.

Discussion
In this study, we utilizemarginal effects fromGWAS to search forG× E.
We conceptually demonstrated the deep connection between detect-
ing G× E and MR for causal inference. Although TMRGxE tests for the
combined effect of G× E and mediation, the two-step procedure of
TMRGxE followed by TDirect in fact tests for G× E, and its statistical
power ismuch improved because of the following reasons: (1) the step
1 TMRGxE can increase power when a genetic variant has a mediation
effect through the environmental factor. In this case, we expect a lar-
ger difference between themarginal effect and themain effect (Eq. (3))
than no mediation. (2) The difference between the marginal and main
effect can further increase when the environmental distributions
between GWAS and GWIS cohorts are different (Eq. (3) and Fig. 1D). (3)
At the two-stepprocedure,multiple comparisonburden is significantly
alleviated because only significant variants survived at step 1 need to
be examined. As demonstrated in this study, the two-step procedure

identified 8 independent signals in comparing with two by the direct
test in GWIS. This is also consistent with when comparing with the
direct test in GWIS, the two-step procedure identified more G× E sig-
nals for each of the three lipid traits and four environmental factors
(Supplementary Data S3b). Detecting G× E using direct tests can be
biased by unmeasured confounders due to omitting covariates in the
regression models35, but the two-step procedure is robust because
TMR GxE is not affected by confounders such as population structure.
Considering the advantages of the two-step procedure, we view it as a
complement rather than a replacement of the direct test. This per-
spective arises from the fact that the two-step test necessitates addi-
tional GWAS summary statistics and may be less powerful than the
direct test in some situations (Fig. 1D).

Our study demonstrated that the current heritability estimates
based on marginal effects could also include contributions from G× E
andmediation through the corresponding environment factors (Fig. 4
and Supplementary Data S4). We excluded cigarette smoking- or
alcohol drinking-associated variants identified from a large cigarette
smoking and alcohol consumption GWAS of 1.2 million individuals28 in
our analysis, which mitigates the potential mediation contribution in
the TMRGxE analysis. However, among the 15 loci identified by TMRGxE ,
only three were not reported in the much larger recent cigarette
smoking and alcohol consumption GWAS of 3.4 million individuals,
suggesting mediation through cigarette smoking and/or alcohol con-
sumption is still present but with modest effects. Among the six G× E
variants identified, 4 are associated with either cigarette smoking or
alcohol drinking, suggesting that the G× E variants are also likely to be
mediated through E and the mediation improves power to detect
G× E. Furthermore, we demonstrated that the current SNP heritability
estimates based on marginal effects could also include significant
contributions from G× E and mediation through the corresponding
environment factors for LDL-C and TG (Fig. 4 and Supplementary
Data S4). We did not observe significant contributions from G× E and
mediation to heritability for HDL-C, potentially attributable to the
relatively small sample sizes in our GWIS. Since the LDSC regression34

cannot be used to estimate G× E heritability, our estimates reflect the
low bound of the interaction and environmentally mediated

Table 1 | Interaction loci screened by TMR GxE and followed by the direct test TDirect in GLI (two-step test) and replicated by the
direct test TDirect in UK Biobank

Mapping
Gene

CHR: BP Lead SNP Environmental factor Lipid
traits

MR_GxE test
P-value

GLI direct test
P-value

UKBB direct
test P-value

Combined GLI and UKBB
direct test P-value

Signals identified by TMR GxE (P < 5E−08), by TDirect (P < 7.35E−04) and replicated by TDirect in UKBB (P < 1.56E−3) or combined GLI and UKBB TDirect P < 5E−8

BUD13* 11:116637146 rs12294259 Regular Drinking TG 2.47E−18 3.61E−06a 1.97E−04a 2.14E−08

11:116657561 rs3741298 Current Smoking TG 2.80E−13 1.16E−10a 4.24E−01a 6.99E−10

CETP 16:57000696 rs8045855 Current Drinking HDL-C 6.12E−24 1.85E−07a 4.97E−07a 4.05E−12

16:57006829 rs289713 Regular Drinking HDL-C 5.01E−19 3.63E−07a 3.16E−06a 4.62E−11

BCAM* 19:45392254 rs6857 Regular Drinking LDL-C 4.02E−12 1.28E−06a 2.95E−04a 8.57E−09

NECTIN2*
TOMM40
APOE
APCO1

19:45422946 rs4420638 Regular Drinking LDL-C 6.55E−36 4.41E−05a 1.95E−06a 2.08E−09

LPL* 8:19830170 rs1569209 Current Smoking TG 4.77E−10 1.01E−13b 3.49E−02b 1.04E−13

SMARCA4 19:11191677 rs10402112 Regular Drink LDL-C 1.85E−15 5.75E−04a 9.04E−04a 8.04E−06

Signals identified by TMR GxE (P < 5E−08) and by TDirect (P < 7.35E−04) but failed in UKBB replication

RPL5P26* 10:71533084 rs11591480 Regular Drinking HDL-C 3.34E−08 1.11E−04a 5.23E−02a 8.69E−05

ZPR1** 11:116662579 rs651821 Ever Smoking TG 7.34E−17 3.44E−05a 6.87E−01a 1.73E−04

The P-values of TMR GxE and TDirect are two-sided P-values based on Z-scores. The P-values in the last column (combinedGLI andUKBBdirect Test P-value) are calculated froma chi-square testwith 4
degrees of freedom. All P-values were not adjusted for multiple comparisons. The bold P-values represent significant variants after adjusting for multiple comparisons.
*The locus has been reported to be associated with cigarette smoking.
**The locus has been reported to be associated with both cigarette smoking and alcohol drinking.
aThe interaction effect direction is the same in GLI and UKBB. Detailed effect sizes and standard errors are presented in Supplementary Data S3a.
bThe interaction effect direction is opposite in GLI and UKBB. Detailed effect sizes and standard errors are presented in Supplementary Data S3a.
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heritability. We therefore suggest that the current SNP heritability
estimates basedon themarginal genetic effects be calledmarginal SNP
heritability, to differentiate it from narrow-sense heritability36 that is
defined by additive genetic actions without the inclusion of G× E or
mediation contributions. We believe this differentiation is important
for correctly interpreting the current heritability estimates and
understanding the genetic architecture of complex traits.

The 5 (6 independent signals) replicated loci interacting with
cigarette smoking and alcohol consumption contain genes that are
enriched in liver tissue, possibly reflecting the effect of alcohol
drinking on aspartate amino transferase, alanine aminotransferase
and γ-glutamyl transferase activities via the actions of numerous
ingredients that alter the activities of enzymes found in the liver37.
Among them, the interaction between alcohol consumption and
cholesteryl ester transfer protein (CETP) has been reported for HDL-
C and coronary artery disease38–40. The interaction between alcohol
consumption and APOE on LDL-C has also been reported in a Medi-
terranean Spanish population41, while the interactions between
APOA5 and cigarette smoking and alcohol drinking status associated
with elevated TG and reduced HDL-C were observed in the Chinese
and Korean populations42,43. However, our study is the only well-
powered study demonstrating significant evidence at the genome-
wide level and the interaction loci are replicable. SMARCA4 was
reported to be associated with LDL-C in the lipids GWAS in Africans44

but not in the recent largest lipids GWAS which is predominantly
European ancestry3. Overall, the marginal effect sizes of the variants
are less correlated across populations for the variants with than
without G× E interaction or mediation (Fig. 5), empirically verified
that G× E and mediation contribute to marginal effect differences
across different populations45. We expect that including G× E inter-
actions should improve polygenetic risk score prediction across
populations.

It is well known that causal effect estimate in MR framework can
be biased when the three IV assumptions are violated. However, our
goal is to detect G× E rather than to estimate the causal effect.
Detecting G× E based on MR is less likely to be biased for these rea-
sons: (1) the effect sizes of IVs on the pseudo exposure are all highly
significant in GWAS, which represent strong IVs. (2) It is less likely to
have a confounding effect between a trait and its pseudoexposure, i.e.,
a polygenic score. (3) The iterative Mendelian randomization and
pleiotropy test is a powerfulmethod todetect pleiotropywhen the two
IV conditions are satisfied23, in particular, it is expected thatmostof the
IVs are not interacted with E. (4) Although the causal effect estimate
can be affected if population structure is not well corrected, testing
G× E by TMRGxE is not. The reason is that TMRGxE can be viewed as a
weighted linear regression of the effect size of GWAS on the effect size
of GWIS followed by searching the outlies of variants departing from
the regression line. While the regression line (equivalent to causal
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Fig. 4 | The estimated heritability of HDL-C, LDL-C, and TG using LDSC
regression. A Cross-Population. B European population. X-axis represents herit-
ability in percentage. Y-axis represents the corresponding heritability estimated in
percentage (marginal.effect:marginal effect heritability; current.drinking: gene and
current drinking interaction effect heritability; regular.drinking: gene and regular
drinking interaction effect heritability; current.smoking: gene and current smoking
interaction effect heritability; ever.smoking: gene and ever smoking interaction
effect heritability). Marginal effect heritability refers to the heritability estimated

through the marginal effect α̂, and interaction effect heritability refers to the her-
itability estimated through α̂ � θ̂β̂1. The percentage number displayed on the right
side of each bar represents the estimated heritability, and the corresponding 95%
confidence interval shown as horizontal error bars. For themarginal effect analysis,
the sample size is 1.65M and 1.32M for cross-population and European population
analysis, respectively. For the interaction effect analysis, the sample size is 134K
and 80K for cross-population and European population analysis, respectively.
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effect estimate in MR) can be affected by population structure, the
outlie detection is not.

In summary, our G× E approach is powerful and able to detect
genetic loci interacting with environments that account for significant
phenotypic variability. Our findings indicate that the contribution of
G× E in lipids is not ignorable. Our study only focuses on the interac-
tions of genes with cigarette smoking and alcohol consumption in
lipids. The cumulative interaction contribution with many environ-
mental factors can even be greater. Detecting individual genetic loci
with environmental interactions facilitates a better understanding of
the genetic architecture of complex traits and can improve phenotype
prediction.

Methods
Summary statistics data
The marginal summary statistics of high-density lipoprotein choles-
terol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and trigly-
cerides (TG) from theGlobal Lipids Genetics Consortium study (GLGC,
n = 1.65M)3 were downloaded at http://csg.sph.umich.edu/willer/
public/glgc-lipids2021.

GLGC consists of GWAS results from 1.65M subjects representing
five genetic ancestry groups: European (N = 1.32M); African or
admixed African (N = 99K); East Asian (N = 146 K); Hispanic (N = 48K);
and South Asian (N = 41 K). We did not perform South Asian specific

analysis because there was no corresponding GWIS in the Cohorts for
Heart and Aging Research in Genetic Epidemiology (CHARGE) con-
sortium. The GWIS summary statistics from CHARGE gene-lifestyle
(GLI) working group in this study are available via dbGaP (accession
number phs000930). The CHARGE GWIS consists of 60 GWIS sum-
mary datasets: (LDL-C, HDL-C, and TG)-current smoking, (LDL-C, HDL-
C, and TG)-ever smoking, (LDL-C, HDL-C, and TG)-current alcohol
drinking, and (LDL-C, HDL-C, and TG)-regular alcohol drinking, for
European, African or Admixed African, East Asian, Hispanic and multi-
ancestry.

QCs for performing TMRGxE analysis
ToperformMRanalysis,we aligned theGWAS summary statisticsHDL-
C, LDL-C, and TG from the GLGL with the corresponding GWIS sum-
mary statistics from theCHARGEgene-lifestyle consortium.Weflipped
the effect size if the corresponding reference allele did not match. We
dropped a genetic variant if the two alleles were either {A, T} or {C, G}.
We also excluded any variants with minor allele frequency (MAF) dif-
ference larger than 0.15 between GWAS and GWIS study. If multiple
variants fall on the same chromosome position, we required the mat-
ched variants with MAF difference less than 0.01. We further excluded
any variants with the effective sample size in GLGC trans-ethics or
European less than 100K and the other populations (African, Hispanic,
East Asian) less than 30K. To reduce the effect bymediations through
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Fig. 5 | Cross-population comparison of the LDL-C, HDL-C, and TG marginal
effect sizes of the variants reported in Graham et al.3. A EUR vs AFR, no G × E
interaction or mediation. B EUR vs AFR, G × E interaction or mediation. C EUR vs
HIS, noG × E interactionormediation.D EUR vsHIS,G × E interaction ormediation.
E EUR vs EAS, no G × E interaction or mediation. F EUR vs EAS, G × E interaction or
mediation. G AFR vs HIS, no G × E interaction or mediation. H AFR vs HIS, G × E
interaction or mediation. I AFR vs EAS, no G × E interaction or mediation. J AFR vs
EAS,G × E interaction ormediation.KHIS vs EAS, noG × E interaction ormediation.
L HIS vs EAS, G × E interaction or mediation. The variants with no G × E interaction

or mediation are those not included in Supplementary Data S3a. The variants with
G × E interaction or mediation are those in Supplementary Data S3a. We only
included independent variants. The shadow error bands represent the 95% con-
fidence intervals. Clearly the variants withoutG × E interactions ormediations have
substantially larger cross-population correlations than the variants with G × E
interactions or mediations, suggesting that G × E interactions or mediations con-
tribute themarginal effect size heterogeneity across populations. (European (EUR),
African (AFR), Hispanics (HIS), Eastern Asian (EAS)).
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the smoking and alcohol drinking, we excluded all loci with P-value <
5E−7 identified by the GWAS of smoking status or alcohol drinking28.

TMRGxE analysis
To perform TMRGxE , we applied the Mendelian randomization (MR)
software IMRP23 to estimate the causal effect by considering the main
effect sizes from theGWIS of the CHARGE gene-lifestyle consortium as
the exposure effects, and the marginal effects from the GLGC as the
outcomeeffects, respectively. To identify instrument variables,wefirst
selected all the variants with the P-value < 5E−8 after GC-correction in
the GLGC, and then pruned them using the window size 500 KB and r2

value 0.1 by the Plink software46. We standardized the effect sizes as
in27. IMRP requires the input of the correlation coefficient to account
for the effect of sample overlapping between GWAS and GWIS cohorts
and this correlation was calculated based on the unsignificant variants
(P-value > 0.05) across the genome. After estimate the causal effect, we
performed TMRGxE , which is equivalent to the pleiotropy test in the
IMRP, to all the genetic variants across the genome.

Independent locus definition
Independent loci were defined as the regions within 1Mb of the most
significant variants by the TMRGxE test. Independent signals were
defined as the variants in a locus with r2 < 0.1. The 1000G data was
used as the reference genetic data for LD calculation.

Choosing independent variants for replication in UK Biobank
By applying TMRGxE , we observed that 15 genome-wide significant loci
consisting of 17 independent signals (P-value < 5E−8), including 4 and 5
loci for LDL-C, 7 and 5 loci forHDL-C, and 5 and6 loci for TG, interacted
with alcohol drinking and cigarette smoking, respectively (Supple-
mentary Data S3a). At a locus with the TMRGxE significant (P-value < 5E
−8) for a lipid trait (LDL-C,HDL-C, or TG) and environment (smoking or
alcohol drinking), we searched the variant with the smallest P-value of
the direct test TDirect among the significant variants by the TMRGxE . The
variants with TDirect P-value < 7.35E−4, which correct for the 17 tests
and 4 environmental factors, were considered as significant for G× E
interaction (two-step procedure). We obtained 8 independent variants
in 6 loci among these 17 independent signals survived the threshold P-
value = 7.35E−4 and these variants were further tested for the replica-
tion of the interaction effects in UK Biobank using TDirect test.

LD score regression
We applied the LD score regression to estimate heritability con-
tributed by G× E interaction and mediation through the environment
factor E. We estimated heritability by combining all chromosomes
rather than chromosome specifically.We used the R package bigsnpr47

to estimate LD scores in the corresponding populations from 1000G
reference data with default settings.

Functional mapping and annotation
We performed overall enrichment tests using the residual α̂j � β̂jθ̂ as
the effect size and seðα̂j � β̂j θ̂Þ as the corresponding standard error.
We used MAGMA30 (Multi-marker Analysis of GenoMic Annotation)
and DEPICT48 (Data-driven Expression Prioritized Integration for
Complex Traits) to identify tissues and cells that are highly expressed
at genes within the G× E loci. We also used DEPICT to test for enrich-
ment in gene sets associated with gene ontology (GO) ontologies,
mouse knockout phenotypes and protein-protein interaction net-
works. In addition, we reported significant enrichments with a false
discovery rate 0.05. Analysis was done using the online platform
FUMA GWAS.

Colocalization
We performed colocalization analysis by using the software ezQTL
(https://analysistools.cancer.gov/ezqtl/#/home). We chose the

public genotype-tissue expression (GTEx) v7 with eQTL32 as the
QTL data and chose the public European reference panels for
calculating the LD data. We performed colocalization analysis
between GWIS and QTL results within a locus using eCAVIAR (eQTL
and GWAS Causal Variant Identification in Associated Regions)49,
where the Colocalization Posterior Probability (CLPP) is used to
describe the significance level of colocalization. We only recorded
colocalization with CLPP > 0.01, as suggested by the authors of
eCAVIAR.

UK Biobank individual level data for replication
The UK Biobank (UKBB)50 individual-level data used for replications
were available through Application ID: 81097. Quality Controls Parti-
cipants in the UKBB were genotyped using a custom Affymetrix UK
Biobank Axiom array51. Genotypes were imputed by the UKBB using
the Haplotype Reference Consortium reference panel52 with imputa-
tion r2 value greater than 0.3. Related individuals with pairwise kinship
coefficient greater than 0.0884 (suggested by UKBB) were removed
fromanalysis, resulting inN = 445,424 individuals of European, African,
and East Asian ancestries. The principal components were calculated
by UKBB with genotype data within each ancestry to account for
population structure. These data were independent of GLI cohorts and
consisted of European, African, andAsian individuals (race determined
using UKBB field ID 21000-0.0) in UKBB who were unrelated (genetic
kinship coefficient less than 0.0884; 22021-0.0). Linear regression
model (1) in main text was performed. Covariates included age at
assessment (21003-0.0), age2, sex (31-0.0), the first 10 PCs (22009-0.1
to 22009-0.10), and environment exposure, a genetic variant and their
interaction. Environmental exposures included ever/never smoking
status (20116-0.0), current/non-current smoking status (20116-0.0),
and alcohol intake frequency (1558-0.0).

Analogous to the G× E analysis in ref. 17, HDL-C (30760-0.0) and
TG (30870-0.0) measurements were natural log transformed and LDL-
C measurements (30780-0.0) were converted from mmol/L to mg/dl
thenmultiplied by a factor of 0.7 if therewas a history of lipid-lowering
medication (6177-0.0) present. LDL-C measurements were therefore
considered no medication if there were missing values for medication
history. This introduced missing values in LDL-C for 248,419
individuals.

Theoretical properties of TMRGxE
In MR analysis, the instrumental variables are independent and are
genome-wide significant variants selected from GWAS. Let
β̂1,j,β̂2,j ,β̂3,j and α̂j, j = 1, . . . ,m, be the corresponding effect size esti-
mates in GWIS (model (1) and GWAS (model 2)) for them instrument
variables.

The causal effect θ of the inverse variance weighted (IVW) is
estimated by

θ̂= argmin
θ

1
m

Xm
j = 1

α̂j � β̂1,jθ
� �2

var α̂j

� �
8><
>:

9>=
>;
: ð4Þ

It is much simply to work on θ̂ by standardizing the IVs and this
procedure does not change the conclusion. Thus, we let σ2

G,j = 1, j = 1,

…, m, in both GWAS and GWIS data. Further, we let the phenotype
residue variance σ2 = 1: By equation (S15) in Supplementary Note, we

have varðα̂jÞ=n�1
1 ,j = 1, . . .m,and θ̂=

Pm
j = 1

α̂j β̂1,j

Pm
j = 1

β̂
2
1,j

:

Since only the variants without either G× E interaction or media-
tion are valid in the MR analysis, we assume ρ =0 (no mediation) and
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β3,j = 0 (no interaction). We have

α̂j = β̂1,j +μE1β̂3,j ð5Þ

By applying the Slutsky’s theorem, and let β3,j = 0, we have:

E θ̂
� �

=

1
m

Pm
j = 1

Eðα̂j β̂1,jÞ

1
m

Pm
j = 1

Eðβ̂2

1,jÞ
=

1
m

Pm
j = 1

β2
1,j +

n0
n1n2

1 +
μ2
E0

σ2
E0

� �

1
m

Pm
j = 1

β2
1,j +

1
n2

1 +
μ2
E2

σ2
E2

� � : ð6Þ

Because σ2
G,j = 1,

1
m

Pm
j = 1

β2
1,j is the average phenotypic variance

accounted by an IV. Define σ2
β =

1
m

Pm
j = 1

β2
1,j , we have:

E θ̂
� �

=
σ2
β +

n0
n1n2

1 +
μ2
E0

σ2
E0

� �

σ2
β +

1
n2

1 +
μ2
E2

σ2
E2

� � , ð7Þ

which converges to 1 when n1 and n2→∞. However, when σ2
β is small

(weak instrument inMR analysis), the converge of Eðθ̂Þ to 1 is slow. We
also note that Eðθ̂Þ≤ 1.

Simulation settingswithoutmedication contribution (Fig. 2A–D,
Supplementary Figs. 6–9)
For ith individual, we generated m = 102 number of independent

variants through for j = 1, . . . ,m by G*
ij ∼Binomð2,pjÞ, where

pj∼unifom (0.05,0.5). We standardized genotypes by Gij =
G*
ij

2pj 1�pjð Þ :
For the environment factor in the GWAS model, we generated
Ei1 ∼N μE1,1

� �
. For the environment factor in the GWIS model, we

generated Ei2 ∼N μE2,1
� �

. For the samples overlapped between the
GWAS and GWIS, we generated their environment values through
N μE2,1

� �
: We varied the values of μE1, μE2 and the proportion of

overlapped samples.

The main effect size of the jth variant was generate by
β1j ∼Nð0,σ2

βÞ, where σ2
β is the trait variance accounted for by the IVs.

For the first variant, we added its interaction effect with E. The phe-
notype Y i by generated by

Y i =
Xm
j = 1

Gijβ1j +0:1Ei +0:05 Gi1 × Ei1

� �
+ ϵi, ð8Þ

where ϵi ∼N 0,σ2
� �

. The causal effect θ was estimated using the last
100 variants as the IVs. The power and type I error rate for TDirect and
TMR GxE were calculated based on the first and second variants,
respectively.

Simulation settings without medication contribution
(Fig. 2E–F), Supplementary Fig. 10
We generated 20 independent variants by Gj Binom 2,0:3ð Þ and stan-
dardized it but without mean correction. We simulated environment E
according to mediation present or not present. If no mediation, E is
generated fromN 1,1ð Þ. If there ismediation, E ∼0:05G+N 2,0:9975ð Þ,
or G contributes 0.25% variation of E. The phenotype is generated
according to the following models:
1. No mediation and no interaction: Y ∼0:1G+ γE +Nð0,10Þ,

where E ∼N 1,1ð Þ
2. Mediation but no interaction: Y ∼0:1G+ γE +Nð0,10Þ,

where E ∼0:05G+N 1,0:9975ð Þ.
3. Mediation and interaction: Y ∼0:1G+ γE +0:1*G*E +Nð0,10Þ,

where E ∼0:05G+N 1,0:9975ð Þ.

We let γ take values of 1 and
ffiffiffi
5

p
. We also simulated data with

environment mean 0.5 (Supplementary Fig. 10). We first simulated
n2 = 20,000 subjects for GWIS cohort (or main effect estimation). The
sample size for marginal effect estimation varied from n1 = 20,000 to
300,000, with the 20,000 subjects in GWIS cohort was always inclu-
ded. For the non-overlapped subjects, we let the environmentmean to
be 1.5 times of the environment mean in GWIS cohort. The type I error
and power for TDirect and TMR GxE were calculate by correcting for 20
tests using the Bonferroni correction. For the two-step procedure, we
first applied TMR GxE and Bonferroni correction. The variants survived
after TMR GxE were further tested by TDirect and Bonferroni correction
was further applied.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The marginal summary statistics of HDL-C, LDL-C, and TG from the
Global Lipids Genetics Consortium study (GLGC, n = 1.65M) were
downloaded at http://csg.sph.umich.edu/willer/public/glgc-
lipids2021. GLGC consists of GWAS results from 1.65M subjects
representing five genetic ancestry groups: European (N = 1.32M);
African or admixed African (N = 99k); East Asian (N = 146k); Hispanic
(N = 48k); and South Asian (N = 41k). We did not perform South Asian
specific analysis because there was no corresponding GWIS in the
Cohorts for Heart and Aging Research in Genetic Epidemiology
(CHARGE) consortium. The GWIS summary statistics from CHARGE
gene-lifestyle (GLI) working group in this study are available via dbGaP
(accession number phs000930). The UKBB individual-level data for
replications were available through Application ID: 81097.

Code availability
TMRGxE testwasused the software IMRPwhich is available in theGithub
repository with the following link, https://github.com/
XiaofengZhuCase/IMRP23. Heritability analysis was performed by
Bigsnpr, https://privefl.github.io/bigsnpr/reference/snp_ld_scores.
html47 and LDSC regression, https://github.com/bulik/ldsc47. FUMA:
https://fuma.ctglab.nl/31. Software ezQTL: https://analysistools.cancer.
gov/ezqtl/#/home. MAGMA: https://ctg.cncr.nl/software/magma30.
DEPICT: https://github.com/perslab/depict48. Plink: https://www.cog-
genomics.org/plink2/46. The codes for performing simulations and
analyzingG× E interaction of lipids data were deposited in the Zenodo
database53.
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